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Background: Glioma is one of the most typical tumors in the central

nervous system with a poor prognosis, and the optimal management strategy

remains controversial. Lactate in the tumor microenvironment is known to

promote cancer progression, but its impact on clinical outcomes of glioma

is largely unknown.

Methods: Glioma RNA-seq data were obtained from TCGA and GCGA

databases. Lactate metabolism genes (LMGs) were then evaluated to construct

an LMG model in glioma using Cox and LASSO regression. Immune cell

infiltration, immune checkpoint gene expression, enriched pathways, genetic

alteration, and drug sensitivity were comparedwithin the risk subgroups. Based

on the risk score and clinicopathological features, a nomogramwas developed

to predict prognosis in patients with glioma.

Results: Five genes (LDHA, LDHB,MRS2, SL16A1, and SL25A12) showed a good

prognostic value andwere used to construct an LMG-based risk score. This risk

score was shown as an independent prognostic factor with good predictive

power in both training and validation cohorts (p < 0.001). The LMG signature

was found to be correlated with the expression of immune checkpoint

genes and immune infiltration and could shape the tumor microenvironment.

Genetic alteration, dysregulated metabolism, and tumorigenesis pathways

could be the underlying contributing factors that a�ect LMG risk stratification.

The patients with glioma in the LMG high-risk group showed high sensitivity

to EGFR inhibitors. In addition, our nomogram model could e�ectively predict

overall survival with an area under the curve value of 0.894.

Conclusion: We explored the characteristics of LMGs in glioma and proposed

an LMG-based signature. This prognostic model could predict the survival of

patients with glioma and help clinical oncologists plan more individualized and

e�ective therapeutic regimens.
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1. Introduction

Glioma is one of the most typical tumors in the central

nervous system, comprising approximately 80% of primary

brain tumors (1). Glioma can be classified into four grades:

grades II and III are defined as diffuse lower-grade gliomas,

and grade IV glioma is also termed glioblastoma (2).

Globally, glioma is mostly treated by surgery followed by

postoperative radiotherapy and chemotherapy (3). Despite

considerable advances in the development of treatments,

the prognosis of patients with glioma remains poor, and

the optimal management strategy remains controversial.

The 5-year survival rate for patients with high-grade

glioma is only ∼5% (1). Although low-grade gliomas

have a better prognosis than glioblastomas, they are more

likely to recur and transit into high-grade gliomas (4, 5).

Thus, identifying new and reliable biomarkers of glioma

development and progression is urgently needed to guide

clinical management and find potential targets for patients

with glioma.

The presence of lactate in human tumors has long been

neglected. It is now rediscovered as an important carbon

source for cellular metabolism and as a signaling molecule in

cancerous tissues (6). Lactate in the tumor microenvironment

(TME) promotes cancer progression by creating an active niche

that can shape tumor pathogenesis and evolution (7). It also

reserves the acidic phenotype and increases tumor progression

by modulating the TME, including cell invasion, angiogenesis,

survival signaling, metastasis development, and immune

surveillance escape (6). Extracellular acidosis suppresses T

cell-mediated immunity, thus reducing cytolytic activity and

cytokine production. Numerous studies have demonstrated

that neutralization of tumor acidity in immunotherapy

can improve antitumor responses (8). Extracellular lactate

levels can be sensed by several cell types, including cancer

cells, T cells, NK cells, dendritic cells, and macrophages,

triggering intracellular signaling and strongly impacting cell

behaviors and functions in the TME (9–12). Therefore, the

identification of how lactate metabolism regulators mediate

the TME may help improve the survival prognosis of patients

with glioma.

In this study, we analyzed the expression and characterized

the genomic dysregulation of lactate metabolism genes (LMGs)

in glioma and determined that LMGs were associated

with the tumorigenesis and prognosis of glioma. In

addition, we further constructed a prediction model and

revealed a high efficacy for prognosis prediction. We also

explored the association between LMGs and the immune

microenvironment using the constructed signature. Our

study aimed to comprehensively assess the correlation of

LMGs with the prognosis and immune microenvironment

in glioma.

2. Methods

2.1. Data collection

The gene expression data and clinical characteristics

of patients with glioma in the training set were obtained

from the Chinese Glioma Genome Altas (CGGA)-RNA-

seq dataset (693) (http://www.cgga.org.cn/). The Cancer

Genome Atlas (TCGA) dataset (https://portal.gdc.cancer.

gov) and the CGGA RNA-seq dataset (325) were used as

two independent datasets. The included patients and detailed

metabolism-related genes are listed in Supplementary Table 1.

Genetic mutation profiles were obtained from the cBioPortal

dataset (http://www.cbioportal.org/). Notably, 26 LMGs were

downloaded from the Molecular Signature Database version

7.0 (MSigDB) (http://www.broad.mit.edu/gsea/msigdb/). The

representative immunohistochemical (IHC) staining images

of LMGs were obtained from the Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/).

2.2. Clinical sample collection

To determine the expression of LMGs between tumor

tissues and paracancerous tissues of glioma, six samples from

Changhai Hospital were collected for quantitative real-time

polymerase chain reaction (qRT-PCR). The primer of the six

LMGs is shown in Supplementary Table 2. Ethical approval was

granted by the Ethics Committee of Shanghai Changhai Hospital

(Ethics approval number: CHEC2020-164). All participants

were fully informed of the research and provided the informed

consent forms.

2.3. Protein–protein interaction network
analysis

The STRING functional protein association network

(https://string-db.org) (13) was used to construct the

interaction network. The input genes consisted of LMGs

to a high confidence (0.4) of active interaction. Moreover,

functional enrichment analysis was carried out on the LMGs.

2.4. Construction and evaluation of the
LMG-based prognostic risk score model

Univariate cox regression analysis on the LMGs in the

training cohort was performed to identify the association

between the expression levels of the genes and overall

survival (OS) time using the survival package. Significant

genes with a p-value of <0.05 identified by univariate cox
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regression were further screened by least absolute shrinkage

and selection operator (LASSO) cox regression. Then, six

optimal LMGs were used to construct a prognostic risk

score model using the following formula: risk score =
∑

Coefi·Expi (Coef is the regression coefficient calculated

by the LASSO). According to the calculated prognostic risk

score, all patients were divided into a high-risk and a low-

risk group. Kaplan-Meier survival curve and time-dependent

receiver operating characteristic (ROC) curve were used

to evaluate the prognostic performance of the constructed

risk model.

2.5. Immune cell infiltration analysis

The abundance of immune cells in tumor tissue was

calculated using the Cibersort algorithm (http://CIBERSORT.

stanford.edu/), which transformed the normalized gene

expression matrix into the composition of infiltrating immune

cells. The LM22 signature matrix defined 22 types of immune

cell components and was used as a reference expression

signature with 1,000 permutations.

2.6. Gene set variation analysis and gene
set enrichment analysis

Hallmark gene sets and curated gene sets were downloaded

from the MsigDB dataset. Gene set variation analysis (GSVA)

was utilized to evaluate the relative enrichment of the 50

hallmark pathways across samples using a non-parametric

approach (14). The correlation between the LMG score and

the 50 cancer Hallmark Pathway score was calculated by

Spearman analysis and was visualized in a heatmap. Gene

set enrichment analysis (GSEA) for the curated gene sets was

performed using the R package ClusterProfiler (15) based on

the differentially expressed genes. Significant gene sets were

defined by false discovery rate (FDR) < 0.05 and normalized

enrichment score (NES) > 2. The results were visualized by R

package enrichplot.

2.7. Nomogram construction and
verification

The clinical features and LMG signature were

used to develop the nomogram for glioma prognostic

prediction using the “rms” package (16). Calibration

curves and ROC curves for 1, 2, 3, and 5 years were

used to assess the accuracy and discrimination ability of

the nomogram.

2.8. Single nucleotide variation and copy
number variation analysis

The single nucleotide variation (SNV) and copy number

variation (CNV) data of patients with glioma were obtained

from the TCGA dataset. In brief, the TCGAbiolinks R package

was used to download the SNV and CNV data from the TCGA

database. The maftools R package was utilized to analyze SNV

data and visualize the mutation waterfall plots. CNV data

from the two different risk groups were analyzed using the

GISTIC2.0 module on GenePattern (https://cloud.genepattern.

org/gp/pages/index.jsf) with default parameters.

2.9. Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org/) (17) is the largest

public pharmacogenomics database, which is used for

exploring molecular cancer therapy and mutation.

The R package pRRophetic (18) was used to

screen chemotherapeutic agents in the high- and

low-risk groups.

2.10. RNA isolation, reverse transcription,
and qRT-PCR

First, RNA from glioma and paracancerous tissues

was extracted using Trizol (Invitrogen, USA) extraction

reagents. Isolated RNA was converted into cDNA via a

cDNA reverse transcription kit (TaKaRa, Cat: RR047A,

Japan). Following this, the relative expression of cDNA

was visualized using the SYBR qPCR Master Mix (Takara,

Cat: RR820A, Japan) on a Real-Time PCR system (Applied

Biosystems, Foster City, USA). β-Actin was used as a reference

gene, and relative gene expression was quantified using the

formula: 2–11Ct.

2.11. Statistical analysis

Statistical analyses were mainly performed using

R version 3.6.2. Kaplan–Meier and log-rank analyses

were performed to evaluate the survival differences

between different groups of patients. Student’s t-test

and one-way ANOVA analysis were used to estimate

the differences between two groups and more than two

groups. The correlation analysis was calculated using the

“Spearman” method. Two-sided p < 0.05 was regarded as

statistically significant.
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3. Results

3.1. Correlation between LMG expression
and the clinical characteristics in glioma

To identify the significance of lactate metabolism in glioma,

we collected 26 LMGs from the MSigDB dataset and analyzed

their expression in glioma with different clinical characteristics.

It was found that the expression levels of LDHB, LDHD,

SLC16A7, SLC25A12, PER2, and TP53 in 1p/19q Codel glioma

were higher than those in non-Codel glioma. The expression

levels of EMB, LDHA, SLC16A1, SLC16A3, SLC16A8, PARK7,

and PFKFB2 were lower in 1p/19q Codel glioma than those

in non-Codel glioma (Figure 1A). Furthermore, the expressions

of HAGH, LDHB, LDHD, SLC16A7, SLC25A12, and TP53

were upregulated, and the expressions of EMB, LDHA,

SLC16A3, and SLC16A8 were downregulated in isocitrate

dehydrogenase (IDH) wild-type glioma compared with mutant

glioma (Figure 1B). To investigate the protein interactions

between LMGs and their biological functions, we constructed

the interactions between genes related to lactate metabolism

and the enriched their gene ontology (GO) functions by

these interactions from the STRING database. The results

showed that there were interactions between LMGs and that

LDHA, LDHB, and SLC16A3 had more interactions relative

to other genes (Figure 1C). These genes were enriched in the

lactate transmembrane transport, lactate metabolic process, and

biosynthetic process (Figure 1C). Correlation analysis showed

a strong positive correlation between some of the LMGs. For

example, TP53, HIF1A, MRS2, DRAS2, and SLC16A1 were

positively correlated, and LDHB, PARK7, HAGH, and PNKD

were also positively correlated, suggesting that they may play

a synergistic role in lactate metabolism (Figure 1D). We also

examined the mutational panorama of LMGs and observed that

the frequencies of mutation change with the LMGs were quite

low in the TCGA cohort, except for TP53, which may imply that

their transcriptional levels were relatively stable in performing

biological functions (Figure 1E).

3.2. Prognostic significance of LMGs in
glioma

To explore the prognostic significance of LMGs in glioma,

we performed univariate cox proportional hazards regression

analysis and evaluated the relationship between the gene

expression value of LMGs and the OS status of patients with

glioma. We found that 11 genes were significantly associated

with OS time (p < 0.05, Figure 2A). Among the 11 genes, 6

genes (HIF1A, LDHA, SLC16A1, MRS2, PFKB2, and TP53)

were identified as high-risk factors (hazard ratio >1) and 5

genes (HAGH, LDHB, SLE16A1, SLC25A12, and PER2) were

identified as protective factors (hazard ratio <1). These genes

were subjected to Kaplan-Meier analysis, and the representative

genes are shown in Figure 2B. Moreover, the IHC profiles

generated from the HPA datasets also provided information

about the location of LMGs and their expression status

(Supplementary Figures S1A–L). We used qPCR to further

validate the LMG expression. The results showed that glioma

tissues have higher expression of LDHA, HLF1A, SLC16A1, and

MRS2 and lower expression of LDHB and SLC25A12 compared

with paracancerous tissues (Figure 2C). These results suggested

that LMGs were correlated with outcomes in patients with

glioma and might play a role in glioma progression.

3.3. A prognostic risk model constructed
from the LMGs

Considering the prognostic value of some LMGs in glioma,

we intended to construct a risk score model to evaluate

the prognosis status of glioma samples more accurately. The

11 prognosis-related genes were further performed using the

LASSO regression analysis to screen themost valuable predictive

genes (Figures 3A, B). Five genes were selected with a p <

0.05 and the risk signature included MRS2, LDHA, SLC16A1,

LDHB, and SLC25A12 (Figure 3C). Based on the risk score,

we divided the patients with glioma into high-risk and low-

risk groups (Figure 3D). It was found that the LMG signature

could effectively differentiate cancer prognosis. Patients with

glioma with high-risk scores had a shorter survival time and

poorer prognosis as compared with those with low-risk scores

(Figures 3E, F). In the high-risk group, the expression of MRS2,

LDHA, and SLC6A1 was higher, and the expression of LDHB

and SLC25A12 was lower than that in the low-risk group

(Figure 3G). The risk score exhibited a high prognostic validity,

with an area under curve (AUC) value of 0.729 (Figure 3H). To

further validate the robustness of the LMG model, we utilized

two independent sources of glioma to test the robustness of our

model. The result of the Kaplan-Meier survival analysis showed

that the LMGmodel was effective in both datasets (Figures 3I, J).

The above results suggest that our LMG-based prognostic model

could effectively predict glioma prognosis.

3.4. Prognostic value of the LMG
signature for subgroups of clinical
classifications

We further compared the risk score between patients

with different clinical characteristics and found that the

LMG signature was associated with age, tumor grade, IDH

mutation, radiotherapy, and the O-methylguanine-DNA-

methyltransferase (MGMT) status (Figure 4A). However, the

LMG signature was not associated with gender (Figure 4A).
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FIGURE 1

Transcriptome and genetic alteration profiles of lactic acid metabolism-related genes (LMGs) in glioma. (A) Box plot showing the expression of

LMGs in patients with X1p9q codel and non-Codel glioma. (B) Box plot showing the expression of LMGs in IDH mutate and patients with wild

glioma. (C) Protein–protein interaction (PPI) network and gene ontology enrichment analysis of the LMGs. (D) Heatmap showing the correlation

of the LMGs in glioma. (E) Genetic alteration profiles of the LMGs from patients with glioma inn TCGA dataset. *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.

To further identify the role of the LMG signature for

clinical subgroups, patients in the training cohort were

divided into subgroups according to the clinical features,

including the age, sex, IDH status, 1p/19q status, and

WHO classification of the CGGA-693 cohort to compare

the survival curves between the subgroup based on the
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FIGURE 2

Prognostic significance of LMGs in patients with glioma. (A) Cox regression analysis showing the hazard ratios (HRs) for LMGs with 95%

confidence intervals (CIs). (B) Kaplan–Meier curves for survival states of the representative genes identified by univariate cox regression. (C)

Expression of six LMGs at the mRNA level by qRT-PCR. *p < 0.05, **p < 0.01.
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FIGURE 3

Construction of LMG-based risk model in patients with glioma. (A) LASSO coe�cient profiling of the five LMGs. (B) Cross-validation for tuning

parameter selection in the proportional hazards model. (C) The five genes’ coe�cients screened by lasso regression. (D) LMG signature

distribution of patients with glioma in the CGGA-693 cohort. (E) Kaplan–Meier plot showing the overall survival (OS) for low- and high-LMG

groups using the log-rank test. (F) Survival state distribution of patients with glioma in the CGGA-693 cohort. (G) Heatmap showing the

expression level of five LMGs in the CGGA-693 cohort. (H) Time-dependent ROC analysis for the risk score in the CGGA-693 cohort. (I, J)

Kaplan–Meier plot showing the OS for low- and high-risk LMG signature groups in the TCGA cohort and the CGGA-325 cohort.

median risk score. The results showed that the LMG

signature also had prognostic value in each subgroup,

except for patients with grade II in the training cohort

(Figures 4B–H).

3.5. Construction and validation of the
nomogram

To test whether the LMG signature was an independent

predictor for glioma, multivariate analysis was performed

using a cox proportional hazards model with the predictive

risk score and clinical factors. The results showed that IDH

mutation, 1p19q codel, and the LMG-based risk score were

independent prognostic predictors of OS (Figure 5A). To

evaluate the clinical application of the LMG signature, we

constructed a nomogram model by combining the clinical

features (age, sex, and neoadjuvant) with the risk score of

patients with glioma (Figure 5B). The nomogram showed

a favorable predictive ability for OS rates, with a high

AUC value of 0.894 (Figure 5C). The calibration curve

showed that the predictions of our nomogram model were

in good agreement with the 1-, 2-, 3-, and 5-year actual

observations (Figure 5D). Thus, our nomogram was more
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FIGURE 4

Systematic dissection of LMG signature and clinical parameters in patients with glioma. (A) The boxplots illustrating the correlation between

LMG signature and di�erent clinicopathological characteristics of patients with glioma in the CGGA-693 cohort. (B–H) Kaplan–Meier analysis

for OS in di�erent clinical subtypes including age (B), gender (C), chemotherapy (D), IDH mutation (E), MGMTp methylation (F), 1p19q (G), and

tumor grade in the CGGA-693 cohort.

accurate and clinically valuable than any single independent

recurrence factor.

3.6. Relationship between the LMG
signature and TME

To evaluate the relationship between these TME indicators

and the LMG signature, we used the CIBERSORT algorithm (19)

to calculate the proportion of the tumor-infiltrating immune

cells in the TME in patients with glioma. The proportion of

M0 macrophages, monocytes, CD4+ T memory resting cells,

and Treg cells was high and that of memory B cells, NK

cells, and CD8+ T cells was low in patients of the high-risk

group (Figure 6A), suggesting a lack of the cell killing activity

within tumors of patients in the high-risk group, most probably

due to the reduced number of NK cells and less CD8+T

infiltration. Meanwhile, we compared the expression level of

immune-checkpoint genes between the low- and high-risk LMG

signature groups and found that CD80, CD86, PDL1, PDL2,
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FIGURE 5

Construction of the prognostic nomogram containing LMG signature in the training set. (A) Multivariate cox regression analysis of the clinical

parameters and prognostic model for the overall status. (B) Nomogram for predicting the survival of patients with glioma. (C) Time-dependent

ROC curves comparing prognostic accuracy of the nomogram model in the CGGA-693 cohort. (D) The calibration curves for predicting the 1-,

2-, 3-, and 5-year OS of the nomogram.

HAVCR2, and TIGIT were highly expressed in the high-risk

groups (Figure 6B). The upregulation of PDL1, PDL2, HAVCR2,

and TIGIT could be in an immunosuppressive status, thus

facilitating tumor progression.

3.7. Relationship between the LMG
signature and cancer hallmark pathways

To evaluate the relationship between the LMG signature

and cancer hallmark pathways, we collected the hallmark gene

set from the MsigDB dataset and calculated the pathway

activity in each sample using GSVA (14). The GSVA scores

of these samples were then subjected to Spearman correlation

analysis with the risk coefficients of the samples. It was

found that the risk score was highly correlated with the

“IL6 JAK STAT3 pathway,” “epithelial-mesenchymal response,”

and “TNF-α signaling via NFKB” pathway (Figure 6C). We

further used ESTIMATE (20) to calculate the immune

score of each patient and then analyzed the correlation

between the risk score and the immune score. It was found

that there was a significant positive correlation between

the risk score and the immune score, and the r-value

calculated by Pearson was 0.35 (Figure 6D). GSEA was further

performed to identify the involvement of pathways regulating

tumorigenesis in the high-risk group. We found that multiple

classic tumor-related pathways were enriched in the high-

risk group, such as “hypoxia,” “MYC targets,” and “cancer

poor survival” pathways (Figure 6E). In contrast, metabolism-

related pathways were enriched in the low-risk group,

including “Oxidative phosphorylation,” “selenoamino acid
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FIGURE 6

Potential implications for immune infiltration and immune checkpoint gene expression between high- and low-risk LMG signature groups. (A)

Box plots to display the proportions of 22 immune infiltrating cells in patients with glioma. (B) Box plots to show the expression levels of

immune checkpoint genes in high- and low-risk LMG signature groups. (C) Heat map showing the correlation between the risk score and

hallmark gene sets. (D) Correlation analysis of immune scores in patients with glioma. (E, F) GSEA analysis showing the enriched pathways in the

high- (E) and low-risk (F) LMG signature groups. *p < 0.05, ***p < 0.001.
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FIGURE 7

Genetic alterations between high- and low-risk LMG signature groups. (A, B) Waterfall plots showing the top 20 mutation landscapes of the

low- (A) and high-risk (B) LMG groups in the TCGA dataset. (C) Forest plot showing the significantly di�erent mutated genes between the low-

and high-risk LMG groups. (D) Waterfall plots showing the significantly di�erent mutated genes between the low- and high-risk LMG signature

groups. (E, F) The distribution of copy number variation (CNV) features across all chromosomes for the low- (E) and high-risk (F) LMG

signature groups.

metabolism,” and “pyruvate metabolism” pathways (Figure 6F).

These results indicate that the LMG signature was associated

with the immune response and tumorigenesis pathway. Lactic

acid metabolism may affect immune cell function to affect

glioma progression.

3.8. The underlying genetic alteration of
LMGs

To investigate the underlying genetic alteration of the

risk level defined by LMG signature in glioma, we obtained
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FIGURE 8

Potential candidate drugs using GDSC analysis. (A–L) Boxplots showing the IC50 values of chemotherapy agents for high- and low-risk LMG

signature groups. ***p < 0.001, ****p < 0.0001.

TCGA-LGG/GBM somatic mutation profiles and analyzed

the mutation landscape for patients with high- and low-risk

(Figures 7A, B). We explored the top 20 mutated genes in two

groups, respectively. The gene with themostmutation frequency

was IDH1 (80%) in the low-risk group and that in the high-

risk group was TP53 (51%). We also calculated the significant

differentially mutated genes between the two risk groups. As

shown in Figures 7C, D, IHD1, CIC, FUBP1, and NOTCH1

were found with a much higher mutation rate in the low-risk

group than in the high-risk group. In contrast, PTEN, EGFR,

TTN, and RB1 showed a much lower mutation rate in the low-

risk group than in the high-risk group. Additionally, the CNV

alteration landscapes of the high- and low-risk groups were

further compared. The two groups had distinct CNV alteration

profiles (Figures 7E, F). The above results suggested that genetic

alterationmay affect the expression of LMG, which further affect

tumor progression.

3.9. Prediction of the chemotherapy
response by LMGs

To explore potential therapeutic agents for patients with

glioma, GDSC analysis was used to predict the chemotherapy

response between the two groups (Figures 8A–L). Several

chemotherapeutic agents were significantly different between

high- and low-risk groups with regard to their sensitivity.

EGFR inhibitor Lapatinib and Gefitinib had higher IC50

in the low-risk group than that in the high-risk group

(Figures 8A, B), suggesting EGFR inhibitors could be potential

pharmacological therapies for patients with high-risk glioma.

Other chemotherapeutic agents, such as Vinblastine, Nilotinib,

Vorinostat, Axitinib, and Sorafenib also had distinct sensitivity

between the two risk groups. The IC50 values of these agents

were significantly higher in patients with high-risk glioma than

the patients with low-risk glioma (Figures 8C–L), suggesting

that patients with high-risk glioma may have tolerance for these

drugs and ultimately be able to resist.

4. Discussion

Despite considerable advances in the diagnosis and

treatment of glioma, it remains cancer with high morbidity and

mortality. Increasing evidence suggests that metabolic changes

in tumors can modify their microenvironment, and then the

newly remodeled microenvironment confers an advantage to

tumor cells (21). However, no research has been published

on a signature as a prognostic indicator in glioma. In the

present study, we generated an LMG-based signature on a

training cohort and two independent validation cohorts to

predict the survival of patients with glioma. We found that

patients in the high-risk group had shorter OS with a high

average AUC >0.729. The lactate metabolism signature was
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also correlated with clinical features, immune infiltration, the

expression of checkpoint molecules genetic alteration, activated

pathways, and drug sensitivity. These findings illustrate that

the novel LMG signature had strong predictive power in

OS prediction, suggesting that lactate metabolism may affect

tumor progression.

Based on LMGs, we constructed a prognostic risk model

to predict the prognosis of patients with glioma. The result

showed that our model had good performance in predicting

survival state in both the training and validation cohorts.

The LMG signature was composed of five crucial genes,

including LDHA, LDHB, MRS2, SLC16A1, and SLC25A12

among which LDHA is responsible for the conversion of

pyruvate into lactate and NAD+, while LDHB is responsible for

converting lactate into pyruvate, fuelling oxidative metabolism

(7). The inhibition of MAPK by suppressing LDHA activity

decreases the production of pro-inflammatory cytokines in

macrophages (22). The LDH inhibitor also reduces the ATP

levels and induces oxidative stress and cell death in tumor

cells (23). Several studies have shown that lactate and LDHA

contribute to tumor progression (24). The downregulation

of LDHB is an early event in the development of breast,

prostate, and pancreatic cancer (25–27) and is correlated

with high proliferation, increased tumor cell invasion, and

unfavorable survival outcomes (28). MRS2 is involved in mMg

2+ uptake machinery via lactate-mediated conductance (29).

Increasing MRS2 levels suppress gastric cancer cell apoptosis

and reduce levels of MRS2, leading to abnormal mitochondrial

function and decreased mitochondrial 1Ψ (30). SLC16A1 is

responsible for transporting monocarboxylic acid metabolites.

SLC16A1 plays a crucial role in cancer metabolism (31). Lactate

maintains glycolysis efficiency by regulating the pH level in

cells and interstitium and upregulating SLC16A1 expression.

Cancer cells can increase carcinogenicity and invasion by

overexpressing SLC16A1 and transporting lactic acid inward.

Targeting SLC16A1 may, therefore, prove to be a promising

therapeutic strategy for some cancers (32, 33). The SLC25A12

gene encodes a calcium-binding mitochondrial carrier protein

involved in the exchange of aspartate for glutamate across the

inner mitochondrial membrane. Loss of SLC25A12 impairs the

cytosolic aspartate levels, NAD+/NADH ratio, mitochondrial

respiration, and tumor growth (34). Our study showed that

LDHA, MRS2, and SLC16A1 were indicators of poor survival,

while LDHB and SLC25A12 were indicators of favorable

prognosis, suggesting that lactate metabolism is dysregulated

in glioma and this dysregulated expression is closely related to

tumor progression.

Hypoxia and abnormal metabolite levels, specifically lactate,

often characterize disordered metabolic states that contribute to

the immunosuppression of the TME. Excessive lactate secreted

by metabolism-reprogrammed cancer cells regulates immune

responses via causing extracellular acidification, acting as an

energy source by shuttling between different cell populations,

and inhibiting the mTOR pathway in immune cells (35).

We found that there were great differences in the immune

microenvironment between high- and low-risk groups, showing

that the abundance of CD4+ T cells, CD8+ T cells, and B cells

was relatively low in the high-risk group. It was reported that

CD8+ T cells activate cytolytic activity and effector function,

which in turn enhances antitumor responses (36). CD4+ T

cell and B cell also help and innate signals to DC functions

and CD8+ T cell priming, enhancing the antitumor immunity

(37). Furthermore, in addition, we found that the expression of

PDL1, PDL2, HAVCR2, and TIGIT was elevated in the high-

risk group. There is evidence that lactate-induced expression

of GPR81 induces tumors to express immune checkpoint

ligand PD-L1 (38), indicating that lactate-mediated immune

dysregulation can distort host immune checkpoints in various

ways to escape immune responses and promote the development

and progression of glioma. Our findings are consistent with

other studies showing that increased LDH activity triggers

tumor immune escape by inhibiting immune function (39,

40). Although tumor immunotherapy has demonstrated good

therapeutic outcomes in some cancers, few studies have reported

its efficacy in gliomas (41). Our LMG-basedmodel may be useful

for screening patients for glioma immunotherapy.

Our study illustrated that patients with glioma in the two risk

groups had distinct genetic alterations, activated pathways, and

potentially sensitive drugs. A common characteristic of gliomas

is the presence of markers for IDH1 and TP53 mutations, which

influence the fate of the cells (42). The two risk groups were

IDH1- and TP53-dominant mutations, respectively, suggesting

discrepant oncogenesis mechanisms. These two mutations

could be the cause of metabolism disorders. Recent studies

reported that the IDH1 mutant glioma tissue displayed massive

alterations in glycolysis and lipid metabolism compared with

IDH1 wild-type glioma tissue. Both groups showed similar

levels of tricarboxylic acid (TCA) cycle intermediates, but IDH1

mutant gliomas accumulated more pyruvate (43). TP53 can

affect glycolysis and mitochondrial oxidative phosphorylation

pathways and promote tumor development (44). Furthermore,

the high-risk group had increased mutations of PTEN and

EGFR. PTEN occurs in ∼20% of glioblastomas but is rare

in lower-grade gliomas, suggesting PTEN suppressor genes

involved in the development of glioblastomas (45). There

have been several EGFR gene alterations identified in gliomas,

especially in glioblastomas, which acted as a prognostic factor

and a predictor of treatment response in patients with

glioma (46). Thus, EGFR inhibitors were predicted to be

potential pharmacological therapies for high-risk groups in

patients with glioma. Our study showed that the LMGs may

have cross-talks with pro-oncogenic signaling pathways or

other metabolism pathways. MYC could act as a glycolysis

regulator and modulate both glucose transport and glucose

breakdown into lactate by targeting genes (47). The activated

MYC targets in high-risk groups could be a potential way
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to promote tumorigenesis. The other metabolism pathways,

such as oxidative phosphorylation, were also reported to affect

invasion ability, drug sensitivity, and prognosis (4, 48). Through

drug sensitivity analysis, we found that the two LMG risk

groups had distinct sensitivity to chemotherapy drugs. Our

model may help to develop individualized treatment for patients

with glioma.

In addition, our multivariate cox model showed that our

LMG model remained independent of other factors such as

IDH mutation and X1p19q deletion for patients with glioma.

Using routine clinical factors associated with OS, we developed a

nomogram model for clinical applications. The calibration plot

showed good consistency between the prediction by nomogram

and actual observation of the survival in glioma, suggesting that

the proposed nomogram model could be used as a supportive

tool to help clinicians distinguish, assess, and evaluate the risk

and prognosis of patients with glioma.

In conclusion, we comprehensively explored the

characteristics of LMGs in glioma and established a novel

prognostic model to stratify different risk groups of patients

with glioma, which may help plan individualized treatment and

improve clinical survival outcomes of patients with glioma.
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