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Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous

system (CNS) with a profound neurodegenerative component early in the

disease pathogenesis. Age is a factor with a well-described e�ect on the

primary disease phenotype, namely, the relapsing-remitting vs. the primary

progressive disease. Moreover, aging is a prominent factor contributing to

the transition from relapsing-remitting MS (RRMS) to secondary progressive

disease. However, sex also seems to, at least in part, dictate disease phenotype

and evolution, as evidenced in humans and in animal models of the disease.

Sex-specific gene expression profiles have recently elucidated an association

with di�erential immunological signatures in the context of experimental

disease. This review aims to summarize current knowledge stemming from

experimental autoimmune encephalomyelitis (EAE) models regarding the

e�ects of sex, either independently or as a factor combined with aging, on

disease phenotype, with relevance to the immune system and the CNS.

KEYWORDS
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1. Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system

(CNS) with its neurodegenerative component being increasingly recognized and studied

over the last years (1). Similar to the majority of autoimmune diseases (2), a female

predilection is evident, based on large epidemiological data from several countries (3).

Moreover, MS is a highly heterogeneous disease with a very diverse range of clinical

manifestations, radiology, course, and prognosis. In addition to sex, age of onset, as
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well as aging are also considered significant factors for the

overall disease course and prognosis. Aging is defined as the

biological processes that occur over time affecting all organs on

a tissue and cellular level. Aging is characterized by profound

alterations in an organism’s physiology and homeostasis, thus

affecting several systems and functions, such as the metabolism,

endocrine function, and the immune system (4). Recent

advances with respect to “omic” technologies have allowed

detailed fingerprinting of disease phenotypes, as well as of

the underlying pathological processes, on a tissue and cellular

level. It is prominent that sex variations account for specific

differences in aging processes, thus being responsible for sex

disparities in disease phenotype and progression (5).

The sex variation and aging in CNS autoimmunity have

been extensively studied in experimental models of MS,

prominently in the rodent model of experimental autoimmune

encephalomyelitis (EAE). Although not entirely similar to MS,

EAE recapitulates several aspects of disease pathology and is

considered the most widely used experimental model for MS (6,

7). In the inducedmodel of EAE, CNS autoimmunity is triggered

by active immunization of rats or mice with an encephalitogen

protein and/or peptide factor, together with an adjuvant. EAE

is typically induced in female laboratory animals of young age,

specifically 4–6 weeks of age, in order to investigate sex and age-

related differences that would induce significant heterogeneity

in the model. Moreover, experimental evidence highlights

alterations in disease processes under various effects of sex

and age. This review aims to summarize current knowledge

stemming from EAE models regarding the effects of sex, either

independently or as a factor combined with aging, on disease

phenotype, with particular relevance to the immune system and

the CNS.

2. Sex and aging in MS

2.1. Sex and MS phenotype: Clinical
evidence

In most epidemiological studies addressing the incidence

and prevalence of MS, there is a consistently higher predilection

for women in relation to MS frequency, varying from 2:1 to 3:1

with respect to the female-to-male ratio (8). This pattern appears

universal and is not affected by latitude within the countries

studied (3). Moreover, the female-to-male ratio for MS appears

to increase over the last decades in several nationwide studies,

an observation possibly linked with alterations in environmental

factors (9–15). Evidence on the effect of environmental factors

on MS incidence has long been described in epidemiological

studies (16), with Epstein–Barr virus suspected to be related to

the events preceding the disease onset for a long time. However,

knowledge of the exact mechanisms by which EBV infection

may contribute to MS incidence is lacking. Epidemiological

evidence has recently identified EBV infection as a trigger of

MS (17). Interestingly, the expression levels of genetic risk loci

linked with MS were shown to differ between males and females,

possibly due to epigenetic modifications (18). Furthermore, in

EBV-infected B cells in vitro, the expression levels of estradiol

receptors were shown to correlate with EBV infection traits, such

as EBV latency III genes, thus providing evidence toward the

sex-associated pathways of pathogenicity inMS and EBV-related

pathology (18).

In addition to the effects of sex on MS incidence, extensive

research focuses on whether sex is related to different clinical

and/or radiological outcomes, as well as disease prognosis.

The annual relapse rate has been reported to be higher

for female patients, although a profound positive association

between increased annual relapse rate and younger age has

also been described (19–21). These findings indicate a higher

inflammatory component for female patients with relapsing-

remitting MS. However, these findings do not coincide with

faster disability accumulation for female patients as the male sex

is reportedly linked with faster disability outcome deterioration

over the disease course than the female sex (21, 22). Of note,

these differences were balanced for men and women after

the age of 50 years, thus indicating sex-hormone-dependent

mechanisms in relation to disease course (21). A beneficial effect

of estrogens on MS outcomes has been described in studies

addressing alterations in the disease course in menopausal

patients with MS compared with patients before menopause

onset (23, 24). Moreover, disability accumulation reportedly

occurs faster in female patients with later-onset MS, i.e., >40

years old at disease onset, than in male patients with MS, and

this sex-associated difference has been related to differential gene

expression profiles in men and women (25). Conversely, male

patients with relapsing-remitting MS have been correlated with

faster conversion toward progressive disease, namely, secondary

progressive MS (SPMS) (26, 27). This observation has been

further supported by transcriptomic profile analysis in female

and male patients with MS, revealing sex-specific molecular

mechanisms in disease evolution (25, 28).

2.2. Aging and MS phenotype: Clinical
evidence

In addition to the chronological age, defined by the date

of birth, biological age is depicted by the relative assessment

of molecular markers linked with basic biological processes

of aging. Over the last years, through the development of

multi-omics, defined as an integrative fingerprinting analysis

approach that encompasses datasets generated from genomics,

epigenomics, transcriptomics, proteomics, and metabolomics

(29), considerable knowledge has been acquired in the field

of systems immunology and the complex interactions with
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other basic biological mechanisms, such as aging. Aging

represents a paradox of immunodeficiency and inflammation

(inflammaging), with profound implications for autoimmunity.

Upon aging processes, genetic and epigenetic changes confer

alterations in pathways of innate and acquired immunity,

thus differentially shaping the antigen receptor repertoires

and dysregulating the complex interactions between cellular

and molecular components of immune response (30). More

specifically, several basic biological mechanisms are considered

the pillars underlying aging processes, including but not

restricted to, for instance, genomic instability, epigenetic

changes, cellular senescence, and changes in intercellular

communication (30). Moreover, aging processes result in age-

related phenotypes with implications for the overall function

and wellbeing, such as loss of muscle mass, age-related diseases,

and frailty (30). Immune alterations in the elderly and extremely

old or over-aged (age >85 years) have long been studied and

recognized as alterations in the circulating immune cell types

and the lymphocyte subpopulations, as well as diminished

responses against the antigen (25). Additionally, in aging

organisms, deficient clearance of senescent cells results in the

accumulation of cellular and molecular debris, with further

harmful effects on tissue homeostasis (30).

Immune alterations in the context of aging have been

implicated in MS phenotype with advancing age, as well as

the several comorbidities that accumulate in older patients

with MS. Inflammaging is characterized by low-grade, chronic,

and systemic inflammation in the elderly and is associated

with the predominance of pro-inflammatory phenotypes in

cellular components of the innate and adaptive immunity, the

proinflammatory cytokine and chemokine production, and the

expansion of senescent cellular phenotypes (5). Nevertheless,

individual aging and inflammaging mechanisms appear to be

diverse among individuals (31), and this heterogeneity may

account for the varying burden of inflammaging in autoimmune

diseases of the elderly and the age-related phenotype alterations

in MS (32, 33).

In MS, neuroinflammation and neurodegeneration are

pathological processes that coexist in the CNS and their relative

contribution across the disease course is a primary factor for

the disease phenotype, assessed by clinical outcomes that depict

relapse activity and/or disability accumulation (34). The age of

disease onset is a determinant factor for the disease phenotype.

Patients with younger onset ages develop a relapsing-remitting

form with a high neuroinflammatory pathological component,

whereas patients with older onset ages at onset more frequently

display progressive disease. For patients of older age at onset,

progression is present either from the onset, thus signifying the

primary progressive disease form (PPMS), or appears faster in

the disease course, due to a more rapid conversion from RRMS

to SPMS, than patients of younger age at onset (35). Thus,

the disease phenotype and the transition from RRMS toward

SPMS appear to be primarily an age-dependent phenomenon

(36). Moreover, age progression signifies a reduction in the

annualized relapse rate, most likely linked to a reduction in

the effectiveness of the disease-modifying treatments (DMTs),

as these factors primarily target the neuroimmune aspects of

disease activity (16, 37). In line with these epidemiological

observations, clinical MRI data confirm accelerated cortical

atrophy and brain volume loss in patients with progressive

disease compared with RRMS, and these MRI alterations are

enhanced with advanced age (38) and correlate with clinical

outcomes of disability accumulation (39). Other biological

markers known to correlate with age, such as the serum

neurofilament light chain, also appear to correspond, at least in

part, to clinical and MRI markers of increased MS pathology,

and their concentration increases over time in patients with MS

(40, 41).

3. Sex and EAE phenotypes

Experimental autoimmune encephalomyelitis is one

of the most widely used animal models for MS, where

neuropathological mechanisms and evaluation of miscellaneous

therapeutic compounds can be studied (42–44). In addition to

EAE, Theiler’s murine encephalomyelitis virus infection and

chemically induced demyelination (cuprizone and lysolecithin)

reflect axonal impairment and remyelination processes in MS,

respectively. Although no experimental model has established

all aspects of human MS, EAE is considered to be the most

suitable (45). There are several EAE models, and each one can

bring to life different hallmarks of the disease (46). EAE models

fundamentally mimic the immune aspect of MS; active lesions,

CNS infiltration of peripheral macrophages, relapsing-remitting

events, and microglia and astroglia accumulation. Besides

neuroinflammation, EAE progression can resemble chronicity

and include neurodegeneration, axonal loss, demyelination, and

even remyelination to a lesser extent. This dual nature of EAE

can potentially become a tripartite, an event trifecta considering

one more key player, which is the sex. Sex-dependent differences

are quite prominent, as seen through experimental approaches

primarily in rodents, and will be further reviewed in the

following sections.

3.1. EAE models recapitulate di�erent
aspects of the MS disease pathology

Experimental autoimmune encephalomyelitis can be

induced either passively or actively. Passive induction of

EAE through adoptive transfer of activated encephalitogenic

T-cell clones allows the study of differentiated Th1 or Th17

populations and their cell trafficking in the recipient mice (47).

Active immunization and induction of EAE are achieved by the

administration of encephalitogenic peptides such as proteolipid
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protein (PLP), myelin oligodendrocyte glycoprotein (MOG),

myelin basic protein (MBP), and spinal cord homogenate. In

most cases, pertussis toxin is co-administered to increase both

the incidence and severity of the disease. Pathogenesis of EAE

exhibits ascending paralysis, and the typical assessment tool is a

clinical score resembling the Expanded Disability Status Scale

score in human disease. Despite the similarities, each model

can provide different insights into the MS-like progression and

pathogenesis (48).

One of the first EAE models used was the active

immunization of Swiss Jim Lambert (SJL) mice with PLP139–

151, which fairly recapitulates a relapsing/remitting disease

phenotype (49). Moreover, as occurs in humans, it is intriguing

that the establishment of EAE is more severe in female mice. The

initial phase begins on day 10 post-immunization, culminating

around day 25 and the relapse is evident on day 40. Relapse

arises from the expansion of epitope spreading, in which, due

to secondary endogenous peptides, reactive T cells emerge

as a consequence of the initial phase of myelin destruction.

Remission is associated with a temporary loss of inflammatory

cells. This particular model is used to study autoimmune T-cell-

mediated responses, the compromise of the blood–brain barrier

(BBB), relapse mechanisms in epitope spreading, antibody-

mediated demyelination, and the evaluation of many anti-

inflammatory therapeutic compounds for RRMS (50).

MOG35-55 EAE in C57BL/6 mice initiates a chronic–

progressive form of EAE (51). On the contrary, if Biozzi ABH

mice are immunized with the same encephalitogenic peptide,

animals will display a more RRMS clinical outcome (52). In

either case, this phenomenon implies that MOG peptides are

unique in that they trigger an encephalitogenic T-cell response

and a demyelinating autoantibody-mediated response to certain

mouse strains (53). Moreover, mice exhibit microglial and

astrocyte activation both in white and gray matter, as well as

neuronal and synaptic loss in gray matter. Axonal damages

contribute to a self-sustained chronic neurodegenerative process

due to the presence of outgrowth inhibitory factors (54), which

is established even in the absence of continued peripheral cell

infiltration. In addition to paw paralysis, mice show evidence

of CNS demyelination both in the spinal cord and the brain.

This model has been used to investigate neurodegenerative

mechanisms, axonal loss, T-cell priming, Th1/Th17 CD4+ T-

cell-mediated CNS damage, and T-cell self-tolerance. Moreover,

it is considered the most suitable for compound profiling

and preclinical evaluation of cellular therapies and restorative

agents (55).

The least employed model is the spontaneous EAE

model, which offers the advantage of studying autoimmune

mechanisms developing in a genetically controlled background

and eliminating the effect of exogenous manipulations (56).

Numerous strains are suitable such as C57Bl/6, SJL, and

B10.PL, and some are even genetically modified for specific

susceptibility factors such as humanized Tg(HLA-DR2) and

humanized Tg(HLA A3) (57). Spontaneous EAE models

exhibit paralysis, optic neuritis, ataxia, and present sparse

levels of progression. They are used to study spontaneous T-

cell activation mechanisms and innate immune mechanisms.

Spontaneous EAE models are excellent tools to study B-cell

responses in EAE.

3.2. Sex-specific aspects of the immune
system: Lessons from EAE

There is accumulating evidence that males and females

exhibit different immunological responses throughout life,

whereas others are only present after puberty and before

reproductive senescence, suggesting that both genes and

hormones are involved. EAE can be a useful tool to unravel those

sex-specific differences in immune responses (58). Notably,

different strains display different susceptibility to EAE. For

example, C57Bl/6, SJL, ASW, and NZW mice demonstrate an

increased tendency for EAE in females than males, but B10.PL

and PL/J are more prone to diseases in males than females

(59). Moreover, androgens such as testosterone are considered

an ameliorative factor in SJL/J EAE, and gonadectomy of male

mice makes them more vulnerable to EAE severity (60). On

the contrary, in vivo administration of testosterone ameliorates

EAE severity and favors T helper 2 proliferation in an MBP

immunizationmodel (61), whereas administration of exogenous

testosterone on female splenocytes in vitro minimizes the ratio

of IFN-γ:IL-10 (62). Taken together, experimental data denote

that female mice are prone to worsened EAE with low levels of

testosterone being a potential factor. A more detailed view of

the specific aspects of this sexual dimorphism is presented in the

following sections.

3.2.1. Chromosome-based aspects

The relative contribution of sex and chromosomes to

immunological processes can be investigated with the four-core

genotype (FCG) mouse model (63). The FCG model provides

valuable information regarding genital determination that can

be separated from the inheritance of the Y chromosome (64).

Double transgenic mice can have four different genotypes and

can be either XX gonadal males or females and XY gonadal

males or females, respectively. This is due to Sry knockout

of the Y chromosome (YSryKO), which can be ectopically

expressed on chromosome 3 (Tg-Sry) (65). In the absence of

Sry, animals undergo the female hormonal pathway and can

be hormonally and chromosomally female (XX) or hormonally

female and chromosomally male (XYSryKO). On the contrary,

in the presence of Sry animals become hormonally male and can

be hormonally and chromosomally male (Tg-Sry XYSryKO) or

hormonally male and chromosomally female (Tg-Sry XX).
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A complementary model called the XY∗ model, in which

a male produces XX, XO, XY, and XXY gametes, can be used

to identify the precise mechanism underlying a sex difference

observed by the FCG model (66). Hormonal influences and

sexual chromosomal interactions can sometimes counteract

each other’s effects, whereas this method has been occasionally

used to identify particular X or Y genes that either worsen or

protect against a disease (67). For example, double transgenic

FCG mice have revealed sex and chromosome-related findings

upon active immunization in EAE on the SJL/J background.

In this scenario, XX SJL/J mice and Tg-Sry XX, both

chromosomally female mice, develop EAE of greater severity

than chromosomallymalemice XYSryKO and Tg-Sry XYSryKO.

In addition, passive induction of EAE with adoptive transfer of

XX T-cells triggered EAE of greater severity than XYSryKO T-

cells. These findings were indicative of the T-cell compartment,

which makes female mice prone to develop EAE of greater

severity (68).

Different series of experiments explored neurodegeneration,

and severe clinical disease was associated with the expression

of the X gene Toll-like receptor 7 (TLR7), known to induce

neuronal damage. These findings may indicate differential

expression of TLR7 in the male and female CNS and could

explain the increased susceptibility in women (69). This also

could explain why female SJL/J mice develop EAE of higher

severeness in contrast to males upon adoptive transfer (68).

Parental imprinting, an effect in which a single locus will entirely

shape one’s phenotype, although two alleles are inherited, has

also been studied under such circumstances (70). Teuscher and

colleagues crossed XX C57BL6/J female mice with B6 males that

carried Y chromosome variants known to cause susceptibility

to autoimmune diseases and revealed that the EAE severeness

of female progeny was dependent on the Y chromosome of

their male siblings. Moreover, susceptibility in several clinical

subtypes of EAE in both males and females was related to

autosomal EAE loci on chromosome 13 (71). This locus was

positively linked to susceptibility of monophasic remitting/non-

relapsing EAE in males but not females; therefore, it is possible

that endogenous androgens may be EAE-protective in a given

strain depending on the allele 13 inheritance (72).

3.2.2. Hormone-based aspects

An intriguing topic is the effect of male vs. female hormones

in immune responses and how they affect the establishment

or even the progress of EAE as most terminally differentiated

immune cells express sex hormone receptors (73). Estrogens

include estrone (E1), estradiol (E2), and estriol (E3) – produced

only during pregnancy – and they act through estrogen receptor

alpha (ERα) and estrogen receptor beta (ERβ). Androgens, in

contrast, bind to androgen receptors (AR), respectively, and

these were found in neutrophils, macrophages, B cells, and T

cells. Studies revealed that CD4T helper cells express more ERα

than Erβ, and CD8T cells and monocytes express low amounts

of both ERs. On the contrary, B cells express significantly

increased amounts of ERβ than Erα, and antigen-presenting cells

express both ERα and ERβ (74).

As mentioned earlier, both androgens and estrogens can

modulate EAE progression and severity; however, estrogens

seem to operate in a more diverse way. The leading hypothesis

relies on a threshold effect through which sex-specific hormones

can reflect their dynamic through a protective vs. harmful

equilibrium. For estrogens specifically, an accumulating body

of evidence implies the negative contribution in the thymus

and T-cell maturation (75, 76). This peculiar action may be

mediated by distinct ER types, affecting the T-cell maturation

pathway, either directly or indirectly. Estrogens can directly

influence the developing T cells or indirectly can affect thymic

epithelial cells to inhibit secretion of pivotal elements for T

cells or generation of signaling important for thymocyte survival

(75). Moreover, E2 is far more vigorous than testosterone in

accelerating thymic atrophy. Estrogens, at least partly, can also

induce thymocyte apoptosis and finally cause thymic atrophy

(76, 77). This detrimental effect of estrogens has been mediated

again via both ER receptors (78, 79) and GPR30-mediated

mechanisms (77).

Continuing with the deleterious effect of estrogens, a study

on thymic involution in pregnant mice implies that increased

estrogen and progesterone levels during this period affect

the proliferation of T-cell repertoire (80). More specifically,

pregnancy does not directly affect thymocyte precursor

populations in the bone marrow, but instead triggers a

detrimental loss of early thymic progenitors in the thymus

as early as day 12.5 of pregnancy. The similarities between

estrogen-mediated involution and pregnancy-mediated

involution suggest that estrogen is a pivotal regulator of loss

of thymocyte cellularity during pregnancy, and probably

functions primarily by reducing thymocyte proliferation (80).

The same research team showed an injection of 17β-estradiol

into mice causes excess loss of early thymocyte precursors

and inhibits the proliferation of developing thymocytes (81).

In addition, exogenous E2 supply may minimize levels of

CD4+CD25+FoxP3+ T regulatory cells (Tregs) that are

responsible for maintaining immunosurveillance, and loss of

function of foxp3 gene in those cell populations is associated

with immune-mediated inflammatory lesions (82). Collectively,

the aforementioned data support an increased incidence of EAE

in female rodents; however, for a complete understanding of the

complex estrogen effects on T-cell development, miscellaneous

details are still lacking.

In contrast, protective effects of estrogens have also been

revealed and numerous studies show that estrogen treatment

(with estriol and estradiol) ameliorates both active and adoptive

EAE in different mice strains such as SJL, C57BL/6, B10.PL,

and B10.RIII (83–89). Furthermore, estrogen treatment has been

associated with reduced chemokine levels in the CNS of mice

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.1104552
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boziki et al. 10.3389/fneur.2022.1104552

with EAE and affects the expression of matrix matalloprotease-

9 (MMP-9), each leading to impaired recruitment of cells to

the CNS (87, 90). Interestingly, estrogens modulate astrocytic

response to injury (91) and exhibit anti-inflammatory effects

on microglial activation (92). Estradiol administration may also

mediate neuroprotective action in both white and gray matter

pathology in spinal cords of mice with EAE by downregulation

of microglial/monocyte (Mac 3+) cells on gray matter (93).

Thus, apart from the anti-inflammatory effects of peripheral

immune cells, estradiol treatment also suppresses CNS white

matter inflammation and demyelination.

Estrogens can also regulate the equilibrium of anti-

inflammatory T- and B-cell production in favor of homeostatic

maintenance. It has been shown that they can promote the

production of Tregs by upregulating the expression of FoxP3

(94, 95), an X-chromosome gene whose expression is higher

in males than in females (96), along with other Treg subsets

such as B regulatory cells (Bregs), CD8+ CD122+ Treg cells,

and CD11b+ CD206+ ARG-1+ M2 such as macrophages

(82). Furthermore, estrogens can directly modulate adaptive

immune responses of B cells and T cells mediating changes in

lymphopoiesis and can more specifically affect the expression

of autoimmune regulator (AIRE) protein, which is a major

regulator in the thymic expression of self-antigens (97). Finally,

an interesting study in pregnant mice revealed that increased

levels of E2 during pregnancy ameliorate B-cell number and

activity of B lymphocyte precursors in the bone marrow, a

finding that can imply that estrogen can act as a pivotal regulator

of B-cell lymphopoiesis (98).

Of utmost importance is that these sex-specific differences

in hormone levels can be reflected in their receptor expression,

which, in turn, can affect treatment responses in EAE. For

instance, an ERα-dependent increased dose requirement for

the effective treatment of female vs. male mice using partial

MHC (pMHC) class II constructs in chronic EAE was found

(99). Results suggested that the divergence in effective dose for

the treatment of chronic EAE with DRα1- mMOG-35-55 is

sex dependent, and the DRα1-mMOG-35-55 treatment efficacy

of female mice depends on estrogen signaling through ERα.

In addition, DRα1-mMOG-35-55 treatment can upregulate the

levels of CD206+ CD11b+ M2-like macrophages/microglia

found in spinal cord with a significant reduction in the

expression of proinflammatory genes and enhancement of genes

involved in neurosurvival and regeneration (100). A similar

experiment has demonstrated that RTL401, an I-As /PLP-139–

151 construct, could reverse clinical disease and ongoing CNS

damage in male SJL/J mice with relapsing-remitting EAE even

when administered on day 20 post-disease induction (101).

Elucidation of sex-specific differences may lead to insights into

the evaluation of which elements are hormonally regulated and

may allow design of better therapies for both sexes.

Finally, the mechanisms underlying the protective effects

of androgens have also been studied. Testosterone treatment

ameliorates EAE severity in vitro mediating its effect through

Th2 bias. More specifically, androgen-treated T-cell cultures

secrete lower amount of IFN-γ than IL-10 relative to untreated

controls (102). These results are in total agreement with

experiments in T-cell cultures from PLP139-151 immunized

mice that were stimulated with PLP139–151 peptides and

treated with 5a-dihydrotestosterone (DHT). Results revealed

increased IL-10 and decreased IFN-g production in cultures

treated with DHT (62). Similar results with increase in IL-

10 and decrease in IFN-g were observed in vivo too (61).

Ultimately, testosterone was associated with improved structure

and function of dendrites and synapses in the cerebral cortex

in cognitive neurodegenerative models (103), findings quite

encouraging considering that synaptic stripping and loss are

observed in MS cortex (104).

3.2.3. Other sex-specific aspects

Sex hormones can also indirectly regulate CNS functions.

For example, estrogen reduces BBB inflammation through

annexin A1 (ANXA1), intercellular adhesion molecule 1

(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-

1) (105). Maggioli and colleagues showed that estrogen

binding to ERs promotes ANXA1 phosphorylation, which

efficiently recruits formyl peptide receptor 2 (FPR2) and

stabilizes BBB tight junctions via actin reorganization (106).

Another molecule implicated in BBB integrity is sphingosine-

1-phosphate receptor 2 (S1PR2), while being validated as a

sex-specific mechanism that disproportionately affects women.

S1PR2 was highly expressed in female EAE mice relative to male

EAEmice or healthy controls, directly correlated to disorganized

BBB tight junctions (105). Furthermore, extracellular matrix

composition in EAE mouse cortical tissue was modified, with an

increased stiffness of the female cohort, showcasing again sexual

dimorphism in specific collagen genes (107). Finally, brain

energy metabolism is particularly interconnected to immunity.

A key molecule that is highly expressed in male T cells

is peroxisome proliferator-activated receptor alpha (PPARa),

providing an advantage to males over the deleterious effects of

EAE (108, 109).

It is already established that C57BL/6 female mice after

active immunization with MOG35-55 peptide exhibit increased

spinal cord infiltration and demyelination than males. On

the contrary, males demonstrate increased inflammatory

response but elevated regulatory cell types than females

(110). Experiments on MOG EAE mice after engraftment

of microglia-like cells demonstrate increased expression of

CNS inflammatory factors in female but not in male mice

accompanied by upregulated major histocompatibility complex

class II expression of infiltrating Ly6C-hi monocytes during

EAE peak and cytokine production in the female CNS (111).

Complement activation via astrocyte compartment may also be

a key player in chronic EAE establishment. More specifically,
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striking upregulation of C3 expressing marker for astrocytes

(A1 phenotype) was found in EAE females with increased

axonal loss, whereas EAE males expressed the THBS1 astrocyte

marker (A2 phenotype) manifesting as a neuroprotective

potential (112).

3.2.4. Sex-specific aspects in relation to aging:
Epigenetic modifications

The low concordance rates ofMS inmonozygotic twins (25),

the missing heritability (27, 31), the parent-of-origin effect on

disease transmission (30), and the implication of environmental

factors (32, 33) in the pathogenesis suggest an effect of epigenetic

mechanisms on the predisposition to MS. Changes in the levels

of DNA methylation (31) and histone acetylation (15), and

altered expression of micro (mi)RNAs (16) were identified in

patients with MS. The possible impact of such modifications

on myelin and immune gene expression is a topic of interest

as certain epigenetic signatures were functionally related to

oligodendrocytes (17), B (29, 34), and T cells (35, 37).

The age and sex are two variables associated with epigenetic

modifications in MS and related experimental models. In

cuprizone-induced demyelination, chronological age influences

the mechanisms of histone acetylation affecting the intrinsic

capacity of oligodendrocyte progenitors to remyelinate (36).

In MS, chronological age was negatively correlated with

methylation at the VMP1/MIR21 locus and expression levels

of miR-21 in CD4+ T cells (16). Estimation of biological age

based on DNA methylation showed accelerated aging of glial

cells in patients with MS compared with controls (38). Notably,

females had a reduced level of global methylation in leukocytes

(39) and often showed dissimilar ratio between MS cases and

controls in genome-wide DNAmethylation studies [reviewed in

Zheleznyakova et al. (41)] than men. Overall, these data suggest

that the age and sex should be accounted for when analyzing

epigenetics data and further studied experimentally for their role

in MS in relation to epigenetic modifications.

4. Sex and aging-related
neuroinflammation

A wide range of molecular pathways cooperate to buffer

homeostasis as we age, which inevitably results in a functional

decline and illness trajectory. Although the hypothalamus,

which controls reproductive function, was once the only part

of the brain thought to be responsive to sex hormones, it is

now widely acknowledged that the whole brain is both a target

and a source of sex hormones (113). Primarily in the adult

brain, an arsenal of sex hormones has a variety of protective

and antioxidant effects that ensures neural cell protection and

prosperity. However, sex-based hormonal decline can be spotted

in both sexes; ovarian hormones are lost very quickly after

menopause, whereas testosterone dramatically diminish in an

aging organism, findings that could potentially lead to age-

related neurodegenerative diseases such as PPMS (114) and

Alzheimer’s disease (AD) (115). This reproductive senescence

effect will be further discussed on the basis of the key immune

cell regulator of the CNS, microglia, which is primarily affected

by aging and adversely orchestrate acute and chronic reactions

in EAE.

4.1. Do males and females age
di�erently? Microglia implication for the
neuroimmune axis

As mentioned earlier, a wide variety of profound alterations

occur between sexes in the immunocompromised brain.

Microglia modulate the microenvironment in physiological

conditions maintaining homeostasis toward a healthy brain.

Impaired surveillance of this resident immune population

has been partly held accountable for aging in both sexes

(116). More specifically, it is the neurodegenerative senescent

state of microglia, and to a somewhat extent astroglia, that

drives this sex-specific motif (117). However, as microglia

constitute the sole immunocompetent cells of the CNS and

these cells are dysregulated by aging, current research is being

focused on the key sex differences in multiple levels such as

the hormonal (118–120), chromosomal (121, 122), epigenetic-

driven mechanisms (123), microRNAs (124), and miscellaneous

exogenous stimuli (125).

Sex-related differences can be initially distinguished in the

gene expression level in different brain areas. For instance,

Berchtold and colleagues identified profound sex-based genetic

changes in hippocampus and entorhinal cortex in a human

cohort between 20 and 99 years of age (126). Notably,

hippocampal alterations in gene expression that were detected

in the aged brain were primarily originated in the complement

pathway of microglial populations (117). Although there is

paucity of data pertaining sex hormones and DNA repair

mechanism, a system that progressively worsens due to loss of

genomic maintenance in the aging brain, various investigations

have linked estrogen antiaging neuroprotective mechanisms to

different DNA repair enzymes (127). Additionally, epigenetic-

mediated mechanisms such as immune training and tolerance

lead to differential epigenetic reprogramming of microglia, as

seen in a mouse model of Alzheimer’s pathology, suggesting a

tool to take advantage of aging (128).

Aging fosters a slow yet significant microglia dysregulation

over time. A marked upregulation in female genes associated

with inflammation and immune function was observed

compared with the male gene pool, highlighted in
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ovariectomized rat experiments after studying microglia

activation (129). This increase in neuroinflammation

mostly seen with TNFα and IL-1β was attributed to the

lack of ovarian function in aged mice (130). It is widely

established that a variety of physiological and pathological

events can cause activated microglia to polarize either

toward a proinflammatory/cytotoxic M1 or an anti-

inflammatory/neuroprotective M2 phenotype (119, 131).

Growing evidence in aging and neurodegenerative diseases

suggests that the polarization toward the neuroprotective status

can be triggered by estrogens (132, 133), and this has been

proven by estrogen replacement treatment through microglial

ER subtypes, ERα and ERβ (134–136).

Clusters of genes and their relative messenger RNAs

(mRNAs) that regulate microglia’s sensing functions are referred

to as the “sensome” (137). Those, among other genes, have

been involved in microglia priming, which is an exaggerated

or heightened response, yet ineffective in a senescent CNS

and differs between sexes (116). The differential expression of

multiple microglial genes such as Spp1, Apoe, Ccl3, Clec7a,

and Ccl4 in female mice may explain sex-related differences

in aging and AD (117, 138). One of the most interesting

microglia mediators is Tyrobp, also known as TREM2; however,

its involvement in AD is still under investigation (139). Clusters

of homeostatic genes, but more importantly, another group of

genes, includingMs4a7, Klra2, Clec12a, andMrc1, were found to

be upregulated in female EAE mice with single-cell sequencing

(scRNA-seq) of CD45+ cells (140). The authors of this study

concluded that the cells implicated in antigen presentation such

as DCs and monocyte-derived microglial cells are purposeful

targets during EAE.

Another age-related, female-predominant pattern of gene

expression in a plethora of genes of the complement system

such as C1qa, C1qc, and Ccl4 was also identified (117).

Similarly, complement cascade genes and interleukin 1 receptor-

like 1 (IL1RL1) were increased in women in a human cohort

(141). Finally, the cellular population equally affected by age-

related female traits, such as menopause, are astroglial cells,

producing dystrophic astrocytes. With aging, these cells exhibit

increased expression of the intermediate glial fibrillary acidic

protein (GFAP) and filamentous vimentin thereby accumulating

as toxic aggregates (142). Taken together, experimental and

clinical studies reveal that menopause and aging both promote

neuroinflammation, which may explain the sex disparities in

age-related neurological diseases such as AD and MS.

4.2. Implications for immune-mediated
neurodegeneration

As discussed thus far in neuroinflammatory conditions,

which differ between males and females with age,

escalating toxicity and neuronal death may contribute

to neurodegeneration, however, to a lesser extent. The

molecular cross-talk of autoimmunity variations and resulting

neurodegeneration may be based on different imprinting of

X chromosome genes, as proved by studies of T-lymphocyte

DNA methylation of the X chromosome gene Foxp3, as well

as by differential expression of neuronal Toll-like receptor 7

(TLR7), which is another X chromosome gene (67). A study

showed that progesterone levels in the post-reproductive ages

may lead to an increase in Tregs in lymphoid tissues and

blood in males than females (143). CD4+CD25+ Treg and

CD4+FoxP3+ Tregs functional capacity has been suggested to

be enhanced with aging in men and male mice than women and

female mice, respectively, because FoxP3 expression upregulates

Treg functionality (95). In support of this finding, the greater

potency of CD4+FoxP3+ T cells in old males than females

could be correlated with changes in gonadal steroid levels

as estrogens and androgens also influence FoxP3 expression

(96). Conclusively, not many studies have pointed out the

neurodegenerative effects of EAE; however, Tregs seem to be of

significance as immune key players in the diversity of male and

female neurodegeneration.

5. Conclusion

As with several autoimmune diseases, MS is increasingly

and universally recognized to be more frequent in female than

male patients. An increasing body of evidence points toward sex-

specific differences in the immune system and CNS caused by

effects of chromosomes, hormones, and aspects of the immune

system associated with barrier function, cell migration, and

effector phenotype activation of immune cellular components.

Age is also a contributing factor in disease pathology and

evolution, as evidenced by clinical, epidemiological, and

molecular data derived from single-cell techniques, high-

throughput applications, and systems immunology analyses.

Several experimental models have been used in order to depict

aspects of MS and/or CNS neuroinflammation, with EAE being

the most widely used murine model for MS. Although EAE

exhibits discrete differences fromMS in terms of phenotype and

pathology, it is a useful model that recapitulates specific aspects

of MS evolution and thus has been extensively studied in order

to offer mechanistic insights regarding the complex interaction

of biological pathways implicated in the disease ontogeny, such

as sex and aging processes. In this study, we summarize current

knowledge stemming from EAE models regarding the effects

of sex and aging on disease phenotype with relevance to the

immune system and the CNS. Sex and aging associations in MS

are increasingly recognized as factors determining, at least in

part, disease outcomes, a knowledge with profound implications

for disease management and novel treatment development.
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