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Background:The prevalence of pediatric ischemic stroke rose by 35% between

1990 and 2013. A�ected patients can experience the gradual onset of cognitive

impairment in the form of impaired language, memory, intelligence, attention,

and processing speed, which a�ect 20–50% of these patients. Only few

evidence-based treatments are available due to significant heterogeneity in

age, pathological characteristics, and the combined epilepsy status of the

a�ected children.

Methods: We searched the literature published byWebof Science, Scopus, and

PubMed, which researched non-pharmacological rehabilitation interventions

for cognitive impairment following pediatric ischemic stroke. The search

period is from the establishment of the database to January 2022.

Results: The incidence of such impairment is influenced by patient age,

pathological characteristics, combined epilepsy status, and environmental

factors. Non-pharmacological treatments for cognitive impairment that

have been explored to date mainly include exercise training, psychological

intervention, neuromodulation strategies, computer-assisted cognitive

training, brain-computer interfaces (BCI), virtual reality, music therapy, and

acupuncture. In childhood stroke, the only interventions that can be retrieved

are psychological intervention and neuromodulation strategies.

Conclusion: However, evidence regarding the e�cacy of these interventions

is relatively weak. In future studies, the active application of a variety of

interventions to improve pediatric cognitive function will be necessary, and

neuroimaging and electrophysiological measurement techniques will be of

great value in this context. Larger multi-center prospective longitudinal studies

are also required to o�er more accurate evidence-based guidance for the

treatment of patients with pediatric stroke.
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1. Introduction

Childhood arterial ischemic stroke is defined as a

cerebrovascular event that occurs between 1 month and

18 years of age. Arterial ischemic stroke is characterized by an

acute-onset neurological deficit due to an infarct in an arterial

territory consistent with the clinical syndrome (1). The annual

incidence of stroke in children is 1.3–13/100,000 (2), and it has

risen by 35% between 1990 and 2013 (3). The prognosis for

post-stroke recovery in affected children is no better than that of

patients with adult stroke (3). The primary difference between

these two patient populations is that in adults, a stroke can

result in a loss of functional independence, whereas in children,

it can also interfere with their growth and development due

to prolonged neurological dysfunction (4–7). Children, young

adults, and their parents exhibit high levels of unmet needs

across a range of health domains in the months and years after

pediatric stroke (8). Due to delays in presentation, only about

2% of children are eligible for treatment with thrombolysis

and thrombectomy (9). Therefore, rehabilitation therapies for

pediatric stroke are important, which improve outcomes after

hyperacute treatment (10).

Approximately 20–50% of patients with pediatric ischemic

stroke exhibit signs of cognitive impairment (3), affecting both

executive function and behavioral traits, including intelligence,

memory, attention, and processing speed. The intelligence

quotient (IQ) values of patients with pediatric ischemic stroke

are generally reported to be on the lower end of the normal

range while being significantly lower on average than those

in healthy age-matched populations (11–13). Notably, patients

exhibit significantly more damage to operational IQ values

relative to speech IQ values (12). In one study of the

neuropsychological characteristics of 49 children after ischemic

stroke, the average performance of these children in attention

and executive function tasks was significantly lower than that

of the healthy control children, with 67% of the children

exhibiting impairment when completing attention tasks and

30% of the children exhibiting impaired executive function (13).

Processing speed (12, 14, 15) and working memory (4, 14) are

also significantly impaired in patients with ischemic stroke.

Compared with the adult stroke population, there is

conflicting evidence about whether children’s prognosis is more

favorable and whether children recover better after stroke than

adults (10, 16, 17). The plasticity and the selective vulnerability

are widely held assumptions (18). Such as, children with

ischemic stroke have different cognitive prognoses depending

on their age groups (19, 20). Two mechanisms of recovery after

nerve injury have been proposed, namely, behavioral recovery

and compensation. For the rehabilitation of children with stroke,

the influence of natural development should also be considered.

The immature brain, however, is a dynamic environment with

significant changes to the cellular composition, neural circuitry,

and blood flow occurring throughout childhood (21).

Developing a better understanding of the risk of cognitive

impairment and other adverse outcomes in children following

ischemic stroke occurrence is critically important to parents,

clinicians, and patients (22). Relatively few studies have been

conducted on cognitive impairment in children after ischemic

stroke. Therefore, the present review explores the factors

associated with the prognosis of these patients and discusses

treatment strategies aimed at alleviating post-ischemic stroke

cognitive impairment to provide a foundation for future

interventional and patient management strategies.

2. Methods

We searched the literature published by Web of Science,

Scopus, and PubMed, which researched non-pharmacological

rehabilitation interventions for cognitive impairment following

pediatric ischemic stroke. Keywords are as follows: pediatric,

ischemic stroke, cognitive, and intervention. The search period

is from the establishment of the database to January 2022.

3. Factors a�ecting cognitive
impairment

3.1. Demographic characteristics:
Chronological age

Some reports suggested that stroke onset before the age of 1

year is associated with poorer cognitive outcomes (4, 19), while

other reports have found poorer outcomes tend to occur in

patients below the age of 1 year and over the age of 6 years (20),

with children between these two ages having better outcomes

on average (19). Still, other studies suggested that children

between the ages of 5 and 10 years have the best prognosis

after stroke, with children outside of this age range exhibiting

a poorer prognosis (11). These studies all seem to agree that

stroke outcomes are poor in children under the age of 1 year

and over the age of 10 years. One study reported significantly

different neuropsychological outcomes when comparing strokes

occurring during the perinatal period to those occurring in

children (29 days−18 years old) (23). Overall, these results

suggest that age is a key factor in the cognitive outcome of

children after a stroke.

3.2. Stroke features

3.2.1. Lesion characteristics

Larger infarct area (20), larger lesion volume (4, 12), and

simultaneous cortical and subcortical involvement (4) are all

associated with poorer cognitive outcomes. One study found

that Language and verbal IQ scores were significantly lower
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(p < 0.01) among patients with lesions in the left hemisphere

as opposed to the right in 184 children retrospectively (24).

In contrast, other studies have detected no differences in

cognitive outcomes as a function of lesion laterality (14, 23).

Kornfeld et al. suggested that children experience a significant

reduction in their resting-state functional connection of the

bilateral parietal lobes following stroke incidence while also

exhibiting positively correlated reductions in processing speed

and perceptual reasoning relative to healthy controls (25).

Overall, these data clearly emphasize the relationship between

pathological lesion characteristics and prognosis.

3.2.2. Comorbidity (epilepsy)

Many children with arterial ischemic stroke present

with acute symptomatic seizures, and survivors frequently

develop remote symptomatic seizures and epilepsy. Remote

symptomatic seizures were defined as any seizure occurring

≥30 days after stroke ictus. Definite epilepsy was defined as

≥2 unprovoked seizures occurring ≥24 h apart (26). According

to the literature, the manifestation of epilepsy after pediatric

stroke varies between 13 and 67%, depending on the study

population (27). The risk factors included early seizures, young

age, cortical lesions, and multiple infarctions at the time of

stroke (28). Approximately 20% of children experience epilepsy

after ischemic stroke incidence (29). Relative to children without

epilepsy, those that experience seizures generally exhibit more

substantial cognitive impairment (30) and a decrease in their

overall quality of life (31).

3.3. Environmental factors

The quality of the home environment contributes to

outcomes in patients with ischemic stroke, suggesting that

efforts to support parental and family functioning offer

opportunities to optimize children’s mental health and

social outcomes (32). The impact of environmental factors

(socioeconomic status and quality of life) on cognitive abilities

(expressive and receptive language, adaptive abilities, and

social abilities) increased over time after childhood stroke

and even exceeded the impact of impairment factors (33).

The relationship between socioeconomic status and pediatric

health has been well-documented over many years (34).

One study found that socioeconomic status was a better

predictor of cognitive outcome in childhood arterial ischemic

stroke than clinical factors (35). For example, the financial

situation of the family may affect the quantity and quality of

treatment, and parental education may be linked to children’s

cognitive reserve. Therefore, future pediatric studies on the

prediction of cognitive function should effectively control

participants’ socioeconomic status. Most importantly, we

need to pay more attention to the treatment of children with

low socioeconomic status, such as providing more funding

and resources.

The above reports clearly emphasize that age, pathological

lesion characteristics, and epilepsy co-occurrence can all

affect cognitive outcomes in children following ischemic

stroke. Differences in reported findings among studies

may be attributable to differences in experimental design

(cross-sectional vs. longitudinal studies, variations in patient

age, and/or differences in disease course) or the specific

characteristics of brain development or plasticity in particular

patient populations (15).

4. Treatment of cognitive impairment

Few studies to date have reported on the rehabilitation of

cognitive impairment in children following brain injury, and the

underlying evidence is thus limited, with research specifically

focusing on post-stroke outcomes in this population being even

less common. Non-pharmacological treatments for cognitive

impairment that have been explored to date mainly include

exercise training, psychological intervention, neuromodulation

strategies, computer-assisted cognitive training, brain-computer

interfaces (BCI), virtual reality (VR), music therapy, and

acupuncture. The goal of rehabilitative strategies in children

following brain injury is to allow children to return to their

homes and schools as quickly as possible.

4.1. Physical exercise

Physical exercise has been explored as a promising

neuroprotective and anti-ischemic intervention for patients

with ischemic stroke (adults) and animals (36–38), with

some evidence suggesting that it can regulate excitatory

signal transduction to preserve neurological function (39).

Exercise can also boost cerebrovascular efficacy, potentially

reducing infarct size and increasing the number of viable

cells surrounding the infarcted lesion (36). Such preventative

physical activity can also preserve synaptic plasticity in the

context of ischemia, and specific therapeutic approaches

have been explored as a means of promoting plasticity

and improving overall cognitive function (39). Ischemic

preconditioning is an interventional approach that has been

shown to be effective in individuals suffering from transient

non-fatal ischemic periods, conferring adaptive intracellular

changes to neuronal electrophysiological properties that can

improve the ability of tissues to tolerate future ischemic

events (40).

Long-term exercise training after ischemia has been found

to enhance the induction of learning-dependent long-term

potentiation (LTP) in the CA3 area of the hippocampus

(41). Short-term moderate-intensity treadmill exercise was
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also shown to improve hippocampus-dependent episodic fear

memory and other cognitive functions in two rat models

of ischemic brain injury (42). Further evidence suggests

that exercise can enhance short-term plasticity by improving

paired-pulse facilitation (PPF), which promotes the coding

of situational and spatiotemporal information by enhancing

hippocampal nerve regeneration and facilitating neuronal

circuit reorganization (43).

In adults, some studies have found that physical exercise had

a positive effect on the global cognitive functioning of patients

with stroke (44–47). Wang et al. showed that the combination

of physical exercise and cognitive training was more efficacious

than cognitive training alone as a means of improving cognitive

impairment after stroke in adults (48). Moriya et al. established

that moderate-intensity aerobic exercise enhances prefrontal

cortex activity and improves working memory performance

in patients with post-stroke as assessed by near-infrared

spectroscopy (49), while Cotman et al. observed that aerobic

exercise benefits cognition, likely through the upregulation

of growth factors including BDNF, IGF-1, and VEGF, thus

promoting neurogenesis and angiogenesis, particularly in the

hippocampus (50).

In children, from a population perspective, moderate-

to-vigorous physical activity, especially vigorous physical

activity (51), is associated with improved cognitive function

in normal prepubertal children (51, 52), as well as in

children with ADHD (53) and cerebral palsy (54). Both

long-term intervention (>6 months) (51, 52) and short-

term intervention (7 days) (55) increased the hippocampal

gray matter volume significantly. There are also significant

changes in the EEG theta and alpha band power spectra

immediately after intervention (51). From the perspective of

an interventional approach, different types of physical activity

are thought to differentially activate children’s brains either

through physiological mechanisms or by activating similar

brain regions during physical and cognitive tasks; specific

or standardized programs are, however, lacking. There are

also studies suggesting that not every child benefits from

interventions in the same way and that individual differences

vary widely (56). As physical fitness comprises both muscle

and neuromuscular components, some researchers believe that

physical fitness represents a better outcome predictor than

physical activity (57).

Exercise training triggers several complex processes that can

interact to protect and preserve neuronal function following

ischemic injury (38), ameliorating cognitive recovery by

improving synaptic plasticity and promoting new neuronal

circuit reorganization. Physical exercise, thus, holds great

promise as an interventional approach for treating cognitive

impairment following ischemic stroke in children, although

further research is necessary to understand the extent to

which these preclinical findings are applicable to children with

ischemic stroke.

4.2. Psychological interventions

Psychological interventions are critical means of

treating cognitive impairment following ischemic stroke

in children, offering guidance regarding available resources

and rehabilitative strategies that can help children return to

school. Such interventions are broadly divided into strategy

training and cognitive retraining approaches, with some studies

suggesting that strategy training is the more efficacious of the

two (58).

Strategy training is the most popular psychological

intervention used at present. While children present with

specific cognitive deficits following ischemic stroke, their

cognitive advantages can be leveraged to overcome these deficits

in particular environments (59). Evidence on the utility of

strategy training for the treatment of cognitive impairment

is designated as NHMRC grade D, consistent with very

low-grade evidence (58), although it currently remains the

only recommended treatment supported by direct medical

evidence. Successful implementation is dependent upon a

comprehensive neuropsychological assessment of the child’s

cognitive deficits and advantages, as well as an understanding of

their individual environmental needs. Effective communication

among health professionals, families, and schools is also critical

to ensure that children are placed in a supportive environment

that provides them with the best possible developmental

opportunities (59). One meta-analysis of patients with sickle-

cell disease (SCD)-related infarct found that those undergoing

psychoeducational interventions including cognitive behavioral

therapy, particularly in family settings, showed positive

outcomes (60). Three studies have reported on the training of

working memory and memory strategy as a means of improving

cognitive function in children after stroke (61–63). It has been

found that tutoring combined with memory training was more

effective than individual tutoring alone and was linked to more

positive outcomes (61, 62).

Cognitive retraining has been a focus of increasing research

interest in recent years. This strategy primarily relies on an

assessment of the degree of cognitive impairment followed

by training according to their specific cognitive abilities. A

randomized controlled study of children with central nervous

system injuries found that a cognitive remediation program

(CRP) improved both attention and academic performance

(64). Recla et al. showed that a 1-month intensive memory-

focused training program (IM-FTP) improved children’s ability

to learn semantically related and irrelevant words, while also

improving their immediate prose memory (65). Functional

magnetic resonance imaging (fMRI) analyses of these children

revealed that the IM-FTP treatment was associated with

functional changes in the left lower frontal cortex. The left

lower frontal gyrus is closely associated with the left posterior

middle temporal gyrus, which plays a vital role in syntactic

analysis (66) and vocabulary selection (67), which is why
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this is an area that is stimulated during intensive memory

training (65).

Through the Swedish Memory and Attention Re-Training

and parental coaching program, van’t Hooft et al. similarly

determined that cognitive retraining of children was able to

enhance attention, memory, social interaction, and parental

stress outcomes (68). A meta-analysis found that most studies

utilizing remote technology-based training programs reported

treatment-related improvements in cognition and behavior. For

example, remote computerized cognitive training can improve

visual-spatial working memory (69). However, substantial

heterogeneity exists among the studies published to date (70).

Due to the heterogeneity of neurological behaviors in

children after central nervous system injuries, there has

been no universal adaption of specific therapeutic programs.

Instead, individualized interventional plans are formulated in

accordance with the needs of each child. It is thus essential that

schools, families, and rehabilitation teams regularly assess and

discuss these plans to ensure that children are provided with

appropriate environmental and educational programs capable of

fostering their cognitive recovery.

4.3. Neuromodulation

Neuromodulation therapy has recently emerged as a

promising therapeutic modality capable of remediating

cognitive function in the context of cerebral injuries including

Parkinson’s disease (71) and traumatic brain injury (72). As

cerebral oscillation patterns are altered following ischemia,

electrical or magnetic stimulation may be able to improve

overall neural network function by restoring abnormal

electrical activity and plasticity (73). Several non-invasive

neuromodulatory approaches have been explored as tools for

improving cognitive function in children with ischemic stroke,

including transcranial direct current stimulation (tDCS) (74)

and repetitive transcranial magnetic stimulation (rTMS) (75).

The rTMS approach utilizes a coil to generate a magnetic

field capable of penetrating the scalp and inducing changes in

excitability through a mechanism similar to LTP-LTD, thereby

augmenting neuronal plasticity (76). One meta-analysis found

that low-frequency (≤1Hz) rTMS in the unaffected hemisphere

of patients (adults) suffering from post-stroke aphasia could

effectively improve overall language function (77). Malone

et al. posited that patients with childhood ischemic stroke may

benefit from rTMS when appropriate operational parameters

are employed (78), while Gillick et al. explored optimal tDCS

parameters for use in the treatment of children following

ischemic stroke, including current intensity, electrode size,

location, and stimulation duration (79). There are also invasive

neuromodulatory approaches, such as deep brain stimulation

(DBS). DBS necessitates the implantation of a pair of electrodes

in the brain parenchyma, with the electrodes connected to a

pulse generator implanted in the chest. Much like rTMS, DBS

can target specific brain regions, and parameters such as voltage

intensity and frequency can be customized according to the

patient’s condition. Importantly, the transmission of specific

electrical activity patterns via DBS can influence oscillatory

activity (80, 81). Increased levels of brain-derived neurotrophic

factor (BDNF), vascular endothelial growth factor (VEGF), and

synaptic markers such as synaptophysin were detected within

2.5 h of DBS treatment in rats (82). DBS can also improve

overall network function by enhancing synaptic plasticity and

normalizing disordered oscillatory activity.

While patients with cognitive impairment after brain injury

benefit from neuromodulation therapy, the mechanisms

underlying these benefits are poorly understood. The

development of novel non-invasive neuromodulatory

technologies will offer a convenient, cost-effective, safe, and

painless means of facilitating cognitive rehabilitation in children

following ischemic stroke. As such, future research should

focus on optimizing neuromodulatory treatment strategies by

the identification of appropriate biomarkers and therapeutic

parameters associated with positive patient outcomes.

4.4. Other interventions

Multimodal stimulatory approaches, including auditory,

visual, olfactory, and exercise-based stimulation, can

enhance neuroplasticity and promote cognitive recovery

after stroke. This has been preliminarily confirmed in rat

models of traumatic brain injury (83). While the current

results are promising, more research is needed to make

conclusive statements and successfully apply these methods

to daily clinical life. Multidisciplinary collaborations help

improve current neurotechnologies and provide guidance for

future implementations.

4.4.1. Computer-assisted cognitive training

In recent years, computer-assisted cognitive rehabilitation

has been regarded as a good alternative or supplement to

traditional cognitive rehabilitation. Computer-assisted cognitive

training is beneficial to improve the cognitive ability of patients

and restoring the overall functional status of patients. It is widely

used in cognitive impairment after stroke in adults (84, 85).

However, research regarding its use for cognitive impairment in

children has largely focused on psychiatric conditions such as

ADHD (86) or autism spectrum disorder (87).

4.4.2. Brain-computer interfaces (BCI)

Brain-computer interfaces-based cognitive training is

another emerging area in the neurorehabilitation field;

this involves the reception of nerve cell signals, identifying
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and classifying their activity, and translating them into

computer-recognized instructions. In adults, BCI treatment

of post-stroke cognitive impairment (PSCI) reportedly results

in improvements in executive function (88, 89), attention

(90), memory (90–92), language (91), and visuospatial abilities

(91, 93). In children, Munoz et al. applied the EEG-BCI

system to improve attention ability in patients with ADHD

(94). Friedrich et al. introduced a BCI application combining

neurofeedback and biofeedback to treat children with autism

spectrum disease (95). Kim et al. found that BCI can improve

logical thinking, problem-solving, and attention to external

stimuli in children with spastic cerebral palsy (96). However,

there are no reports on the application of this approach for

treating cognitive impairment in children, excepting stroke

which included cerebral palsy.

4.4.3. Virtual reality

In the past decade, VR has been widely concerned, and

its technological progress has surpassed clinical research. A

particular property of VR is that it creates the illusion that

a person is interacting with a synthetic world. In children’s

cognitive rehabilitation therapy, VR is widely used, such as

improving happiness, relaxation, and anxiety (97), promoting

upper limb recovery after ischemic stroke (98), autism spectrum

disorder (99), and intellectual disabilities (100). The application

of cognitive impairment in children after stroke has not

been reported.

4.4.4. Music therapy

Brain imaging studies have shown that the neural activity

associated with listening to music extends far beyond the

auditory cortex, involving a wide-spread bilateral network of

frontal, temporal, parietal, and subcortical regions related to

attention, semantic and musical syntactic processing, memory,

and motor function (101, 102). In adults, regular music listening

during the subacute phase of stroke promotes recovery of

verbal memory and focused attention (103), and fine-grained

structural reorganization (as indicated by increased gray matter

volume, GMV) in the network of frontolimbic brain regions

(104). In children with neurological disorders, music therapy has

been found to stabilize vital signs during and after treatment,

reflected by reduced heart and respiratory rates and increased

oxygen saturation (105). We hypothesize that music therapy

during the early stages of recovery from stroke could serve

as a valuable supplement to patient care by providing an

individualized, easily implemented, and inexpensive means of

promoting cognitive recovery.

4.4.5. Acupuncture

Acupuncture has been shown to be a safe potential

alternative intervention for the treatment of post-stroke patients

with cognitive impairment (106). Its mechanism may mainly

improve cognitive function after stroke by promoting synaptic

plasticity (107). However, no corresponding studies have been

conducted on children to date.

5. Limitations and future prospects

There is significant heterogeneity in the available studies

of pediatric ischemic stroke patients due to differences

in experimental design, evaluation methodology, tested

interventions, and stroke subgroups. The cognitive function

of children is not comparable across age groups, and as

such many stroke-related cognitive deficiencies may only

manifest over the course of patient growth and development.

As such, larger longitudinal studies are essential to fully

understand the relative value of different interventional

strategies in this vulnerable patient population. To ensure

access to effective personalized treatment, it is also critical

that biomarkers of cognitive impairment be identified,

particularly if such biomarkers can be evaluated using

MRI or EEG data modeling approaches. The mechanisms

whereby current treatments may benefit patient cognitive

function are also not currently understood, and more

basic and clinical research is thus essential to facilitate

evidence-based treatment.

6. Conclusion

Stroke-related cognitive impairment in children has been a

focus of increasing research interest in recent years. Impairment

is influenced by patient age, pathological characteristics,

combined epilepsy status, and environmental factors. Non-

pharmacological treatments for cognitive impairment that

have been explored to date primarily include exercise

training, psychological intervention, neuromodulation

strategies, computer-assisted cognitive training, BCI, VR,

music therapy, and acupuncture. Most of these interventions

are easily implemented and inexpensive strategies that can

promote cognitive recovery. In childhood stroke, the only

interventions explored in detail to date are psychological

interventions and neuromodulatory strategies. However,

evidence regarding the efficacy of these interventions is

relatively weak. In future studies, the active application of

a range of interventions is warranted to improve pediatric

cognitive function, and neuroimaging and electrophysiological

measurement techniques should be used to identify

biomarkers capable of predicting cognitive impairment,

facilitating early diagnosis, guiding treatment, and thereby

improving patient prognosis. Larger multi-center prospective

longitudinal studies are also required to provide more accurate

evidence-based guidance for the treatment of patients with

childhood stroke.
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