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Background: The enteric nervous system (ENS) plays a central role in

developing Parkinson’s disease (PD) constipation, and the regulation of the ENS

may be a key component in treating PD constipation. Electroacupuncture (EA)

can e�ectively treat constipation symptoms in PD, but research on its specific

mechanisms, especially in terms of ENS, is relatively lacking. Therefore, we

investigated whether EA at ST25 promotes the restoration of ENS structure and

colonic motor function in the rotenone-induced PD constipation rat model.

Methods: In this study, we evaluated constipation symptoms by stool

characteristics, excretion and water volume, and whole gut transit time and

observed colonic motility regulation through colonic motion detection and

pathological changes in the colonic myenteric nervous plexus by transmission

electron microscopy and immunofluorescence staining.

Results: EA significantly improved the constipation symptoms and positively

adjusted the colonic motility in rotenone-induced PD constipation

rats. At the same time, EA reversed the rotenone-induced colonic

myenteric nervous plexus injury and regulated the ratio of inhibitory and

excitatory neurotransmitters.

Conclusion: Our results indicate that EA treatment of PD constipation may be

mediated through the adjustment of ENS.

KEYWORDS

Parkinson’s disease constipation, electroacupuncture, enteric nervous system,

neuropathology, colonic motility

Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by

motor and non-motor symptoms (NMS), both of which are associated with increasing

age and the course of the disease. Gastrointestinal dysfunction symptoms are one of

the most common forms of NMS in PD (1). Among all gastrointestinal symptoms,

constipation is the most common manifestation of lower gastrointestinal dysfunction

in patients with PD, with a prevalence of 24.6–63% (2). Recent evidence indicates that

constipation may also be one of the most common disorders in the prodromal phase of
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PD, highlighting its value as a risk factor or predictor of

the development of PD (3). The currently available evidence

suggests the presence of α-synaptic nuclear protein (α-syn)

aggregates and neurotransmitter alterations in intestinal tissue.

All these findings support Braak’s proposed pathophysiological

model of α-syn aggregates in Parkinson’s disease, which is the

early pathological involvement of the enteric nervous system

(ENS) and the dorsal motor nucleus vagus (4, 5). The ENS plays

a crucial role in the neurodegenerative process leading to PD (6).

The ENS determines the motor patterns of the gastrointestinal

tract, processes sensory input from mechanical and chemical

receptors in the gut wall, and integrates sympathetic and

parasympathetic inputs, interacting with the immune and

endocrine systems of the gut to produce coordinated effects

(7). All these functions are based on the interaction between

the different neuronal subtypes in the ENS, and the balance

between the type of input and the level of postsynaptic

receptor expression released into the neuronal network by each

neurotransmitter (8).

While much progress has been made in understanding

the pathogenesis of PD and the symptomatic treatment

of PD-related symptoms, there are currently no effective

neuroprotective or disease-modifying therapies to slow the

progression of the disease. The physical, psychological, social,

and economic burden of PD remains the most challenging

barrier to treatment, especially in the advanced stages of

the disease (9). Treatments for constipation in patients with

PD include behavioral changes (e.g., increased water intake

and physical activity) and the use of pro-secretory agents or

osmotic laxatives. In addition, complementary and alternative

therapies combined with TCM such as acupuncture, Tui Na,

and Tai Chi are increasingly used in PD (10, 11). In recent

years, acupuncture has received increasing attention as a non-

invasive treatment method. A growing number of studies

have investigated the effectiveness of acupuncture targeting

PD and other related disorders, such as motor dysfunction

(12–14), anxiety (15), depression (16), insomnia (17), and

constipation (18, 19), with some positive results. Although

existing systematic evaluations and meta-analyses have shown

conflicting results for acupuncture for PD constipation due

to significant heterogeneity and small sample sizes (20–24),

the fact that acupuncture was considered an effective or

safe treatment for functional constipation and gastrointestinal

disorders (25, 26) in some randomized trials. Available evidence

suggests that acupuncture treatment has the potential to alleviate

motor and NMS of PD, but the underlying mechanisms are

unclear (27–29). The neuroprotective effects of acupuncture

on neurodegenerative lesions in animal models of PD are

mainly focused on cerebral neurons (30–32), and no studies

have yet reported the effects of acupuncture on the ENS.

Here, we investigate the mechanisms of acupuncture to

alleviate bowel dysfunction in PD constipation by revealing

the effects of acupuncture treatment on the ENS myenteric

nervous plexus and its neurotransmitters in an animal model

of PD.

Materials and methods

Establishment of the experimental animal
model

In this study, 8-week-old Sprague Dawley (SD) rats

were supplied by the Beijing Vital River Laboratory Animal

Technology Co., Ltd. [No. 110011220101889264, under grant

SCXK(JING)2021-0011]. The experimental rats were kept in a

barrier environment with stable parameters (conditions: 12/12-

h light/dark cycle; temperature, 22 ± 2◦C; relative humidity

60 ± 5%). The animals were randomly numbered and divided

into three groups: model group, electroacupuncture (EA) group,

and control group (for convenience, the following texts refer to

them as PD, EA, and SH groups, respectively), with six animals

in each group. They were kept in cages of the same size in

groups and had free access to food and water. PD was induced

by giving a low dose of rotenone. The PD and EA groups were

injected subcutaneously with rotenone solvent on the back of

the neck at a dose of 0.1 ml/kg once a day for 5 days a week.

The solvent was prepared by dissolving 200mg of rotenone

(M6209; Abmole Bioscience Inc, Houston, TX, USA) in 3ml of

dimethyl sulfoxide (DMSO, D8370; Beijing Solarbio Science &

Technology, Tongzhou, Beijing, China) and then fixed to 100ml

with sunflower oil to make up 2 mg/ml of rotenone sunflower

oil solvent. The SH group was injected with an equal volume of

solvent mixture (3% DMSO sunflower oil solvent).

Weekly metabolic cages were performed after rotenone

injection to measure dry weight and length of stool (the specific

methods of metabolic cage method and stool collection and

analysis will be elaborated in Stool Collection and Analysis).

The modeled rats were evaluated after 4 weeks of rotenone

treatment. Rats with defecation indexes (stool dry weight and

length) lower than the SH group mean and PD behavioral score

of ≥2 were considered to meet the criteria. The process of the

present study is shown in Figure 1. All the experiments were

approved by the Scientific Investigation Board of the Nanjing

University of Traditional Chinese Medicine, Nanjing , China

(permission no. 202112A047) and performed per the Principles

of Laboratory Animal Care and the Guide for the Care and

Use of Laboratory Animals published by the National Science

Council, China (under grant 202006A016).

PD behavioral evaluation

Parkinson’s disease behavioral evaluation was performed

according to the criteria developed by Chen et al. (33). The
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FIGURE 1

Schedule of the experimental procedures. EA, electroacupuncture; PD group, the model group; ST25, acupoint Tianshu; WGTT, whole gut

transit time.

TABLE 1 PD behavioral evaluation criteria. The higher score includes

the lower scoring performance.

Score Performance

1 Reduced refusal behavior, yellowing and soiling of the coat,

arching of the back, erect hair, and reduced active activity

2 Significantly reduced active movement, slow movement, tremor,

or unstable gait

4 Unsteady gait, or the inability to walk in a straight line, or

swiveling to one side when walking

6 Reclining to one side, unilateral forelimb and/or hindlimb

paralysis, difficulty in walking, difficulty in eating

8 Complete unilateral paralysis of the forelimb and/or hind limb,

contracture of the limbs, significant weight loss, inability to eat

10 Dying state or death

specific scoring criteria are shown in Table 1. Only rats with

a behavioral score of ≥2 were included in the next step

of screening for defecation indicators because rats with a

behavioral score of ≥2 have relatively significant neurological

deficits and the PD rat models in this range are more

reliable (34).

Stool collection and analysis

Rat stools were collected using the metabolic cage method

as follows. The rats were placed in individual wire cages with a

separation device, which consisted of two layers of separation

nets, the upper layer of which separated the rats from the stools

to ensure that the stools and the rats’ activities will not interact,

and the lower layer of which separated the stools from the urine

to ensure that the wet weight of the stools will not be affected

by the urine. Rats’ stools were collected at the end of the first 5

days of treatment each week, and the time was fixed from 7:00

p.m. to 7:00 a.m. for a 12-h period to reduce the error caused by

water evaporation.

The stools were collected in sealed bags in the same order

as the rats were placed. Then, the stools were dried in a

dryer (70◦C, 6 h; Septree ST-06; Xinchi e-commerce, Foshan,

Guangdong, China) until the weight no longer changed, and the

dry weight of the stools was weighed using an analytical balance

(QUINTIX313-1CN; Sartorius Scientific Instruments, Shunyi,

Beijing, China). The dry–wet difference (1W) of the stools is

expressed as Wet weight (g)–Dry weight (g). Finally, the stools

were arranged by long diameter on a grid paper with a scale to

calculate their length.

Whole gut transit time

Whole gut transit time (WGTT) was determined by the

interval between the oral gavage of 3ml of 0.5% phenol red

(dissolved in PBS) and the first appearance in stools of red

marker (35, 36). The rats after the oral gavage of phenol red

were observed visually for the stools and the color of the

stools. The actual presence of phenol red in the fecal sample

was confirmed by spectrophotometric analysis. As described

previously (37), we learned that theWGTT lasted more than 8 h;

therefore, starting from the seventh hour after the oral phenol

red, the animal cages were checked every 10min for red in

the stools.
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Colonic motion detection

The animals were fasted overnight with free access to

water and gas anesthesia with isoflurane (2–5%; 9020000522;

Shenzhen Ruiwode Lift Technology, Nanshan, Shenzhen,

China), and colonic motility was recorded using a previously

describedmethod (38). A small balloonmade of flexible condom

rubber was inserted into the colon 3–6 cm via the anus of rats.

The pressure in the balloon was measured with a transducer

and recorded with a physiological signal-acquisition system (AD

Instruments, Pudong, Shanghai, China) for further analysis.

Zeroing was performed before and after balloon placement into

the animal for 30min, and in vitro zeroing was performed in

water. After baseline stabilization, the recording was started.

After recording, the balloons were removed and placed in water

for re-zeroing to compare with the pre-zeroing data and to

prepare for the next animal. After all the animals were finished,

the data were processed by LabChart8 software, and the data

were randomly selected for three discrete periods of 4min each.

Frequency (Hz), mean (Kpa), min (Kpa), and height (Kpa)

were derived using the built-in parameters of the software. The

mean colonic pressure formula was Mean (Kpa)–Min (Kpa).

The number of peristaltic waves per minute was calculated

manually. During the experiment, the temperature of the animal

was maintained at 37 ± 0.5◦C, using an electric heating board.

The experimental procedure is shown in Figure 2.

Transmission electron microscopy

The procedure is described as follows: Quickly fix the

tissue with a volume of no more than 1 × 1 × 1mm in

electron microscopy fixation solution at 4◦C for 2–4 h without

mechanical damage such as traction, contusion, and extrusion

and then rinse it three times with 0.1M phosphate buffer (pH

7.4) for 15min each. Fix it with 1% osmic acid (0.1M phosphate

buffer, pH 7.4) for 2 h at room temperature (20◦C) and then

rinse it three times as mentioned earlier. Dehydrate the tissue

with gradient alcohol and acetone (50–70–80–90–95–100–100%

alcohol-100% acetone-100% acetone for 15min each time), and

then dip it in agent and acetone 812 embedding (acetone: 812

embedding agents = 1:1 for 2–4 h, acetone: 812 embedding

agents = 2:1 overnight, pure 812 embedding agents for 5–8 h)

for penetration. Insert the sample into the embedding plate full

of pure 812 embedding agents and place it in the oven at 37◦C

overnight and 60◦C for 48 h. Slice the sample with an ultra-

thin microtome (60–80 nm), stain it with 2% uranyl acetate

saturated alcohol solution and lead citrate for 15min each, and

dry them overnight at room temperature. Transmission electron

microscopy was used to observe and capture images. Image-pro

Plus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA) software

was used for image analysis and data acquisition. One complete

plexus was selected for each image, the number of unmyelinated

nerves and plexus area (µm²) was counted, and the nerve density

(/µm²) was calculated.

Immunofluorescence staining

Frozen sections were used for immunofluorescence (IF)

staining. Colon tissue was fixed in 4% paraformaldehyde

overnight and dehydrated in 30% sucrose in 0.1M PBS

(Biosharp Life Sciences, China) at 4◦C. After embedding

in the optimal cutting temperature compound, the colon

tissue was sliced into 10-µm thick sections and mounted on

slides. The sections were then blocked in 0.2% Triton X-100

(Sigma-Aldrich (Shanghai) Trading Co., Ltd.) for 10min and

permeabilized in Sea BLOCK Blocking Buffer (Thermo Fisher

Scientific, USA) for 1 h. They were then incubated with primary

antibodies (nNOS, GB11145, 1:2000; ChAT, GB11070-1, 1:500)

overnight at 4◦C and incubated with secondary antibodies

(nNOS, GB23303, 1:500; ChAT, GB25303, 1:400) for 1 h at

37◦C. Finally, the tissue sections were covered by coverslips

after washing them with 0.1M PBS. Images were obtained

by a fluorescence microscope (Olympus BX60 Darkfield DIC

Metallurgical Microscope, Japan).

Electroacupuncture intervention

The rats in the EA group received EA treatment on

bilateral ST25 (Tianshu, located 5mm lateral to the intersection

between the upper two-third and the lower one-third in the

line joining the xiphoid process and the upper border of the

pubic symphysis) after gas anesthesia with isoflurane (2–5%;

9020000522; Shenzhen Ruiwode Lift Technology). Meanwhile,

the same anesthesia was administered to rats in the PD group

but without performing EA. For the EA group, two stainless steel

acupuncture needles (20162270970; Suzhou HUATUO Medical

Instruments, Suzhou, Jiangsu, China) of 0.2mm in diameter

were inserted at a depth of 5mm into the ST25 acupoint. EA

at ST25 was conducted with the HANS-100A (HAN ACUTENS

WQ1002F; Beijing Anlong Photoelectric Technology, Haidian,

Beijing, China) apparatus set to a waveform of the dilatational

wave, a current of 2mA and a frequency of 2/15Hz, 20min a day

for 5 days a week, 1 week a course, and four continuous courses

of treatment.

Data analysis

Data from all the experiments are expressed as mean

± standard error values. Weekly comparison of defecation

indicators among groups in Figure 3 using two-way ANOVA.

Paired t-test was used for comparison before and after rotenone

treatment or EA intervention, and an independent t-test was
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FIGURE 2

Schedule of colonic motion detection.

FIGURE 3

Excretion index of rotenone rats in di�erent groups. Levels of (A) dry weight (Time × Rotenone Factor, F = 3.301, P < 0.01), (D) 1W (F = 2.405, P

< 0.05), and (G) length (F = 2.905, P = 0.01) in the SH group and PD group over 8 weeks (n = 6, *p < 0.05, **p < 0.01). Compared with the PD

group, EA treatment increased (B) dry weight (Time × Rotenone Factor, F = 9.749, P < 0.0001), (E) 1W (F = 10.02, P < 0.0001), and (H) length (F

= 6.068, P < 0.0001) significantly (n = 6, #P < 0.05, ##P < 0.01, ###P < 0.001). Comparison of dry weight (C), 1W (F), and length (I) before

and after rotenone or EA treatment in each group (n = 6, *p < 0.05, ***p < 0.001, and ****p < 0.0001). W, week; SH, the control group; PD, the

model group; EA, the treatment group.
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used for comparing two different groups. All data analyses were

performed using SPSS 23.0 software (IBM Corp., Armonk, NY,

USA), and GraphPad Prism 9.4 (GraphPad Inc., La Holla, CA,

USA) was used for data analysis. p < 0.05 was considered to

indicate statistical significance.

Results

E�ect of EA on representative symptoms
of PD constipation replicated and whole
gut transit time in rotenone rat models

We measured stool dry weight, 1W, and length to

evaluate the successful induction of models. Compared with

the SH group, rotenone injection significantly decreased stool

dry weight (Figures 3A, C), 1W (Figures 3D, F), and length

(Figures 3G, I). Significant extensions of WGTT (Figure 4) were

observed in the PD group, and the stool characteristics became

dry, with smaller particles and brown-yellow color, which were

consistent with clinical constipation. EA treatment increased

stool dry weight (Figures 3B, C), 1W (Figures 3E, F), length

(Figures 3H, I), shortened WGTT (Figure 4), and recovered

stool characteristics significantly compared with the PD group.

Taken together, stool characteristics, output, and transit time

were corrected in the EA group, suggesting the therapeutic effect

of EA in PD constipation.

E�ect of EA on colonic motility of
rotenone-induced rats

After EA treatment, the balloon method and the multi-

conductive physiological recording system were used to record

the colonic movement, and the mean pressure and movement

frequency [the meaning of “frequency” is the overall frequency

of colon activity, which is mainly influenced by meaningless

irregular fibrillation (shown by the white arrow), rather

than the density of peristaltic waves that represent effective

movement.] of the colonic movement were calculated. The

peristaltic wave in the SH group was continuous with uniform

amplitude (Figure 5A). The PD group had irregular towering

malformed waves (shown by the black arrow), and the interval

between the two waves increased significantly (Figure 5B),

suggesting that the rats in the PD group had intestinal

peristalsis rhythm disruption and useless contraction. In the

EA group, the continuity of the interval was restored and the

abnormal waves were reduced but not completely disappeared

(Figure 5C). Compared with the PD group, the colon motility

frequency decreased and peristaltic waves per minute increased

significantly in the EA group (Figures 5D, E). At the same time,

we found that rotenone treatment increased the mean colonic

pressure and amplitude of the PD group, while EA treatment did

FIGURE 4

Whole gut transit time (WGTT) of rats after solvent, rotenone,

and EA treatment (n = 6, *p < 0.05).

not reverse this change but further increased it (Figures 5F, G).

The cause of this phenomenon will be analyzed in the discussion

section in combination with the influence of the interference

wave shown by the white arrow and the malformation wave

shown by the black arrow on colon motion.

After the manual rejection of broad distorted waves,

the frequency, pressure, and amplitude are collected and

analyzed once more. The results showed that the mean colonic

pressure and normal peristaltic wave amplitude decreased

in the PD group and recovered after the EA intervention

(Figures 6B, C), while the frequency results remain unchanged

compared with the pre-adjustment period (Figure 6A). After

adjusting the cutoff frequency to 0.1Hz to exclude the

effect of chattering waves, the frequency of the PD group

decreased compared with the SH group (Figure 6D), while

the mean pressure and amplitude results did not change

(Figures 6E, F).

E�ect of EA on unmyelinated nerve fiber
density and histopathology of colonic
myenteric nervous plexus in rotenone
rats

We evaluated the effect of EA on the colonic myenteric

nervous plexus by observing cross sections of the plexus

under electron microscopy. Compared with the control group

(Figure 7A), we observed a disturbed nerve structure in the PD

group, with edema and sparse numbers of unmyelinated nerve

fibers, as well as sparse and disorganized nerve microfilaments

and microtubules (Figure 7B). After EA treatment, the nerve

structure was improved. Compared with the PD group, the

morphology of unmyelinated nerve fibers was more complete,

edema was reduced, and the number of nerve filaments and
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FIGURE 5

E�ect of EA on colonic motility. Representative record of colon motion waveform in each group (A–C). The frequency (D), mean pressure (F),

and amplitude (G) of the PD group increased significantly compared with the SH group, and the peristaltic waves per minute (E) decreased.

Compared with the PD group, EA treatment decreased the frequency (C) and increased the peristaltic waves per minute (E). In contrast, the

mean pressure (F) and amplitude (G) continued to rise (n = 6, *P < 0.05 and ***p < 0.001).

microtubules was increased, while the nerve microfilaments

and microtubules were neatly arranged (Figure 7C). We further

counted the density of unmyelinated nerve fibers and found that

the nerve fiber density in the PD groupwas lower than that in the

SH group, while the nerve density increased significantly after

EA treatment (Figure 7D).

E�ects on excitatory and inhibitory
neurons of colonic myenteric nervous
plexus

The results of IF in the colonic myenteric nervous

plexus showed that nNOS expression in the colonic
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FIGURE 6

E�ect of EA on colonic motility after parameter adjustment. The frequency (A), amplitude (B), and mean pressure (C) after eliminating the

influence of abnormal waves. The frequency (D), amplitude (E), and mean pressure (F) after eliminating the influence of the vibration wave

(n = 6, *p < 0.05, **p < 0.01). The actual meaning of the waveform without vibration wave is the peristaltic wave, which has been analyzed in the

form of the peristaltic wave number per minute above (Figure 4E). Therefore, the comparison between the model and EA groups is not carried

out here.

myenteric nervous plexus was significantly higher in the

PD group compared with the SH group, while EA treatment

significantly reduced nNOS expression in the myenteric

nervous plexus (Figure 8).

The results of IF in the colonic myenteric nervous plexus

showed that ChAT expression in the colonic myenteric

nervous plexus was significantly reduced in the PD group

compared with the SH group, whereas EA treatment

significantly increased ChAT expression in the myenteric

nervous plexus (Figure 9).

E�ects on the α-syn aggregation of
colonic myenteric nervous plexus

The results of IF in the colonic myenteric nervous plexus

showed that α-syn aggregation in the colonic myenteric nervous

plexus was significantly higher in the PD group compared with

the SH group, while EA treatment significantly decreased it

(Figure 10).

Discussion

In the present study, we demonstrated that rotenone

disrupts ENS structure and function, resulting in prolonged

WGTT and decreased mean colonic pressure and normal

peristaltic wave density and amplitude in PD rats. Acupuncture

treatment ameliorates ENS abnormalities and colonic

dysfunction in PD rats, possibly by protecting the structural

integrity of the colonic myenteric nervous plexus and balancing

neurotransmitter expression.

In addition to typical motor dysfunction, NMS of PD

is presented in more than 90% of people with PD (39).

One of the key features of the prodromal phase, particularly

constipation, is gastrointestinal dysfunction. Constipation is

one of the most common and earliest forms of NMS, with

a prevalence of up to 80% in people with PD. A total of

5% of patients develop constipation 10–20 years before the

appearance of exercise symptoms. In addition, constipation may

be a risk factor for PD, as men or women with constipation

are two to five times more likely to be diagnosed with PD

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.1092127
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Song et al. 10.3389/fneur.2022.1092127

FIGURE 7

E�ect of EA on colonic myenteric nervous plexus.

Representative myenteric nervous plexus cross section under

the transmission electron microscopy (Scale bar, 2µm) of the

control (A), model (B), and EA (C) group. Compared with the PD

group, EA treatment increased the unmyelinated nerve fiber

density (D) (n = 3, *P < 0.05, **P < 0.01).

in the future (40). Therefore, constipation may be potentially

useful for early diagnosis and therapeutic intervention in PD

(41). The histology of PD is characterized by the formation

of Lewy vesicles and Lewy neurosynapses, consisting mainly

of intracellular aggregates of misfolded alpha-synuclein. Louis’

vesicles are found in different areas of the brain and areas

outside the CNS, such as the ENS (4, 5), and alpha-synuclein

lesions can spread between the interconnected areas of the

PNS and CNS, that is, the brain–gut axis. In Braak’s classic

hypothesis of the stages of PD pathogenesis, Lewy body lesions

in the submucosal and myenteric nervous plexus neurons are

at stage 0 of the disease process, that is, ENS lesions precede

cerebral neurodegeneration. This suggests that ENS lesions

play a very important role in the pathogenesis of PD. The

ENS is the intrinsic nervous system of the gastrointestinal

tract and consists of neuronal cell bodies or ganglia arranged

in two nerve plexuses. The submucosal plexus is located

between the mucosa and the cricothyroid muscle and mainly

regulates secretion. The myenteric nervous plexus is located

between the cricoid and longitudinal musculature and mainly

controls smooth muscle movement. Each nerve plexus contains

a complex, heterogeneous population of neurons. Neurons

express and often co-express a variety of transmitters and

neuropeptides, including acetylcholine, nitric oxide, vasoactive

intestinal peptide (VIP), and dopamine (7, 42). The regulation of

gastrointestinal function by ENS is due to the release of specific

neurotransmitters synthesized by functional neurons. The

main inhibitory neurotransmitters involved in the regulation

of gastrointestinal motility are nitric oxide and vasoactive

intestinal peptide (VIP), while acetylcholine (ACh) is the

most represented excitatory neurotransmitter in the entire

gastrointestinal tract. The control of bowel function by the

ENS is based on the interaction between different neuronal

subtypes in the ENS and the balance between the type of

input and the level of postsynaptic receptor expression released

into the neuronal network by each neurotransmitter (43).

ENS degeneration is an important cause of gastrointestinal

dysfunction during the prodromal period of PD. Therefore,

PD and constipation can be treated with strategies to improve

gastrointestinal function.

The efficacy of acupuncture in treating motor (12–14) and

NMS, such as cognitive impairment (44), constipation (18,

19), insomnia (17), pain (45), and anxiety (15) in patients

with PD has been widely supported by studies. Alternative

therapies are reported to be used by 40% of people with

PD, with acupuncture being the third most commonly used

alternative therapy for PD (46). Acupuncture has a positive

effect on relieving constipation symptoms in PD, although

evidence from high-quality clinical studies is not yet available

(18, 19). In addition to PD constipation, acupuncture is

also considered an effective or safe treatment for functional

constipation and other gastrointestinal disorders (25, 26). In

terms of mechanistic studies, the absence of dopaminergic

neurons in the nigrostriatal pathway is the most common

pathological factor in PD. Acupuncture can mitigate brain

dopaminergic neuronal damage through various pathways, such

as apoptotic pathway, autophagic pathway, oxidative stress-

related pathway, survival pathway, and neurotransmitter and its

receptor and neurotrophic factor expression, thereby achieving

neuroprotective mechanisms (15, 28, 29). In recent years, the

gut–brain axis has offered a potential entry point for the

treatment of PD as the gut–brain axis theory proposes a

close connection between the gastrointestinal tract and the

central nervous system (47). A growing number of studies

have explored the feasibility of acupuncture in the treatment

of PD by modulating gastrointestinal function (48). Ma et al.

found that EA could improve PD-mediated neuropathy by

promoting intestinal barrier repair and reducing intestinal α-

syn deposits to inhibit neuroinflammation (49). Jang et al.

showed that the enhanced motor function and protective effect

of acupuncture on dopaminergic neurons in PD mice may

be related to the regulation of gut microbial dysbiosis and

thus the suppression of neuroinflammation (50). Another study

reported that acupuncture may be beneficial in irritable bowel

syndrome by modulating motor, visceral sensory, and/or gut–

brain interactions (51). Considering the early damage to the ENS

and the central substantia nigra striatal degeneration associated

with dopaminergic innervation caused, there are no reports

of acupuncture related to ENS lesions. In this context, we

aimed to assess the effects of ENS structure and function on

colonic motor patterns and associated neurotransmitter control

in PD model rats and to explore potential mechanisms of action

of acupuncture.
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FIGURE 8

(A) Representative IF images of the colon. DAPI stained the nuclei (blue), while the red immunofluorescence represents the nNOS. The colon

was observed under a microscope (×400 magnification). Scale bar = 50µm. The three groups share scale bars. (B) Mean fluorescence intensity

of nNOS. (n = 5, *p < 0.05).

FIGURE 9

(A) Representative IF images of the colon. DAPI stained the nuclei (blue), while the green immunofluorescence represents the ChAT. The colon

was observed under a microscope (×400 magnification). Scale bar = 50µm. The three groups share scale bars. (B) Mean fluorescence intensity

of ChAT. (n = 5, **p < 0.01, ***p < 0.001).

In this study, a model of rotenone induction was recruited

to characterize colonic dysfunction and ENS injury. Compared

with the MPTP (52) model, rotenone can reproduce the central

and gastrointestinal features of PD in rats (53, 54), especially at

low doses (2.5 mg/kg) of rotenone treatment, which has been

further shown in mice to provide SNpc and myenteric nervous

plexus replication of neurodegeneration and the presence of α-

syn aggregates (55). Rotenone reliably induces PD models and

has an effect on the gastrointestinal tract, which plays a role

in the development of PD constipation models. In the present

study, abnormal stool characteristics, excretion and water

volume (Figure 3), and prolonged whole bowel transit time

(WGTT) were observed in rotenone-induced rats (Figure 4),

which is consistent with the clinical features of constipation and

suggests the successful establishment of the model.

A previous study found in vitro that rotenone-treated rats

exhibited physiological deficits in inhibitory neurons in the ENS,

as evidenced by increased isometric contractility and reduced

relaxation of the colonic longitudinal muscles (53). We have also

discovered evidence in in vivo experiments that is consistent

with this. We observed an increase in colonic frequency, mean

pressure, and amplitude from the PD group (Figures 5D, F,

G), and frequent towering distortion waves (Figure 5B) can be

seen (shown by black arrows). Their amplitude exceeds that of

normal creeping waves by a factor of more than one, making

them easily observable. Another distinctive feature is themarked
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FIGURE 10

(A) Representative IF images of the colon. DAPI stained the nuclei (blue), while the green immunofluorescence represents the α-syn. The colon

was observed under a microscope (×400 magnification). Scale bar = 50µm. The three groups share scale bars. (B) Mean fluorescence intensity

of α-syn. (n = 5, *P < 0.05, **P < 0.01).

increase in the interval between two adjacent creeping waves

(for convenience, we have named it the compensatory interval

after the ECG waveform) and the decrease in the amplitude of

normal creeping waves (see below for a detailed analysis), which

means that the frequency (Figure 5E) and quality (Figure 6C) of

valid creeping waves appear less frequently in the same period of

time. The actual significance of this elevated distortion wave is

not well-understood, as it appears to be a short period of intense

bowel contraction. After we had removed this aberrant wave,

the data were again collected and analyzed. The results showed

that the mean colonic pressure and normal peristaltic wave

amplitude in the PD group were reduced and recovered after

the EA intervention (Figures 6B, C), while the frequency results

were unchanged (Figure 6A). This is another confirmation that

the efficiency of bowel movements is reduced in the PD group

and is associated with the appearance of aberrant waves.

At the same time, we observed frequent irregular small

fibrillation waves (shown by white arrows) in the main wave

(creeping wave) and the compensatory interval. The amplitude

of these small waves is not sufficiently different from the main

wave to increase bowel movements. However, they are much

larger than the main waves and are responsible for a large

part of the increase in frequency in the PD group. As we

observed a decrease in the number of creeping waves per

minute in the PD group (Figure 5E), we further adjusted the

parameters by adjusting the cutoff frequency to 0.1Hz to exclude

its effect. This suggests that this fluttering wave has a significant

effect on the overall frequency of movement of the colon. It

increases the energy expenditure of the colonic tissue but does

not contribute to the propulsion of the intestinal contents.

We hypothesize that it also had an effect on the decrease in

mean colonic pressure and normal peristaltic wave amplitude

in the PD group (Figures 6B, C). In summary, combining the

results of constipation symptoms and whole bowel transit time,

we hypothesize that although colonic movements in the PD

group were hyperactive, they were mostly ineffective in nature.

This is a reflection of a disturbance in the rhythm of bowel

movement. The effect of EA on mean colonic pressure and

amplitude shows an abnormal increase instead of a decrease

(Figures 5F, G), due to the abnormal occurrence of aberrant and

fluttering waves, which cause an abnormally high value in the

PD group. This represents a pathological state of hyperactive and

ineffective contraction in the PD group (Figures 6B, C). Unlike

the PD group, the increase in mean colonic pressure in the EA

group was not due to ineffective contraction. The increase in

the density and amplitude of the peristaltic waveform was the

reason for the increase in mean pressure compared with the PD

group. As the bowel rhythm is restored, the increase in the index

of colonic motility has a positive effect on the improvement

of constipation.

To further test this hypothesis, we set our sights on

excitatory and inhibitory neurotransmitters in the colonic

myenteric nervous plexus. ENS inhibitory neurotransmission

is achieved using non-adrenergic non-cholinergic pathways.

NO is the main inhibitory neurotransmitter in the ENS and

nNOS is the rate control enzyme for its production, mediating

smooth muscle relaxation in the gastrointestinal tract, which is

important for intestinal motility. Ach is an important excitatory

neurotransmitter in the gastrointestinal tract, and ChAT is the

main marker of cholinergic structure in the gastrointestinal

tract. The IF results showed an increase in the expression of

the inhibitory neurotransmitter marker nNOS in the colonic

myenteric nervous plexus (Figure 8) and a decrease in the

expression of the excitatory neurotransmitter marker ChAT in

the PD group (Figure 9). In contrast, EA reversed this alteration.

One study found that rotenone treatment did not alter the
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number of myenteric nervous plexus neurons (53). We believe

that the integrity of the physiological function of the ENS is

not only reflected in the number of neurons. The signaling

between neurons is also essential. At the same level of neuronal

numbers, if intercellular connections are reduced, the ENS is

still in a state of reduced function. Therefore, we observed

the density of unmyelinated nerve fibers in the myenteric

nervous plexus by electron microscopy. The results indicate

that rotenone treatment reduced the density of unmyelinated

nerve fibers in the PD group, while EA reversed this state

(Figure 4). In addition, we found significant α-syn aggregation

in the colonic myenteric nervous plexus in the PD group, and

EA treatment reversed this state. Although previous studies and

our experiments have found that α-syn aggregation is mainly

present in the submucosal plexus, α-syn is closely associated

with pathological alterations in the myenteric nervous plexus

as a major factor contributing to neuronal degeneration in

Parkinson’s pathology.

Conclusion

In summary, subcutaneous administration of rotenone

reproduces the clinical signs of constipation, delayed colonic

transit, and ENS abnormalities in PD rats. EA intervention

significantly improved stool characteristics and accelerated

colonic transit in PD rats. This accelerating effect may be

achieved by protecting the structural integrity of the ENS

myenteric nervous plexus and balancing ENS excitatory and

inhibitory neurons. These findings suggest mechanisms of ENS

in PD in gastrointestinal motility disorders and the therapeutic

role of acupuncture in PD combined with constipation.
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