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Multiple sclerosis (MS) is a chronic debilitating neurological condition with

a wide range of phenotype variability. A complex interplay of genetic and

environmental factors contributes to disease onset and progression in MS

patients. Vitamin D deficiency is a known susceptibility factor for MS, however

the underlying mechanism of vitamin D-gene interactions in MS etiology is still

poorly understood. Vitamin D receptor super-enhancers (VSEs) are enriched

in MS risk variants and may modulate these environment-gene interactions.

mRNA expression in total of 64 patients with contrasting MS severity was

quantified in select genes. First, RNA-seq was performed on a discovery cohort

(10 mild, 10 severe MS phenotype) and ten genes regulated by VSEs that have

been linked to MS risk were analyzed. Four candidates showed a significant

positive association (GRINA, PLEC, PARP10, and LRG1) in the discovery cohort

and were then quantified using digital droplet PCR (ddPCR) in a validation

cohort (33 mild, 11 severe MS phenotype). A significant di�erential expression

persisted in the validation cohort for three of the VSE-MS genes: GRINA

(p = 0.0138), LRG1 (p = 0.0157), and PLEC (p = 0.0391). In summary, genes

regulated by VSE regions that contain known MS risk variants were shown to

have di�erential expression based on disease severity (p<0.05). The findings

implicate a role for vitamin D super-enhancers in modulating disease activity.

In addition, expression levels may have some utility as prognostic biomarkers

in the future.
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Introduction

Multiple sclerosis (MS) is a chronic and debilitating
autoimmune condition of the central nervous system (1).
A complex interplay of genetic and environmental factors
contributes to disease onset and progression in MS patients
(2). Vitamin D deficiency is a known susceptibility factor
for MS, however the underlying mechanism of vitamin D
gene-environment interactions in MS etiology is still poorly
understood (3).

There are several lines of evidence supporting the role of
vitamin D in MS susceptibility, including higher MS prevalence
in regions with lower annual UVB exposure (4–7), and migrant
studies showing changes to MS risk based on latitude changes
(8–10). Increased actinic sun damage, and reporting more
time outdoors during childhood/adolescence, have both been
associated with reduced risk of MS (11–13). Large prospective
studies measuring vitamin D status prior to MS onset showed
that participants with low serum vitamin D levels were at greater
risk of developing MS (14–16). Clinical studies have reported
that vitamin D supplementation in MS patients lowered disease
relapse risk (17–21), while lower vitamin D status at MS onset is
associated with worse cognitive function and neuronal integrity
(22). MS genetic risk loci, identified by GWAS, are enriched with
binding sites for the vitamin D receptor (VDR) (23), and several
MS risk variants have been localized to VDR binding sites (24).

Recent in silico evidence suggests that vitamin D receptor
(VDR) super-enhancers (VSE) may be influenced by nearby
MS risk SNPs, thereby impacting the activity of these VSEs
in relation to disease (25). Vitamin D exerts its biological
effects when the active hormone [1,25-dihydroxyvitamin D,
1,25(OH)2D] binds VDR, which then acts as a transcription
factor upon binding to VDR response elements in target genes
(26). These VDR target genes are often associated with clusters
of VDR binding sites that form super-enhancers, regulatory
genomic regions consisting of dense clusters of enhancers
(27). VSEs contain clusters of VDR binding sites, and loop to
hundreds of promoter regions, upregulating vitamin D target
genes (27).

Lu et al. (25) identified specific genes near VSE regions that
overlap with MS risk variants. We investigated the expression
of ten VSE-MS-linked genes in a cohort of 64 persons with
MS representing the two extremes of disease activity, to assess
whether expression differences were associated with mild vs.
severe MS phenotype.

Methods

Ethics statement

The Conjoint Health Research Ethics Board (REB17-1193)
at the University of Calgary provided approval for this study.
Written informed consent was obtained from all participants.

Study population and design

Selection criteria and experimental methodology have been
described previously (28). Briefly, study participants (n = 64)
representing a range of phenotypic severity were selected from
a large prospective cohort consisting of 2,831 participants
recruited for an ongoing prospective cohort study at the
University of Calgary MS Clinic in Calgary, Alberta. Patients
were identified according to their age-related MS severity
(ARMSS) scores over three or more clinical visits. 600 patients
with the lowest ARMSS scores, and 600 patients with the
highest ARMSS scores were designated as mild and severe
phenotypes, respectively. From this subset, 64 patients were
recruited for this pilot project: 43 patients with a mild phenotype
(mean ARMSS score 1.34, range 0.06–3.08) and 21 patients
with a severe phenotype (mean ARMSS score 6.90, range:
5.73–9.94). Clinical parameters were assessed to ensure relative
homogeneity between the two groups, including age of MS
onset, age at recruitment, sex, and use of disease modifying
therapies. Mann-Whitney-Wilcoxon test for ordinal variables
and Chi-square test for nominal variables were used to assess
statistical significance.

A two-phase discovery and validation approach was
employed. Candidate MS-VSE genes were identified in a
discovery cohort consisting of 20 patients (10 mild, 10 severe
phenotype) in which transcriptome sequencing (RNA-seq)
was conducted. Genes demonstrating significant differential
expression between mild and severe phenotypic subgroups were
then retained and quantified in a validation cohort using digital
droplet PCR (ddPCR).

RNA isolation and quality control

The Paxgene RNA Purification Kit was utilized to isolate
total RNA from whole blood samples of recruited participants.
Sample integrity was verified by fluorimetry using an RNA-
specific dye (Qubit fluorimeter), and RIN analysis with an
Agilent TapeStation 2200 (RIN score range 6.4–8.4).

High throughput RNA-sequencing

Low Sample protocol was followed using the #20020596
TruSeq Stranded Total RNA Library Preparation Kit (H/M/R)
on 500 ng of each RNA sample. RiboZero magnetic beads
were used to remove rRNA and keep the Illumina TruSeq
i7 indices in the RNA samples. The fragments present in the
RNA samples were enriched via 15 cycles of PCR amplification.
The resulting libraries were validated by TapeStation analysis
and qPCR using the Kapa qPCR Library Quant Kit for
Illumina. Following validation, the libraries were then pooled
and sequenced on an Illumina NextSeq 500 sequencer. The pool
of 20 samples underwent single-end sequencing, which involved
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three consecutive high-output NextSeq V2 sequencing runs,
consisting of 75 cycles for each run. Paired-end sequencing was
also conducted on the 20-sample pool using a single 150 cycle
(2× 75 bp) high-output NextSeq V2 sequencing run. The single-
end sequencing and paired-sequencing yielded an average of 80
million clusters PF per sample and 26 million clusters PF per
samples, respectively.

Bioinformatics analysis

Transcriptomic data was processed by aligning counts
to the EnsEMBL GRCh38.p12 genome reference assembly
utilizing FeatureCounts. Differential expression between mild
and severe phenotype patients was then conducted using the
DeSeq2 R Package. Ten candidate genes were selected based on
previous findings. Firstly, five genes regulated by VSEs which
contain known MS risk variants were previously identified
(25) and thus selected for inclusion: UBASH3B, IRF8, PLEC,
PARP10, GRINA. The second set of genes overlap with MS risk
variants and were under significant regulation by 1,25(OH)D
via VSEs, with high expression levels (25): DENND6B, USP2,
ASAP2, SEMA6B, LRG1. The targets that showed a statistically
significant difference (Log2 fold change, p < 0.05, Wald test)
were then retained for analysis in the validation cohort.

Digital droplet PCR (ddPCR) validation
analysis

Validation analysis were performed using digital droplet
PCR due to its increased sensitivity and absolute quantification
method compared to conventional PCR techniques. ddPCR
custom primers were designed using the Ensembl database and
Primer3 software, which generated sequences for forward and
reverse primers (Supplementary Table 1). The Bio-Rad iScript
cDNA Synthesis Kit and randomhexamers were used to perform
reverse transcription on the remaining 44 RNA samples. Based
on the Bio-Rad QX200 ddPCR system protocol, custom primers
designed for each candidate and Bio-Rad ddPCR EvaGreen
Supermix was used. The expression of each candidate was
normalized to the expression of HPRT1 and B2M given their
relatively consistent expression profiles. The normalized counts
for each candidate were then analyzed using a one-tailed t-test in
GraphPad Prism 8.4.1 to determine if a significant difference in
expression existed between the mild and severe MS phenotypes.

Results

Clinical characteristics of the study participants are listed in
Table 1. There were large differences in ARMSS scores between
the mild and severe phenotype groups, as expected due to study

design (Table 1). Across all study participants, the mean ARMSS
scores were 1.34 and 6.90, for the mild and severe phenotypes,
respectively. Other variables, including the age at onset, age at
recruitment, and sex (% female) were not significantly different
between mild and severe phenotypes (Table 1). The severe
phenotype groups in both cohorts consisted of only female
patients (Table 1). The number of participants in each group
receiving at least one of the MS disease modifying therapies,
as well as the types of treatments, did not differ significantly
between the groups; 58.1% in themild group, 61.9% in the severe
group (data not shown).

In the discovery cohort, whole transcriptome sequencing
was conducted for the ten candidate MS-linked-VSE genes
selected based on prior evidence (Figure 1). Mean expression
levels were analyzed for significant differences in the mild
vs. severe phenotype groups (≥ 2-fold-change, p < 0.05).
Four of the candidate MS-linked-VSE genes GRINA, PLEC,
PARP10, and LRG1 were significantly upregulated in the severe
phenotype MS subgroup (Table 2), and thus were evaluated
in the validation cohort (n = 44) using custom-designed
ddPCR assays. This analysis demonstrated three genes that
were differentially expressed between MS phenotypes including
GRINA, PLEC, and LRG1 (Figure 2).

Discussion

This pilot study compared expression of MS-VSE genes
in mild vs. severe MS phenotypes, in order to elucidate a
potential role for vitamin D inMS etiology, as well as identifying
potential future biomarkers for differentiating these phenotype
subgroups. Vitamin D super-enhancers in MS is a relatively new
area of research and this is the first study, to our knowledge,
to directly investigate the putative role of VSE-linked genes
associated with MS risk SNPs in MS phenotypic severity.

Vitamin D deficiency has long been implicated in MS
susceptibility, yet the exact vitamin D gene-environment or
epigenetic interactions in MS etiology remain unclear. A better
understanding may at best help in prevention or modulation of
disease severity, or at least create awareness of the importance
of vitamin D sufficiency. Active vitamin D, 1,25(OH)D exerts
its biological effects by binding to the VDR and altering gene
expression. Vitamin D super-enhancers contain multiple VDR
binding sites, which then loop to transcription start site of target
gene(s) to stimulate transcription (29). VSEs are believed to have
more pronounced effects on gene expression than traditional
enhancers (and many are signal-inducible via 1,25(OH)D
exposure (26, 27). Recent in silico evidence identified specific
genes with VSE regions overlapping with MS risk variants as
well as VSE genes overlapping with MS risk variants (25). We
compared the expression of ten of these identified candidates in
our cohort. It is hypothesized that MS risk SNPs within VSEs, or
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TABLE 1 Clinical characteristics of included study participants.

Discovery cohort

Mild phenotype
(n = 10)

Severe phenotype
(n = 10)

p-value

Mean age (range) 53.4 (32.4–67.4) 52.1 (39.6–59.5) 0.7133

Mean age at MS Onset (range) 35.6 (20.9–46.2) 28.7 (14.8–46.1) 0.7649

Sex (% female) 70% 100% 0.2105

Mean ARMSS score (range) 1.177 (0.060–2.194) 7.255 (6.187–9.401) <0.0001

Validation cohort

Mild phenotype
(n = 33)

Severe phenotype
(n = 11)

p-value

Mean age (range) 57.8 (45.3–70.1) 54.6 (34.4–67.1) 0.4480

Mean age at MS Onset (range) 33.9 (16.6–56.2) 32.2 (14.6-47.3) 0.09692

Sex (% female) 60.6% 100% 0.0189

Mean ARMSS score (range) 1.864 (0.225–3.017) 6.518 (5.804–7.891) <0.0001

FIGURE 1

Heat map visualizing di�erential expression in MS-VSE genes in

the extremes of MS phenotype discovery cohort. The color

legend illustrates the coding by log-fold di�erence in expression

(P1 = Patient 1).

genes associated with VSEs may alter the VSE activity to impact
disease risk and activity (30).

RNA-sequencing and ddPCR were used to assess differential
expression of select candidates. Three VSE genes (PLEC,

GRINA, LRG1) that were previously identified as linked to
MS variants (25) showed consistent differences in expression
between the mild vs. severe phenotype groups in both the
discovery and confirmation cohorts. It should be noted that
for neurodegenerative diseases, even small fold-changes in
expression levels can relate to disease development and activity
(24, 31, 32). Interestingly, a significant increase in transcription
levels was associated with these VSE-genes in the severe
phenotype. The findings implicate a role for vitamin D
super-enhancers in modulating disease via environment-gene
interactions. In addition, expression levels may have some utility
as prognostic biomarkers in the future.

The molecular mechanisms involved in VSE regulation of

gene expression and its impact on MS has not been studied.
GRINA encodes a glutamate ionotropic receptor N-methyl-D-

aspartate (NMDA)-type subunit associated protein 1, expressed

on the postsynaptic membrane of neuronal synapses (33). The

receptor is an excitatory glutamate-gated ion channel found

throughout the body (34). Excessive glutamate at the sites
of demyelination and overstimulation of glutamate receptors

leading to neuronal death have been reported (35, 36). The
PLEC gene encodes the cytoskeleton plectin protein, which
is found in many tissues, including nervous tissue (37, 38).
The degradation of cerebral tissue integrity and elasticity in
MS patients, especially in glial cells (39), may be affected.
LRG1 encodes the leucine-rich alpha-2-glycoprotein, which has
recently been reported to promote angiogenesis in the brain
(40, 41).

While it is hypothesized that VSE-related MS risk variants

may lead to changes in the epigenomic landscape involved

in MS pathogenesis, we cannot rule out that the converse
is true—it may be that disease severity affects VDR related
changes in chromatin accessibility and thus regulation of gene
expression. It may also be a combination of both effects.
Studying expression in individuals with first de-myelinating
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FIGURE 2

Scatter plots displaying the number of gene copies normalized

to the expression of HPRT1 and B2M (normalized counts) in the

validation cohort for the following VSE-MS-linked candidates:

(A) GRINA, (B) PLEC, (C) PARP10, (D) LRG1. The mean and

standard deviation are shown. The asterisks (*) indicate

statistically significant results (p < 0.05).

events, and/or longitudinally, would be needed to better support
any potential cause-and-effect relationship.

Given the small sample size in this pilot study, follow up in
larger phenotype cohorts or case-control designs, will be useful
to validate a role for VSE genes in MS risk and severity, as well
as to explore a potential role as clinically useful biomarkers.
In particular, a comparison of mild cases vs. healthy controls
and severe cases vs. healthy controls would be warranted in
this validation. Furthermore, the severe phenotype group in the
validation cohort contained exclusively females, and obtaining
larger sample sizes with more males are warranted to confirm
the findings. While the cohorts do not differ in the baseline
demographic characteristics, we acknowledge the limitation
on the results of not having more precise 1:1 propensity
score matching between the individuals in the discovery and
validation cohorts.

Another potential limitation of this study involves the use
of whole blood, which has both advantages and disadvantages,
as we have discussed previously (28). Many recent publications
studying MS biomarkers have used whole blood (42). Other
blood sample types (serum, plasma) require more onerous

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.1064008
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Orton et al. 10.3389/fneur.2022.1064008

standardization to avoid variability in sample contents
introduced (43). We believe that whole blood remains a
reasonable choice for gene expression studies in MS because
the collection is easily standardized, and there is precedent
from numerous prior studies. Recent publications continue
to demonstrate the important role of peripheral blood cells in
the pathogenesis of MS (44, 45). Nonetheless, future studies
extracting transcripts from different cell types could help
determine if the results are more generalizable, given that the
genomic binding pattern of VDR can be variable between
tissues (29). While our findings support a link between VSE
genes and MS risk variants, the mechanisms involved have not
been studied. Extension to murine EAE models could explore
functional effects.

The study of vitamin D super-enhancers, and their effect on
human health, is a relatively new and growing area of study.
There are very limited publications in this area for the field
of multiple sclerosis. The candidate genes investigated may be
important players in the interaction between the environment
(vitamin D) and genetic risk associated with multiple sclerosis.
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