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Introduction: Screening for metabolically relevant di�erentially expressed genes

(DEGs) shared by hepatocellular carcinoma (HCC) and vascular cognitive impairment

(VCI) to explore the possible mechanisms of HCC-induced VCI.

Methods: Based on metabolomic and gene expression data for HCC and VCI, 14

genes were identified as being associated with changes in HCC metabolites, and 71

genes were associated with changes in VCI metabolites. Multi-omics analysis was

used to screen 360 DEGs associated with HCC metabolism and 63 DEGs associated

with VCI metabolism.

Results: According to the Cancer Genome Atlas (TCGA) database, 882 HCC-

associated DEGs were identified and 343 VCI-associated DEGs were identified.

Eight genes were found at the intersection of these two gene sets: NNMT,

PHGDH, NR1I2, CYP2J2, PON1, APOC2, CCL2, and SOCS3. The HCC metabolomics

prognostic model was constructed and proved to have a good prognostic

e�ect. The HCC metabolomics prognostic model was constructed and proved

to have a good prognostic e�ect. Following principal component analyses (PCA),

functional enrichment analyses, immune function analyses, and TMB analyses,

these eight DEGs were identified as possibly a�ecting HCC-induced VCI and the

immune microenvironment. As well as gene expression and gene set enrichment

analyses (GSEA), a potential drug screen was conducted to investigate the possible

mechanisms involved in HCC-induced VCI. The drug screening revealed the potential

clinical e�cacy of A-443654, A-770041, AP-24534, BI-2536, BMS- 509744, CGP-

60474, and CGP-082996.

Conclusion: HCC-associatedmetabolic DEGsmay influence the development of VCI

in HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide,
characterized by the insidious and rapid onset, poor prognosis, and high metastasis rate.
With an estimated 906,000 new cases of HCC in 2020, accounting for 4.7% of the
overall cancer incidence, HCC is the sixth most common malignancy worldwide, after
breast, lung, colorectal, prostate, and stomach cancers (1). It is the third most common
cause of cancer-related death and patients generally have a poor prognosis as the onset
is insidious and the tumor is often at an advanced stage at the time of diagnosis. In
2020, ∼830,000 people died from HCC globally, accounting for 8.3% of cancer-related
deaths (1). In recent years, with the popularization of hepatitis B vaccination and the
improved efficacy of antiviral drug therapy, the incidence of virus-related HCC is on the
decline, while non-alcoholic liver disease and metabolic syndrome-related HCC are increasing
year by year due to lifestyle changes and dietary habits (2). The main treatment options
for HCC include surgical resection, radiofrequency ablation, chemotherapy, liver-targeted

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.1109019
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.1109019&domain=pdf&date_stamp=2023-03-16
mailto:shioumo9@163.com
mailto:452770974@qq.com
https://doi.org/10.3389/fneur.2022.1109019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.1109019/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhu et al. 10.3389/fneur.2022.1109019

drugs, and liver transplantation. However, due to the insidious
onset of the disease, the early stages may present with only
non-specific symptoms such as weakness and dyspepsia, and
progresses rapidly, resulting in the diagnosis of the tumor at an
advanced stage, by when the opportunity for radical treatment
had already passed (3). The late stage of HCC is often associated
with complications such as gastrointestinal bleeding, infection,
hepatic and renal syndrome, and hepatic encephalopathy. When
complicated by hepatic encephalopathy, clinical manifestations may
include behavioral abnormalities, cognitive impairment, altered
consciousness, and even coma, which are often combined with
liver dysfunction making the treatment more difficult and the
patient’s prognosis poor (4, 5). However, no extensive study has been
conducted to determine whether other factors may contribute to
cognitive impairment in patients with HCC.

Vascular cognitive impairment (VCI) is a syndrome of cognitive
impairment secondary to bleeding, ischemic stroke, cerebrovascular
injury, and other diseases. Patients may present with cognitive
impairment such as memory problems, behavioral abnormalities,
speech difficulties, and even dementia (6). Various mechanisms
involving immune inflammatory response, oxidative stress, and
damage to the blood-brain barrier are associated with the
development of VCI (7–11). Some studies have also reported that
a strong correlation between HCC and the changes in intestinal
microbiota in Alzheimer’s disease has been observed, indicating that
HCC may promote cognitive impairment in Alzheimer’s disease
by affecting the intestinal microbial ecology (12). Furthermore,
some studies have found common transcriptional changes between
Alzheimer’s disease andHCC and other cancers (13). Abnormal levels
of circulating metabolites such as amino acids and fatty acids are
associated with cognitive impairment caused by vascular dysfunction
(14–16). Metabolomic analysis showed that dysregulation of various
metabolites was closely related to HCC, suggesting its involvement in
promoting the occurrence of HCC-related VCI (17). The circulating
metabolites may, therefore, be affected by HCC, thereby resulting in
cognitive impairment.

Metabolomics is the qualitative and quantitative analysis of the
metabolites of an organism or cell during a specific period to deduce
the relationship between different metabolites and the corresponding
pathophysiological state. Metabolomics is now widely used in many
fields such as disease diagnosis, drug toxicology, pharmaceutical
development, and microbial metabolism (18, 19). Since abnormal
metabolism is a common feature of cancer cells, metabolomics plays
an important role in tumor prognosis, drug target research, and
metabolic marker screening (20). The liver is the central organ of
humanmetabolism and is involved in regulating the expression levels
of many metabolites, which makes the metabolomic study of HCC
particularly important (21, 22). Zoe Hall and other researchers found
that the proliferation of HCC tumor cells is closely related to altered
metabolic pathways such as adipogenesis and phosphatidylcholine
production (23). Further, the serum bile acid levels were significantly
higher and serum sphingolipid levels were lower in HCC patients,
suggesting that the changes in these metabolites are closely related
to the development of HCC (24). Metabolomic analysis of VCI
showed that the disease-related biomarkers were mainly associated
with homocysteine, folate, branched-chain amino acids, and lipid
metabolism (16). Sphingolipids, cholesterol, phospholipids, and
other lipids play an important role in themaintenance of the structure
and function of neuronal structures. Therefore, some researchers

have suggested that disorders of lipid metabolism could be vital in the
pathogenesis of VCI, but the exact mechanism is not yet clear (25).
This suggests that HCC and VCI are associated with metabolomic
changes, and related studies are needed.

The development of next generation sequencing (NGS)
technologies and bioinformatic tools allows a large-scale analysis
of each parameter involved in cancer and other systemic disease
(26–32). In this study, the Gene Expression Omnibus (GEO)
database and literature search were utilized to obtain metabolomic
data on HCC and VCI, and Metaboanalyst 5.0 was used to obtain
the metabolic differentially expressed genes (DEGs) as previous
researches (33–36). In order to understand the possible mechanism
of VCI caused by HCC and provide some theoretical basis for the
clinical treatment of HCC, we conducted principal component
analyses, functional enrichment analyses, immune function analyses,
and tumor mutational burden (TMB) analyses of the above genes.
We investigated possible mechanisms of VCI induction by HCC in
this study.

Methods

Data acquisition

VCI clinical and transcriptomic (mRNA) data were downloaded
from GEO database. The filter conditions were set to ①” vascular
cognitive impairment”; ② human. This study was derived from
10 “normal cognitive patients” and 10 “patients with VCI” from
the microarray dataset GSE201482 in 10 cases. DEGs of VCI
were screened according to the criteria of P-value < 0.05 and
|log2FC| ≥ 1.00. HCC clinical, transcriptomic (mRNA) data were
downloaded from TCGA (https://portal.gdc.cancer.gov/) website,
and their expression matrix was compiled and summarized by R.
DEGs were screened by adjust P-value < 0.05 and |log2FC| ≥

1.0, and heat maps were plotted. DEGs were categorized into up-
regulated, down-regulated, and non-statistically significant groups,
and then imported into R for volcano plots. Bioconductor R software’s
bioconductor R package was used to normalize and calculate
expression values for microarray data. Based on the screened DEGs,
heat maps and cluster analyses were performed using the heatmap
package. We transformed DEG P-value to –log10, grouped them
according to log2FC, and imported the processed data into R for
volcano plotting. The HCC expression matrix data was downloaded
from the Cancer Genome Atlas database. According to the pre-
screened genes, the relative expression of the core genes in the HCC
expression data was analyzed using “ggpubr” package and a relative
expression box plot was drawn.

Metabolomics matrix construction and
multi-omics analyses

For multi-omics analysis, metabolically differentially expressed
metabolites and DEGs were imported from HCC and VCI
metabolomics into Metaboanalyst 5.0, while metabolomics genes
associated with HCC and VCI were incorporated into Venny
2.1 software (http://bioinfogp.cnb.csic.es/tools/venny/index.html)
for plotting Venn diagrams and obtaining metabolomic differential
genes associated with HCC and VCI.
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Immuno-infiltration analysis and
immunofunctional analysis

The HCC expression matrix data obtained above were subjected
to a deconvolution algorithm using the CIBERSORT package, which
allows estimation of the cellular composition of complex tissues based
on normalized gene expression data, as well as quantification of
specific cell types. The immune cell sorting perl script is used to sort
the HCC-associated infiltrating immune cells. The limma R package
in R was used to calculate expression values from themicroarray data.
HCC and paraneoplastic tissues were analyzed using the CIBERSORT
package. With the CIBERSORT package, the composition of immune
cells in each sample was further analyzed and histograms were
plotted. Pheatmap was used to generate heat maps showing immune
cell distribution. HCC immune cell infiltration co-expression map
was plotted using corrplot to analyse interactions between immune
cell populations. Finally, the expression of each immune cell was
analyzed using the vioplot package in HCC tissues and paracancerous
tissues. In relation to immunofunctional analysis, we used the
“limma,” “GSVA,” “gseabase,” “pheatmap,” and “reshape2” packages to
perform immunofunctional analysis on HCC metabolomics-related
genes to identify targets for precision therapy.

VCI-associated HCC metabolic genes
prognostic model

Standardized HCC metabolomics data were merged with HCC
clinical data, and univariate and multifactorial Cox prognostic
survival analyses on HCC differential genes were performed using
the R language packages survival, caret, glmnet, survminer, and
survroc to plot survival curves for closely related key metabolomics
genes. In addition, 370 cases were randomly divided into testing
group (n = 185) and training group (n = 185). R software was
used to perform risk survival analysis on the pre-merged data,
plotting risk survival curves and receiver operator characteristic
(ROC) curves for testing group, training group, and total group
as previous studies (37–40). On the general clinical data of HCC,
the survival package was again used to perform clinical statistical
analysis and risk prognostic analysis. To investigate the risk factors
associated with HCC, forest plots, and histograms were plotted for
single- and multi-factor independent prognostic analysis. Further
model validation on clinical subgroups was performed using the
“survival” and “survminer” packages.

Principal component analysis and
enrichment analysis of gene ontology (GO)
and the Kyoto encyclopedia of genes and
genomes (KEGG) for genes associated with
HCC metabolomics

The scatterplot3d package was used for the principal component
analysis of HCC metabolomics-related genes and HCC-related risk
genes, and the clusterprofilergo.R package in R (https://www.r-
project.org/) software and Perl language were used formetabolomics-
related HCC GO analysis for differential genes. KEGG pathway
enrichment analysis was performed using the clusterprofilerkegg.R

package to analyze core pathway enrichment based on enrichment
factor values and to investigate the biological functions and signaling
pathways that may be associated with HCC.

TMB analysis of HCC metabolism-related
genes

TMB files were downloaded from the TCGA database and
correlation tests between core genes and TMB were performed
using functions, with correlation coefficients and P-values calculated.
In addition, correlation analysis between metabolism-related genes
and HCC tumor mutational load was performed using the survival
and survminer software packages, and correlation coefficients and
P-values were calculated.

Gene set enrichment analysis (GSEA)

The GSEA website was used to download the GO/KEGG
annotation files for the whole transcriptome genes, and GO and
KEGG enrichment analyses of the core genes were performed using
the limma, org. Hs. eg. db, clusterprofiler, and enrichplot packages
as previous researches (41–43). Analyses of cellular component
(CC), molecular function (MF), biological process (BP), and KEGG
pathway enrichment were conducted for the core genes. Based
on the enrichment factor values, we analyzed the core pathway
enrichment and examined the potential biological functions and
signaling pathways of the HCC core genes.

Screening for potential therapeutic drugs

“pRRophetic” is a package that can be used to predict phenotypes
from gene expression data, predict drug sensitivity in external cell
lines, and predict clinical data. In order to determine the drug
sensitivity of each sample from TCGA database, we used the R
package “pRRophetic” to obtain HCC metabolism-related genes
after prescreening.

Results

Metabolites with di�erential levels in
patients with HCC and VCI

A total of 14 differentially expressed metabolites from HCC,
including 2 up-regulated and 12 down-regulated metabolites,
as well as 71 differentially expressed metabolites from VCI,
including 32 up-regulated and 39 down-regulated metabolites,
were identified by screening criteria of fold change (FC) >1.5
and P-value < 0.05. Data enrichment and metabolic pathway
analysis were performed using Metabolanalyst 5.0. Ammonia
recycling, glutathione metabolism, glutamate metabolism, and
Beta A metabolism were enriched for differentially expressed
metabolites of VCI (Figures 1A, B). As part of the metabolic
signaling pathway enriched for aminoacyl-tRNA, glycine, serine, and
threonine biosynthesis, valine, leucine, and isoleucine biosynthesis,
glyoxylate and dicarboxylate metabolism, phenylalanine metabolism,
phenylalanine, tyrosine, and tryptophan biosynthesis, etc
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FIGURE 1

VCI and HCC metabolomic analysis. (A) VCI di�erentially expressed metabolite enrichment analysis diagram; (B) Di�erentially expressed metabolite

signaling pathways in VCI; (C) Di�erentially expressed metabolite enrichment distributions in HCC; (D) Di�erentially expressed metabolite signaling

pathways in HCC.

(Figures 1A, B). Among the metabolic functions enriched for
differentially expressed metabolites of HCC are the Warburg effect,
gluconeogenesis, purine metabolism, phosphatidylethanolamine
biosynthesis, phosphatidylcholine biosynthesis, and arginine and
proline metabolism (Figures 1C, D). The main enriched metabolic
signaling pathways include glycerophospholipid metabolism, citrate
cycle (TCA cycle), pyruvate metabolism, purine metabolism,
glycolysis/gluconeogenesis, and the alanine, aspartate, and glutamate
metabolism (Figures 1C, D). Based on the above, it is evident that
metabolism-related genes may play a role in HCC and VCI.

HCC and VCI transcriptome DEGs

The TCGA website (https://portal.gdc.cancer.gov/) was used

to download clinical and transcriptomic expression data related

to HCC, and a total of 424 transcriptomic and 377 clinical

datasets were obtained according to the predefined screening
criteria. Differential expression data were screened based on

adjusted P-values < 0.05 and |log2FC| ≥ 1.0. A total of 882
differentially expressed mRNAs were screened in the dataset,
including 487 up-regulated mRNAs and 395 down-regulated
mRNAs; DEGs were screened for differential analysis based on
P-value. The top 100 most significant differentially expressed
mRNAs were screened based on P-values and plotted as heat
maps (Figure 2A). Following differential analysis, P-values were
–log10 transformed, grouped according to log2 FC (groups of
up-regulated DEGs, down-regulated DEGs, and non-statistically
significant DEGs), and imported into R for plotting volcanoes
(Figure 2B). The GSE201482 dataset contained 343 differentially
expressed mRNAs, including 179 up-regulated and 164 down-
regulated mRNAs. The top 100 differentially expressed coding RNAs
with the greatest significance were screened, and the heat map
was created based on the P-value (Figure 2C). Further, –log10
(P-value) was transformed from differential analysis microarray
data, –log10 (P-value) was grouped by log2 FC (groups of
up-regulated DEGs, down-regulated DEGs, and non-statistically
significant DEGs), and the processed data was imported into R to plot
volcanoes (Figure 2D).
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FIGURE 2

Transcriptomic analysis of HCC and VCI. (A) Heat map of DEGs clustering for HCC transcriptomics; (B) Transcriptomics of DEGs volcanoes for HCC; (C)

Heat map of DEGs clustering for VCI transcriptomics; (D) Volcano map for VCI transcriptomics based on DEGs.

Multi-omics analysis of HCC and VCI

The differentially expressed metabolites and DEGs of HCC
and VCI obtained in the previous stage were imported into
Metaboanalyst 5.0 for multi-omics analysis, and 360 metabolic
DEGs associated with HCC and 63 metabolic DEGs associated
with VCI were obtained (Figures 3A, B). To plot the Venn
diagram, the above metabolomics genes associated with HCC and
VCI were imported into Venny 2.1 software (http://bioinfogp.
cnb.csic.es/tools/venny/index.html). Accordingly, 8 mRNAs
were selected, including 1 up-regulated and 7 down-regulated
mRNAs, namely: NNMT, PHGDH, NR1I2, CYP2J2, PON1,
APOC2, CCL2, and SOCS3 (Figure 3C). Figure 4 shows a heat
map of those differentially metabolized DEGs related to HCC
and VCI.

Prognostic models based on metabolic
genes related to HCC and VCI

The 377 clinical cases were randomly divided into a test
group and a training group, for clinical and statistical analysis.

No significant differences were found between the two groups
in terms of age, gender, and tumor stage (P-value > 0.05), and
the data from the two groups were comparable, as shown in
Supplementary Table 1. Based on a multifactorial regression model,
we composed these six genes (NNMT, PHGDH, NR1I2, CYP2J2,

PON1, APOC2, CCL2, and SOCS3) into a risk factor model
called riskScore. In the COX survival prognostic model, survival

time decreased with increasing riskScore in the test group and
the training group (P-value < 0.05) (Figures 5A, B). Independent

prognostic analyses by univariate and multifactorial regression

showed that the tumor stage and riskScore were significantly

associated with prognosis in HCC patients (Figures 5C, D). For

prognosis prediction of HCC patients at 1, 3, and 5 years, the
area under the curve (AUC) of the subject working characteristic

(ROC) curve exceeded 0.59 (Figure 5E). Among the ROC curves

for all HCC risk factors, the AUC of riskScore for metabolic
genes related to HCC and VCI was the largest and >0.6

(Figure 5F), indicating a good sensitivity of the established survival
prognostic model. Based on HCC and VCI-related metabolic genes,
a nomogram prognostic model was constructed, and the test
results showed survival rates of 0.929, 0.86, and 0.81 after 1 year
(P-value < 0.05) (Figure 5G).
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FIGURE 3

Analysis of multi-omics data; (A) Bubble map of enrichment distribution of HCC metabolism-related genes; (B) Bubble map of enrichment distribution of

VCI metabolism-related genes; (C) Venn diagram showing the intersection of HCC and VCI di�erential genes.

FIGURE 4

Clustering of metabolism-related genes in HCC.

Principal component analysis, GO, and KEGG
enrichment analysis of metabolism-related
genes of HCC

Principal component analysis of HCC metabolism-related genes
and HCC-associated genes was performed using the scatterplot3d
package (Figures 6A, B). GO and KEGG pathway enrichment
analysis of those eight differentially metabolized DEGs related
to HCC and VCI were done using Bioconductor package and
clusterprofiler package in R language. The GO analysis of
those eight differentially metabolized DEGs showed that their

biological processes were mainly enriched in response to a drug

or an exogenous drug catabolic process (Figures 7A–F). The

cellular components that were mainly enriched included high-

density lipoprotein particles and plasma lipoprotein particles. The

molecular functions including phospholipase activator activity,

lipase activator activity, and phospholipase binding were also
enriched. The enriched KEGG pathways included TNF signaling

pathway, Influenza A lipid and atherosclerosis pathway, linoleic

acid metabolism, nicotinate and nicotinamide metabolism, glycine,

serine, and threonine metabolism, and so on (Figures 7G, H).
This indicates that the pathways and functions of these DEGs
enrichment may be connected to the immune microenvironment
and metabolism.
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FIGURE 5

Developing a prognosis model for HCC. (A) Prognostic curves for the overall sample group; (B) The survival prognosis curve for the training group; (C)

Analysis of independent prognostic factors based on single-factor regression; (D) Analysis of independent prognostic factors based on multi-factor

regression; (E) HCC 5-year survival ROC curves; (F) HCC risk factor ROC curves; (G) Nomograph of metabolomic prognostic models for HCC.

Immuno-infiltration and immunofunctional
analysis of metabolized DEGs related to HCC
and VCI

The obtained HCC expression matrix data were background
corrected and normalized and expression values for the microarray
data were calculated using the limma R package in R. The immune
cell composition of each sample was further analyzed using the
CIBERSORT package and histograms were plotted (Figure 8A). The
immune cell distribution heat map was plotted using the pheatmap
package (Figure 8B). The interaction of immune cell populations
in HCC was then analyzed using the corrplot package and co-
expression maps of immune cell infiltration in HCC were plotted

(Figure 8C). Finally, the expression matrix data were analyzed using
the Vioplot package to investigate the expression of each immune
cell in HCC tissues as well as paracancerous tissues, and further
plotted (Figure 8D).

Immunological functions of HCC metabolism-related genes

were analyzed using limma, Gene Set Variation Analysis (GSVA),

gseabase, pheatmap, and reshape2 packages. The immune functions

weremainly focused on antigen-presenting cells (APC) co-inhibition,

APC co-stimulation, cytokine-cytokine receptor interaction (CCR),

checkpoint, cytolytic activity, human leukocyte antigens (HLA),

inflammation-promoting, MHC_class_I, and parainflammation
(Figure 9). This study reveals and visualizes immune infiltration and
immune function associated with metabolic DEGs of HCC and VCI.
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FIGURE 6

PCA distribution map. (A) Metabolic-related genes PCA distribution map; (B) Genes related to HCC PCA distribution map.

FIGURE 7

Enrichment analysis; (A) BP enrichment bubble plot; (B) BP enrichment plot; (C) CC enrichment bubble plot; (D) CC enrichment plot; (E) MF enrichment

bubble plot; (F) MF enrichment plot; (G) KEGG enrichment bubble plot; (H) KEGG enrichment plot.

TMB analysis of metabolized DEGs related to
HCC and VCI

The HCC expression data and TMB files were imported into

R, and the correlation between DEGs related to HCC and tumor

mutation load was calculated by using the function, and the waterfall

plots of high and low-risk groups were drawn according to the
correlation results (Figures 10A, B). The differential analysis results

suggested that the tumor mutation load in the low-risk group was

significantly higher than that in the high-risk group (Figure 10C).
Survival analysis of the tumor mutation load of HCC metabolism-

related genes showed that the survival period of the low tumor
mutation load group was significantly longer than that of the
high tumor mutation load group (P-value < 0.05) (Figure 10D).
In addition, combining tumor mutation load characteristics and

metabolism-related genetic factors, the low-risk group with low
tumor mutation load had the highest probability of survival while
the high-risk group with low tumor mutation load had the lowest
probability of survival (Figure 10E).

Relative expression of PHGDH, NR1I2, and
APOC2

After obtaining the core genes PHGDH, NR1I2, and APOC2
from the previous differential expression analysis and survival
prognosis analysis, we further investigated their relative expression
in HCC. The transcriptome data of HCC were downloaded from
the TCGA and the ggpubr package was used to analyze the relative
expression of the identified core genes and to draw box expression
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FIGURE 8

Infiltration analysis of immune cells. (A) Distribution of immune cells in HCC; (B) HCC immune cell distribution heat map; (C) HCC immune cell

interaction heat map; (D) Image showing the relative amount of immune cells in HCC.

FIGURE 9

Immune enrichment analysis heat map.
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FIGURE 10

TMB analysis; (A) The waterfall plot for the high risk group; (B) The waterfall plot for the low risk group; (C) The di�erential analysis of tumor mutation

burden; (D) Survival analysis of tumor mutation burden; (E) Survival analysis of TMV+ risk factors.

maps (Figures 11A–C). The results revealed that PHGDH and NR1I2
genes exhibited low expression in HCC tumor tissues (P-value <

0.001) while APOC2 genes were highly expressed in HCC tumor
tissues (P-value < 0.01).

Single-gene GSEA enrichment analysis

The GO/KEGG annotation file downloaded from the GSEA
website and the HCC tumor data file were read into R. Analytical
operations were performed, and it was found that: the GO of gene
PHGDH at HCC was enriched in CHROMATIN REMODELING,
DNA PACKAGING, and PROTEIN DNA COMPLEX SUBUNIT
ORGANIZATION functions (Figure 12A). The GO function
of gene NR1I2 was enriched in ACTIVATION OF IMMUNE
RESPONSE, ADAPTIVE IMMUNE RESPONSE BASED ON
SOMATIC RECOMBINATION OF IMMUNE RECEPTORS BUILT
FROM IMMUNOGLOBULIN SUPERFAMILY DOMAINS, and
ALPHA BETA T CELL ACTIVATION (Figure 12B). The gene
APOC2 was functionally enriched in CHROMATIN ASSEMBLY
OR DISASSEMBLY, EPIDERMAL CELL DIFFERENTIATION,
and INFLAMMATORY RESPONSE TO ANTIGENIC STIMULUS
(Figure 12C); The main PHGDH gene-enriched KEGG pathways
are OLFACTORY TRANSDUCTION, CIRCADIAN RHYTHM

MAMMAL, GRAFT VS. HOST DISEASE signaling pathways
(Figure 12D); The NR1I2 gene enriched KEGG pathways are mainly
ANTIGEN PROCESSING AND PRESENTATION, CYTOKINE
RECEPTOR INTERACTION, and CYTOSOLIC DNA SENSING
signaling pathways (Figure 12E). The main KEGG pathways
enriched by the APOC2 gene are OLFACTORY TRANSDUCTION,
CYTOSOLIC DNA SENSING PATHWAY, and REGULATION OF
AUTOPHAGY signaling pathway (Figure 12F).

Potential drug screening

To evaluate therapeutically effective drugs against DEGs related
to HCC and VCI, we used the limma, ggpubr, prrophetic,
and ggplot2 packages. Drugs with potential clinical efficacy
against HCC metabolism-related genes include A-443654, A-
770041, AP-24534, BI-2536, BMS-509744, CGP-60474, CGP-082996,
CMK, cyclopamine, dasatinib, doxorubicin, etoposide, gemcitabine,
GW843682X, HG-6-64-1, and JW-7-52-1 (Figures 13A–P).

Discussions

VCI is an acquired mental impairment syndrome, which is
characterized by cognitive impairment, memory difficulties, and
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FIGURE 11

Analysis of the relative expression of target genes; (A) Relative expression of PHGDH (p < 0.001); (B) Relative expression of NR1I2 (p < 0.001); (C) Relative

expression of APOC2 (p < 0.001).

FIGURE 12

GSEA enrichment analysis of DEGs (PHGDH, NR1I2, and APOC2); (A) GO enrichment analysis of PHGDH in HCC; (B) GO enrichment analysis of NR1I2 in

HCC; (C) GO enrichment analysis of APOC2 in HCC; (D) KEGG enrichment analysis of PHGDH in HCC; (E) KEGG enrichment analysis of NR1I2 in HCC; (F)

KEGG enrichment analysis of APOC2 in HCC.

neurodegenerative lesions (44). Previous studies have pointed out
that HCC may be associated with cognitive disorders of the brain
such as hepatic encephalopathy, but the specific mechanisms by
which HCC induces VCI are unclear (45). Metabolomic studies
have shown that the pathogenesis of VCI may involve various
mechanisms such as impaired myelin synthesis caused by glucolipid
metabolism disorders and related metabolites leading to blood-
brain barrier disruption and vascular endothelial damage (46–48).
HCC may affect metabolic disorders promoting the development of
VCI. According to the current studies, the possible mechanisms of
cognitive impairment due to HCC include impaired blood ammonia
and bile acid metabolism, oxidative stress injury and inflammatory

response, impaired blood-brain barrier, neurotransmission disorders,
neurotoxic accumulation, and disturbance of cerebral energy
metabolism (49–51). Therefore, in this study, we propose that HCC
may influence the body’s metabolism to promote the occurrence of
VCI. In this study, we obtained the 8 significant HCC-VCI DEGs by
metabolomic analysis, which are NNMT, PHGDH, NR1I2, CYP2J2,
PON1, APOC2, CCL2, and SOCS3. Previous literature indicated that
the above eight genes are mostly involved in the development of VCI.

NNMT encodes proteases involved in the metabolism of various
substances and drugs in vivo and is highly expressed in a variety
of tumors, correlating with tumor infiltration, distant metastasis,
and malignancy (52, 53). NNMT encodes neuronal proteins
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FIGURE 13

Screening for potential drugs; (A) The therapeutic e�ect of the drug A-443654; (B) The therapeutic e�ect of the drug A-770041; (C) The therapeutic

e�ect of the drug AP-24534; (D) The therapeutic e�ect of the drug BI-2536; (E) The therapeutic e�ect of the drug BMS-509744; (F) The therapeutic e�ect

of the drug CGP-60474; (G) The therapeutic e�ect of the drug CGP-082996; (H) The therapeutic e�ect of the drug RSK2 kinase inhibitor (CMK); (I)

Cyclopamine drug’s therapeutic e�ects; (J) The therapeutic e�ect of the drug Dasatinib; (K) The therapeutic e�ect of the drug Doxorubicin; (L) The

therapeutic e�ect of the drug Etoposide; (M) The therapeutic e�ect of the drug Gemcitabine; (N) The therapeutic e�ect of the drug GW843682X; (O) The

therapeutic e�ect of the drug HG-6-64-1; (P) The therapeutic e�ect of the drug HG-6-64-1.

whose increased expression is associated with stress responses in
the brain microenvironment and can be involved in promoting
cognitive impairment (54–56). PHGDH encodes a phosphoglycerate
dehydrogenase involved in the synthesis of L-serine, a regulator
of synaptic plasticity and an essential product for T-cell expansion
(57, 58). PHGDH mutants can result in neurological symptoms such
as impaired motor function, and its overexpression can promote
proliferation and invasion of cancer cells such as HCC (59–61).
Further, PHGDH has been found to contribute to the development
of cognitive impairment (62). NR1I2 is a member of the nuclear
receptor superfamily and is involved in encoding a transcriptional
regulator that regulates cytochrome P450 (CYP) enzymes. Previous
studies suggest that NR1I2 may regulate bile acid metabolism
involved in promoting the progression of cognitive impairment (63).
CYP2J2 is a cyclooxygenase that is involved in regulating the body’s
inflammatory response, cell proliferation, and other physiological
functions, and plays an important role in the homeostasis (64).

CYP2J2 variants are involved in promoting cerebrovascular disease
and their polymorphisms are associated with susceptibility to
cognitive impairment (65, 66). CYP2J2 increases the production
of eets and enhances HIF-1 alpha stability and promotes the
development of HCC (67). PON1 encodes calcium-dependent high-
density lipoprotein-related lipase, which can reduce reactive oxygen
species, reduce LDL oxidative stress, enhance HDL antioxidant
capacity, and participate in anti-inflammatory and antioxidant
activities in neurodegenerative diseases, neuroinflammation, and
other neurological diseases (68, 69). Studies have pointed out
that reduced PON1 activity may affect lipid metabolism, promote
vascular endothelial damage, and contribute to the development
of cognitive impairment (69–72). PON1 levels were negatively
correlated with HCC vascular invasion, probably due to its anti-
inflammatory activity and its role in the maintenance of normal
vascular endothelial function (73). APOC2 encodes a lipid-binding
protein belonging to the apolipoprotein family, which is involved
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in the composition of very low-density lipoproteins and in
promoting the hydrolysis of triglycerides (74, 75). High serum
levels of APOC2 are associated with cognitive impairment, and
the exact underlying mechanism of action is unclear (76, 77).
CCL2 or MCP-1 is a member of the CC chemokine family, and
abnormally expressed CCL2 is closely associated with CNS diseases,
neoplastic diseases, and inflammatory diseases. The CCL2/CCR2
axis activates the Hedgehog pathway involved in the induction of
HCC invasion and epithelial-mesenchymal transition (78). Further,
CCL2 may be involved in promoting the progression of cognitive
impairment through enhancing excitotoxicity, oxidative stress-
induced inflammatory damage, and apoptosis in neuronal cells,
affecting glutamate metabolism and inducing microglia activation in
the local microenvironment (79–82). SOCS3 is an important negative
feedback regulatory protein in the JAK/STAT signaling pathway,
a key physiological regulator in natural and acquired immunity,
T-lymphocyte differentiation, and immune regulation, and plays a
negative feedback regulatory role in immune/inflammatory diseases
(83–85). The SOCS3 signaling pathway is also involved in the
development of HCC (86, 87). Thus, the above genes may be
associated with the occurrence of HCC-induced VCI.

The developed HCC metabolomics prognostic model based on
HCC-VCI DEGs has a good prognostic effect. Principal component
analysis, functional enrichment analysis, immune function analysis,
and TMB analysis suggested that HCC-VCI DEGs may affect
the immune microenvironment and thus result in the occurrence
and development of VCI in HCC. Therefore, the immune-related
effects of the above genes were probed, and it was observed
that several of these genes were associated with immunity.
PHGDH can promote liver ceramide synthesis to maintain lipid
homeostasis, and participate in the maintenance of mitochondrial
REDOX homeostasis and cellular homeostasis in the immune
microenvironment (88, 89). NR1I2 is involved in the regulation of
T-cell differentiation and plays an important role in the regulation
of immune homeostasis (90, 91). APOC2 may play a protective
role in the immune microenvironment of atherosclerotic disease by
inhibiting foam cell formation, in addition to participating in lipid
metabolism (74, 92, 93). CCL2 plays an important role in immune
regulation by recruiting chemotactic monocytes/macrophages to the
site of inflammation, mediating the inflammatory response to limit
pathogen invasion, and participating in the repair of damaged tissues
(94, 95).

In summary, our study revealed that the HCC-associated
metabolic DEGs such as NNMT and PHGDH may influence the
occurrence and progression of VCI in HCC patients by affecting
the immune microenvironment. Further by establishing a prognostic
model and screening potential targeted drugs, we found that
the above genes had a good prognostic effect on HCC. Finally,
drugs that may target HCC-VCI DEGs were screened, namely A-
443654, A-770041, AP-24534, BI-2536, BMS-509744, CGP-60474,
and CGP-082996, and are expected to have good potential clinical
efficacy in patients with HCC-induced VCI. Therefore, this study
provides theoretical support and potential therapeutic strategies for
the pathogenesis and clinical treatment of VCI in HCC patients.
However, the current study also has some limitations. On the one
hand, a larger sample of data is needed to verify the conclusions while

on the other, relevant biological experiments are needed to clarify the
specific regulatory mechanisms.

Conclusion

HCC metabolization-related DEGs such as NNMT and PHGDH
may lead to the occurrence of VCI in HCC patients by affecting
the immune microenvironment. Further by establishing a prognostic
model and screening the potential targeted drugs, we found that
the above genes had a good prognostic effect on HCC. A-443654,
A-770041, AP-24534, BI-2536, BMS-509744, CGP-60474, and CGP-
082996 could be potential candidates with good clinical efficacy for
treating VCI in HCC patients.
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