AUTHOR=Keser Zafer , Buchl Samuel C. , Seven Nathan A. , Markota Matej , Clark Heather M. , Jones David T. , Lanzino Giuseppe , Brown Robert D. , Worrell Gregory A. , Lundstrom Brian N. TITLE=Electroencephalogram (EEG) With or Without Transcranial Magnetic Stimulation (TMS) as Biomarkers for Post-stroke Recovery: A Narrative Review JOURNAL=Frontiers in Neurology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.827866 DOI=10.3389/fneur.2022.827866 ISSN=1664-2295 ABSTRACT=

Stroke is one of the leading causes of death and disability. Despite the high prevalence of stroke, characterizing the acute neural recovery patterns that follow stroke and predicting long-term recovery remains challenging. Objective methods to quantify and characterize neural injury are still lacking. Since neuroimaging methods have a poor temporal resolution, EEG has been used as a method for characterizing post-stroke recovery mechanisms for various deficits including motor, language, and cognition as well as predicting treatment response to experimental therapies. In addition, transcranial magnetic stimulation (TMS), a form of non-invasive brain stimulation, has been used in conjunction with EEG (TMS-EEG) to evaluate neurophysiology for a variety of indications. TMS-EEG has significant potential for exploring brain connectivity using focal TMS-evoked potentials and oscillations, which may allow for the system-specific delineation of recovery patterns after stroke. In this review, we summarize the use of EEG alone or in combination with TMS in post-stroke motor, language, cognition, and functional/global recovery. Overall, stroke leads to a reduction in higher frequency activity (≥8 Hz) and intra-hemispheric connectivity in the lesioned hemisphere, which creates an activity imbalance between non-lesioned and lesioned hemispheres. Compensatory activity in the non-lesioned hemisphere leads mostly to unfavorable outcomes and further aggravated interhemispheric imbalance. Balanced interhemispheric activity with increased intrahemispheric coherence in the lesioned networks correlates with improved post-stroke recovery. TMS-EEG studies reveal the clinical importance of cortical reactivity and functional connectivity within the sensorimotor cortex for motor recovery after stroke. Although post-stroke motor studies support the prognostic value of TMS-EEG, more studies are needed to determine its utility as a biomarker for recovery across domains including language, cognition, and hemispatial neglect. As a complement to MRI-based technologies, EEG-based technologies are accessible and valuable non-invasive clinical tools in stroke neurology.