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Introduction: Migraine is a complex disorder with genetic and environmental

inputs. Cumulative evidence implicates oxidative stress (OS) in migraine

pathophysiology while genetic variability may influence an individuals’

oxidative/antioxidant capacity. Aim of the current study was to investigate

the impact of eight common OS-related genetic variants [rs4880

(SOD2), rs1001179 (CAT), rs1050450 (GPX1), rs1695 (GSTP1), rs1138272

(GSTP1), rs1799983 (NOS3), rs6721961 (NFE2L2), rs660339 (UCP2)] in

migraine susceptibility and clinical features in a South-eastern European

Caucasian population.

Methods: Genomic DNA samples from 221 unrelated migraineurs and 265

headache-free controls were genotyped for the selected genetic variants using

real-time PCR (melting curve analysis).

Results: Although allelic and genotypic frequency distribution analysis did

not support an association between migraine susceptibility and the examined

variants in the overall population, subgroup analysis indicated significant

correlation between NOS3 rs1799983 and migraine susceptibility in males.

Furthermore, significant associations of CAT rs1001179 and GPX1 rs1050450

with disease age-at-onset and migraine attack duration, respectively, were

revealed. Lastly, variability in the CAT, GSTP1 and UCP2 genes were associated

with sleep/weather changes, alcohol consumption and physical exercise,

respectively, as migraine triggers.

Discussion: Hence, the current findings possibly indicate an association of

OS-related genetic variants with migraine susceptibility and clinical features,

further supporting the involvement ofOS and genetic susceptibility inmigraine.

KEYWORDS

antioxidant enzymes, single nucleotide polymorphisms (SNPs), primary headaches,

migraine genetics, redox homeostasis
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1. Introduction

Migraine is a complex, disabling primary headache

disorder with a high worldwide prevalence, estimated

∼15%, female preponderance (3:1 female-to-male ratio),

and genetic predisposition (1–3). Typically is characterized by

recurrent attacks of moderate to severe throbbing headache,

lasting 4–72 h, aggravated by routine physical activity and

often accompanied by symptoms such as nausea, vomiting,

photophobia, and/or phonophobia (4, 5). About 30% of

migraine cases undergo transient, reversible focal neurological

symptoms, the so-called aura, occurring usually before the

headache phase (6, 7). Migraine clinical diagnosis is based on

the International Classification of Headache Disorders 3rd

Edition (ICHD-III) criteria, which subdivides migraine into

two major subtypes with substantial symptomatic overlap,

namely migraine without aura (MwoA) and migraine with aura

(MwA) (4).

Neurological and vascular mechanisms are believed

to be involved in migraine pathophysiology. Main events

implicated are cortical spreading depression, activation of

the trigeminovascular system, and neurogenic inflammation

causing meningeal vasculature changes and the release of

various migraine markers. Recent evidence supported an

emerging role of metabolic abnormalities, including oxidative

stress, in migraine pathogenesis (8, 9). Even though some

studies investigating certain markers of oxidative stress are

inconsistent, cumulative findings largely indicate an alteration in

physiological redox balance in migraine patients characterized

by increased oxidative or nitrosative stress and/or reduced

antioxidant capacity (10–12). Furthermore, oxidative stress

seems to be a common denominator of the most common

migraine triggers, which are likely to further enhance oxidative

stress levels (13).

Migraine is a multifactorial disease, as most common

complex disorders, with a substantial genetic component

indicated by family and twin epidemiological studies (14–

16). Thus, migraine phenotypes seem to be shaped by genetic

susceptibility and exposure to environmental triggers (17, 18).

Heritability seems to be more eminent in MwA subtype than

MwoA, further supported by the identification of mutations in

three ion transporter genes (CACNA1A, ATP1A2, and SCN1A)

associated with familial hemiplegic migraine (FHM); a rare

monogenic form of MwA (19). The more common subtypes

of migraine are mainly polygenic, with a complex interaction

between numerous genetic variants, each having a small genetic

effect, conferring disease susceptibility (17, 20). Recent genome-

wide association studies (GWAS) identified multiple genetic

variants associated with migraine susceptibility (21–26). In

addition, genetic factors seem to influence clinical features of

common migraine i.e., earlier age of disease onset, increased

migraine frequency in males and higher number of days with

medication (27).

Considering the implication of oxidative stress in migraine

pathophysiology and the strong genetic component of the

disorder, variation in oxidative stress-related genes may

contribute to migraine susceptibility. Single nucleotide

polymorphisms (SNPs) in genes encoding for oxidative

stress-related proteins may modify protein function resulting

in increased oxidative-stress levels associated with various

diseases, including migraine. Hence, aim of the current study

was to examine the possible association between eight SNPs in

oxidative stress-related genes, namely rs4880 (SOD2), rs1001179

(CAT), rs1050450 (GPX1), rs1695 (GSTP1), rs1138272 (GSTP1),

rs1799983 (NOS3), rs6721961 (NFE2L2), and rs660339 (UCP2),

and the susceptibility to develop migraine and sub-clinical

phenotypes, in South-eastern European Caucasian (SEC)

clinically examined patients and controls (Table 1, Figure 1). The

frequency distribution of the majority of the investigated SNPs,

associated with the incidence of various diseases, was previously

examined by Katsarou et al. in a Caucasian population of the

Southeastern European region (28). Identifying the genetic

factors implicated in the susceptibility to develop migraine

clinical phenotypes and features may contribute potentially

to discover possible diagnostic biomarkers, to uncover key

protein molecules and thus understand more accurately the

disease pathophysiology, and ultimately to allow early set-up of

treatment and more precise therapeutic strategies.

2. Subjects and methods

2.1. Study population

The current case-control study involved 486 unrelated

subjects with SEC origin. A total of 221 subjects (37 males

and 184 females) diagnosed by experienced neurologists as

migraineurs according to the International Classification of

Headache Disorders criteria (ICHD-3), aged between 18 and 72

years (mean ± standard deviation: 41.9 ± 11.3 years), served

as case group. The case group was prospectively recruited from

specialized headache clinics located in Glyfada and Thessaloniki,

Greece, between September 2019 and July 2021. The control

group consisted of 265 neurologically healthy individuals (133

males, 132 females) with no personal and family history of

migraine or any other headache disorder, aged between 21 and

85 years (mean± standard deviation: 57.7± 12.8 years). Control

subjects were recruited from the Neurology Department,

University Hospital of Larissa, Greece. Data collected from

control subjects included only age and gender. Demographic

data of the study population, anthropometric data and the main

clinical characteristics of migraine cohort are summarized in

Table 2. Each study subject was assigned with a unique serial

number to conceal their identity. All study subjects signed

a written informed consent. Approval was obtained by the

appropriate Ethic Committees (Mediterraneo Hospital, Glyfada,
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TABLE 1 Summary of the investigated oxidative stress-related SNPs.

Gene Locus Protein SNP
(dbSNP
RefSNP)

Consequence MAF

Allele ALL EUR

SOD2 -

MnSOD

6q25.3 Superoxide Dismutase 2 rs4880 Missense Variant
(p.Val16Ala)

C 0.41 0.47

CAT 11p13 Catalase rs1001179 Upstream
Transcript Variant

T 0.13 0.23

GPX1 3p21.31 Glutathione Peroxidase 1 rs1050450 Missense Variant
(p.Pro200Leu)

A 0.22 0.34

GSTP1 11q13.2 Glutathione S-Transferase Pi 1 rs1695 Missense Variant
(p.Ile105Val)

G 0.35 0.33

rs1138272 Missense Variant
(p.Ala114Val)

T 0.03 0.07

NOS3 7q36.1 Nitric Oxide Synthase 3/Endothelial
Nitric Oxide Synthase (eNOS)

rs1799983 Missense Variant
(p.Asp298Glu)

T 0.18 0.34

NFE2L2 2q31.2 Nuclear Factor, Erythroid 2 Like 2
(NRF2)

rs6721961 Upstream
Transcript Variant

T 0.15 0.13

UCP2 11q13.4 Uncoupling Protein 2 rs660339 Missense Variant
(p.Ala55Val)

A 0.42 0.40

Information retrieved from: https://www.genecards.org/ and https://www.ncbi.nlm.nih.gov/snp/.

SNP, Single Nucleotide Polymorphism; MAF, Minor Allele Frequency; ALL, Global; EUR, European.

FIGURE 1

Schematic representation of the investigated oxidative

stress-related genetic variants and the function of the encoded

oxidative stress-related proteins.

Greece, and University Hospital of Larissa) and the research

was performed in accordance with the principles outlined in the

Declaration of Helsinki.

2.2. DNA extraction and genotyping

Epithelial cells from the participants oral cavity were

collected by sterile buccal swabs. Genomic DNA was extracted

from the epithelial cell samples using a commercial nucleic

acid isolation kit (Nucleospin Tissue; Macherey-Nagel GmbH

& Co., KG, Düren, Germany), according to the manufacturer’s

instructions. DNA concentration was determined by Nanodrop

2000 Spectrophotometer (Thermo Scientific, USA) and the

samples were stored at−20◦C until further analysis. Genotyping

for the investigated oxidative stress-related SNPs (rs4880-SOD2,

rs1001179-CAT, rs1050450-GPX1, rs1695-GSTP1, rs1138272-

GSTP1, rs1799983-NOS3, rs6721961-NFE2L2, and rs660339-

UCP2) was carried out by real-time Polymerase Chain

Reaction in LightCycler R© 480 System (Roche Diagnostics,

Germany) using SimpleProbe R© probes (LightSNiP assays;

TIB Molbiol, Berlin, Germany), followed by melting curve

analysis. In particular, DNA samples (50 ng) were amplified

using the respective LightSNiP Assay for each SNP and

Lightcycler R©FastStart DNA Master HybProbe Mix (Roche,

Germany), according to the following PCR protocol: initial

denaturation for 10min at 95◦C, followed by 45 cycles of

denaturation for 10 s at 95◦C, primer annealing for 10 s at

60◦C and extension for 15 s at 72◦C, followed by melting curve

analysis to determine homozygosity for the wild-type alleles,

heterozygosity, and homozygosity for the variant alleles.

2.3. Statistical analysis

Continuous data are described as mean ± standard

deviation (SD), and categorical data as frequencies (n) and
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TABLE 2 Demographic and clinical characteristics of the study population.

Migraine patients Headache-free controls

(N = 221) (N = 265)

Age (years)∗ 41.9± 11.3 ranged from 18 to 72 57.7± 12.8 ranged from 21 to 85

Gender, n (%)

Male 37 (16.7) 133 (50.2)

Female 184 (83.3) 132 (49.8)

BMI (kg/m2)∗ 24.6± 4.2 –

Smoking, n (%)

Never 130 (58.8) –

Former 27 (12.2) –

Ever 64 (29.0) –

Age of diagnosis (years)∗ 20.1± 8.2 ranged from 5 to 52 –

Positive family history, n (%) 163 (73.8) –

Type of migraine, n (%)

1.1. MwoA 127 (57.5) –

1.2. MwA 27 (12.2) –

1.3. CM 67 (30.3) –

∗Values are presented as mean± SD.

BMI, body mass index; MwoA, Migraine without Aura; MwA, Migraine with Aura; CM, Chronic Migraine.

percentages (%). Distribution of the continuous variables was

examined with Kolmogorov-Smirnov and Shapiro–Wilks tests.

The disease age-at-onset (years), current frequency of migraine

attacks (days/month) and typical duration of migraine attacks

(hours) were not normally distributed, thus non-parametric

tests (Mann-Whitney test for two-group comparisons and

Kruskal-Wallis test for three-group comparisons) were used to

investigate their association with the examined SNPs. Genotype

and allele frequencies of the selected SNPs were compared

between groups using chi-square (χ2; Pearson or Fischer’s exact)

tests under co-dominant, dominant, recessive, over-dominant

genotypic and allelic inheritance models. Contingency 2 × 2

tables were designed and crude odds ratios (OR) with their

corresponding 95% confidence intervals (CI) were calculated

to examine the association of the investigated SNPs with

migraine and migraine subtypes susceptibility, and clinical

traits. Logistic regression analysis was also applied to adjust

for potential confounding factors including age (continuous),

gender (categorical), Body Mass Index (BMI) (continuous), and

smoking status (categorical). Two-sided p-values < 0.05 were

considered statistically significant. However, in some tests the

p-value threshold automatically reduced to 0.01 to overcome

the multiple tests effect, such as the Bonferroni correction etc.

Statistical analyses were carried out by the IBM SPSS Statistics

software (version 26.0 for Windows), R language for statistical

computing (violin plots extraction) as well as G∗Power software

for power analysis. Consistency of the genotype frequency

distributions with the Hardy–Weinberg Equilibrium (HWE)

was examined with chi-square test using the web-based Online

Encyclopedia for Genetic Epidemiology studies software (29).

Haplotype analyses were carried out using the SHEsis web-based

platform (http://analysis.bio-x.cn/myAnalysis.php) (30, 31).

3. Results

3.1. Analysis of association between
oxidative stress-related SNPs and
migraine susceptibility

Genotype frequencies of the investigated SNPs were

consistent with HWE in both case and control groups (p

> 0.05), except from the GPX1 rs1050450 which deviated

from the HWE in the control group (p = 0.010). The

observed genotype and allele frequency distribution of the

investigated SNPs did not differ significantly between case

and control subjects in any of the genetic inheritance model

tested (p > 0.05) in the overall SEC population of the

study. A statistically significant difference was observed for

the NOS3 rs1799983 variant between migraineurs and control

male subjects, as reported in Table 3, although no statistically

significant difference was observed between cases and controls

in the overall SEC population for the rs1799983 (Table 4).

After adjustment, the more common G allele of the rs1799983

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.1054333
http://analysis.bio-x.cn/myAnalysis.php
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Papasavva et al. 10.3389/fneur.2022.1054333

TABLE 3 Genotypic and allelic frequency distribution analysis of the NOS3 rs1799983 variant in male subjects.

NOS3
rs1799983

♂ Migraine cases
(N = 37)

♂ Controls
(N = 133)

OR (95% CI) p ORadj (95% CI)∗ padj
∗

n (%) n (%)

GG 27 (73.0) 58 (43.6) 1.0 (reference) – – –i

GT 8 (21.6) 59 (44.4) 3.433 (1.441–8.180) 0.004 2.281 (0.807–6.448) 0.120

TT 2 (5.4) 16 (12.0) 3.724 (0.799–17.359) 0.077 5.259 (0.811–34.087) 0.082

GT+ TT 10 (27.0) 75 (56.4) 3.491 (1.565–7.789) 0.002 2.766 (1.060–7.222) 0.038

TT 2 (5.4) 16 (12.0) 1.0 (reference) – – –ii

GT 8 (21.6) 59 (44.4) 0.922 (0.178–4.776) 1.000∗∗ 0.423 (0.054–3.325) 0.413

GT+ GG 35 (94.6) 117 (88.0) 0.418 (0.092–1.906) 0.368∗∗ 0.231 (0.036–1.505) 0.126

GT 8 (21.6) 59 (44.4) 1.0 (reference) – – –iii

TT+ GG 29 (78.4) 74 (55.6) 0.346 (0.147–0.813) 0.012 0.529 (0.194–1.442) 0.213

G 62 (83.8) 175 (65.8) 1.0 (reference) – – –iv

T 12 (16.2) 91 (34.2) 2.687 (1.378–5.240) 0.003 - -

OR, Odds Ratio; CI, Confidence Interval.
∗Adjusted for age.
∗∗Two-tailed Fisher’s Exact test.
iPower= 0.839.
iiPower= 0.882.
iiiPower= 0.933.
ivPower= 0.933.

Bold values indicate statistical significance.

TABLE 4 Genotypic and allelic frequency distribution analysis of the NOS3 rs1799983 variant between migraine cases and control subjects.

NOS3 rs1799983 OR (95% CI) P-value OR (95% CI)∗ P-value∗

Migraine cases vs. controls

GG vs. TT 1.396 (0.748–2.605) 0.294 1.618 (0.711–3.681) 0.252

GG vs. GT 1.188 (0.815–1.732) 0.371 1.112 (0.686–1.803) 0.666

GT vs. TT 1.175 (0.628–2.199) 0.614 1.482 (0.610–3.603) 0.385

GG vs. GT+ TT 1.224 (0.855–1.752) 0.269 1.202 (0.756–1.913) 0.436

TT vs. GT+ GG 0.779 (0.429–1.415) 0.412 0.632 (0.282–1.415) 0.264

GT vs. GG+ TT 0.894 (0.624–1.282) 0.543 0.970 (0.609–1.545) 0.898

G vs. T 1.182 (0.901–1.550) 0.226 - -

∗Adjusted for age and gender.

(83.8 vs. 65.8%) and homozygous GG genotype (73.0 vs.

43.6%) were statistically more prevalent in male migraineurs

compared to the male control group [GG vs. GT + TT:

ORadj 2.766 (1.060–7.222), padj = 0.038; G vs. T: OR 2.687

(1.378–5.240), p = 0.003] (Table 3). Hence, homozygosity for

the NOS3 rs1799983 more common G allele seems to be

associated with substantially increased migraine susceptibility

in male population. Stratified analysis based on migraine

subtypes showed no statistically significant differences in allele

or genotype frequency distributions of the examined SNPs

among MwoA, MwA, and chronic migraine (CM) patients and

migraine-free controls in any of the genetic inheritance model

tested (data not shown).

3.2. Analysis of association between
oxidative stress-related SNPs and
migraine clinical features

Subgroup analysis of the examined SNPs and disease clinical

features (age at onset, attack frequency, and attack duration) in
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TABLE 5 Analysis of the CAT rs1001179 variant association with clinical features in migraineurs.

CAT
rs1001179

CC CT TT p∗ CT+TT pa∗∗ CC+CT pb∗∗ CC+TT pc∗∗

Migraineurs
subjects (N = 218)

126 77 15 92 203 141

Age at onset 18.99± 8.06 21.68± 8.40 21.07± 7.60 0.010d,i 21.58± 8.24 0.002ii 20.01± 8.27 0.435 19.21± 8.01 0.006iii

(years) 17 (5–52) 20 (6–47) 20 (11–40) 20 (6–47) 19 (5–52) 17 (5–52)

Attack frequency 10.66± 8.26 11.56± 9.22 10.73± 7.06 0.859 11.43± 8.88 0.605 11.00± 8.63 0.729 10.67± 8.12 0.726

(days/month) 8 (0.25–30) 10 (0.33–30) 10 (2–25) 10 (0.33–30) 9 (0.25–30) 8 (0.25–30)

Data are presented as mean± SD and median (min-max). Bold values are considered statistically significant (p < 0.05).
∗Kruskal-Wallis Test.
∗∗Mann-Whitney Test.
aCT+ TT vs. CC.
bCC+ CT vs. TT.
cCC+ TT vs. CT.
dCC vs. CT adjusted by the Bonferroni correction for multiple tests p= 0.010.
iPower= 0.917.
iiPower= 0.922.
iiiPower= 0.998.

FIGURE 2

Violin plots displaying the mean age at disease onset according to CAT rs1001179 genotype profile in migraine subjects.
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TABLE 6 Genotypic and allelic frequency distribution analysis of the GPX1 rs1050450 variant in migraineurs according to the typical duration of

migraine attacks (≤24 vs. >24h).

GPX1
rs1050450

Attack duration (N = 213) OR (95% CI) p ORadj (95% CI)∗ padj
∗

≤24h (N = 158) >24h (N = 55)

N (%) n (%)

CC 81 (51.3) 20 (36.4) 1.0 (reference) – – –i

CT 66 (41.8) 26 (47.3) 1.595 (0.819–3.110) 0.168 1.559 (0.796–3.057) 0.196

TT 11 (7.0) 9 (16.4) 3.314 (1.210–9.077) 0.023∗∗ 3.973 (1.345–11.734) 0.013

CT+ TT 77 (48.7) 35 (63.6) 1.841 (0.979–3.463) 0.057 1.784 (0.943–3.375) 0.075

CT 66 (41.8) 26 (47.3) 1.0 (reference) – – –ii

TT 11 (7.0) 9 (16.4) 2.077 (0.771–5.595) 0.143 2.223 (0.793–6.232) 0.129

TT+ CC 92 (58.2) 29 (52.7) 0.800 (0.432–1.482) 0.478 0.836 (0.448–1.560) 0.573

TT 11 (7.0) 9 (16.4) 1.0 (reference) – – –iii

CT+ CC 147 (93.0) 46 (83.6) 0.382 (0.149–0.980) 0.040 0.362 (0.138–0.951) 0.039

C 228 (72.2) 66 (60.0) 1.0 (reference) – – –iv

T 88 (27.8) 44 (40.0) 1.727 (1.097–2.719) 0.018 - -

∗Adjusted for age, gender, BMI, and smoking status.
∗∗Two-tailed Fisher’s Exact test.

Bold values are considered statistically significant (p < 0.05).
iPower= 0.617.
iiPower= 0.821.
iiiPower= 0.807.
ivPower= 0.901.

migraine group was performed to assess genotype-phenotype

associations. As reported in Table 5, a statistically significant

trend of association was revealed for the CAT rs1001179 variant

with the disease age at onset. In particular, homozygosity for the

minor T allele and heterozygosity were associated with a later

age at onset (CT: 21.68± 8.40-years-old; TT: 21.07± 7.60-years-

old) as compared to the homozygosity for the more common C

allele (CC: 18.99 ± 8.06-year-old); consequently, the rs1001179

variant T allele may serve as a genetic factor possibly leading to a

later age at onset of migraine (Figure 2). Moreover, a statistically

significant association between GPX1 rs1050450 variant and

migraine attack duration was observed. The rs1050450 variant

T allele (40.0 vs. 27.8%) and TT homozygosity (16.4 vs. 7.0%)

were significantly more prevalent in patients with longer attack

duration (>24 h) as compared to patients with shorter attack

duration (≤24 h) [C vs. T: OR 1.727 (1.097–2.719), p= 0.018; TT

vs. CT+CC: ORadj 0,362 (0.138–0.951), padj = 0.039] (Table 6).

In addition, a trend of association was indicated between NOS3

rs1799983 variant T allele and longer attack duration (>24 h);

homozygous and heterozygous carriers of the rs1050450 variant

T allele (62.5 vs. 37.5%) seem to experience migraine attacks

longer than 24 h as compared to homozygous for the more

common G allele [G vs. T: OR 1.481 (0.941–2.332), p = 0.089;

GG vs. GT + TT: ORadj 1.731 (0.910–3.291), padj = 0.094]

(Table 7). No statistically significant association was indicated

for the SOD2 rs4880, GSTP1 rs1695, and rs1138272, NFE2L2

rs6721961, and UCP2 rs660339 variants with age at onset, attack

frequency and attack duration in the SEC migraine subjects of

the current study.

3.3. Analysis of association between
oxidative stress-related SNPs and
migraine triggers

The most reported migraine triggering factors by the

case subjects of the current study were stress (71.5%), alcohol

(38.5%), sleep changes (33.0%), weather changes (26.2%),

water deprivation (dehydration; 25.3%), and physical activity

(19.0%). Since migraine triggers seem to be capable of

generating oxidative stress, an association analysis of the

investigated oxidative stress-related SNPs and migraine

triggers was performed. Statistically significant associations

were indicated for the CAT rs1001179 genetic variant with

sleep [CT vs. CC + TT: ORadj 0.427 (0.222–0.821), padj
= 0.011] and weather [TT vs. CT + CC: ORadj 3.164

(1.022–9.801), padj = 0.046] changes (Table 8); for the

GSTP1 Val105/Val114 or “Grs1695T rs1138272” haplotype

(GSTP1∗C) with alcohol consumption [OR 2.929 (1.210–

7.094), p = 0.013] (Table 9); and for the UCP2 rs660339

genetic variant with physical activity as triggering factor for
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TABLE 7 Genotypic and allelic frequency distribution analysis of the NOS3 rs1799983 variant in migraineurs according to the typical duration of

migraine attacks (≤24 vs. >24h).

NOS3
rs1799983

Attack duration (N = 220) OR (95% CI) p OR (95% CI)∗ Padj
∗

≤24h (N = 164) >24h (N = 56)

n (%) n (%)

GG 86 (52.4) 21 (37.5) 1.0 (reference) – – –i

GT 64 (39.0) 29 (51.8) 1.856 (0.971–3.548) 0.060 1.780 (0.906–3.500) 0.094

TT 14 (8.5) 6 (10.7) 1.755 (0.603–5.110) 0.371∗∗ 1.715 (0.572–5.144) 0.336

GT+ TT 78 (47.6) 35 (62.5) 1.838 (0.987–3.422) 0.053 1.731 (0.910–3.291) 0.094

GT 64 (39.0) 29 (51.8) 1.0 (reference) - - -ii

TT 14 (8.5) 6 (10.7) 0.946 (0.330–2.709) 0.917 1.054 (0.350–3.175) 0.925

TT+ GG 100 (61.0) 27 (48.2) 0.596 (0.323–1.098) 0.095 0.644 (0.341–1.215) 0.174

TT 14 (8.5) 6 (10.7) 1.0 (reference) – – –iii

GT+ GG 150 (91.5) 50 (89.3) 0.778 (0.284–2.132) 0.625 0.738 (0.263–2.067) 0.563

G 236 (72.0) 71 (63.4) 1.0 (reference) – – –iv

T 92 (28.0) 41 (36.6) 1.481 (0.941–2.332) 0.089 – –

∗Adjusted for age, gender, BMI, and smoking status.
∗∗Two-tailed Fisher’s Exact test.
iPower= 0.657.
iiPower= 0.814.
iiiPower= 0.811.
ivPower= 0.913.

migraine attacks [CC vs. CT + TT: ORadj 2.135 (1.046–

4.358), padj = 0.037; C vs. T: OR 1.697 (0.994–2.899),

p= 0.051; Table 10].

4. Discussion

Cumulative evidence points toward migraine as a conserved

adaptive response that ameliorates detrimental oxidative stress

and rebalances energy homeostasis in the brain, associated

with reproductive or survival advantages as signified by its

high prevalence and its correlation with common genetic

polymorphisms (11, 32). Besides several biochemical studies

revealing diverse metabolic abnormalities in migraineurs,

genetic studies assist the hypothesis that migraine patients

show an increased vulnerability to oxidative stress, impaired

mitochondrial functioning and/or metabolic derangements

(11, 12). In addition, migraine often appears as a symptom

to other oxidative stress associated concomitant diseases,

such as brain tumors and fibromyalgia, further supporting

an association between migraine and redox imbalance (33–

36). Furthermore, oxidative stress seems to be a common

metabolic denominator for the most frequently reported

migraine triggers (13). Genetic susceptibility can contribute

to decreased antioxidant capacity or increased oxidative stress

(37). In the current study, it was hypothesized that an

“oxidation predisposed” genetic make-up according to the

investigated single nucleotide variants may be associated with

the susceptibility to develop migraine and/or diverse clinical

phenotypes and features. Thus, the current study analyzed the

genotypic and allelic frequency distribution of eight genetic

variants in oxidative-stress related proteins (rs4880-SOD2,

rs1001179-CAT, rs1050450-GPX1, rs1695-GSTP1, rs1138272-

GSTP1, rs1799983-NOS3, rs6721961-NFE2L2, and rs660339-

UCP2) in clinically confirmedmigraine subjects and a headache-

free control group with SEC origin, in order to investigate

their association with migraine susceptibility and diverse

clinical phenotypes.

The NOS3 gene, encoding for endothelial nitric oxide

synthase (eNOS) enzyme, is mapped on chromosome 7 (7q35–

36) and consists of 26 exons (38). The rs1799983 missense

variant in exon 7 of the NOS3 gene is a guanine (G) to

thymine (T) replacement (G894T), resulting in the amino acid

substitution Glu298Asp (39). This genetic variant may modify

eNOS function and has been associated by some studies with

decreased NO levels in carriers of the variant T (298Asp)

allele (40–42). Borroni et al. suggested that eNOS Asp298

homozygosity is an independent risk factor for MwA (43), while

subsequent studies found no association between rs1799983

variation and migraine susceptibility (37, 44–49). In addition,

Eroz et al. observed that heterozygosity (GT) and homozygosity

for the variant T allele (TT) were significantly more prevalent
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TABLE 8 Association analysis of the CAT rs1001179 variant with migraine triggers.

Sleep
changes

GG (%) GA (%) AA (%) OR (95%
CI)

p ORadj
(95% CI)∗

padj
∗

Yes (n= 71) 46 (64.8) 17 (23.9) 8 (11.3) GG vs. GA vs. AA - 0.013 - 0.017i

No (n= 131) 69 (52.7) 56 (42.7) 6 (4.6) GG vs. GA+ AA 1.653
(0.911–2.999)

0.097 1.604
(0.878–2.931)

0.125

G (%) A (%) AA vs. GA+ GG 2.646
(0.880–7.955)

0.087∗∗ 2.816
(0.923–8.593)

0.069

Yes (n= 142) 109 (76.8) 33 (23.2) GA vs. GG+ AA 0.422

(0.221–0.804)

0.008 0.427

(0.222–0.821)

0.011ii

No (n= 262) 194 (74.0) 68 (26.0) G vs. A 1.158
(0.718–1.866)

0.547 - -

Weather changes GG (%) GA (%) AA (%)

Yes (n= 57) 32 (56.1) 18 (31.6) 7 (12.3) GG vs. GA vs. AA 0.154 0.117iii

No (n= 145) 83 (57.2) 55 (37.9) 7 (4.8) GG vs. GA+ AA 0.956
(0.515–1.774)

0.887 0.964
(0.510–1.822)

0.910

G (%) A (%) AA vs. GA+ GG 2.760
(0.922–8.262)

0.071∗∗ 3.164

(1.022–9.801)

0.046iv

Yes (n= 114) 82 (71.9) 32 (28.1) GA vs. GG+ AA 0.755
(0.394–1.449)

0.398 0.717
(0.366–1.403)

0.331

No (n= 290) 221 (76.2) 69 (23.8) G vs. A 0.800
(0.490–1.306)

0.372 - -

∗Adjusted for age, gender, BMI, and smoking status.
∗∗Two-tailed Fisher’s Exact test.

Bold values are considered statistically significant (p < 0.05).
iPower= 0.975.
iiPower= 0.999.
iiiPower= 0.975.
ivPower= 0.999.

TABLE 9 Haplotype association analysis of the GSTP1 rs1138272 and rs1695 variants with alcohol as migraine trigger.

Alcohol consumption OR (95% CI) p

rs1695 rs1138272 Yes (%) No (%)

H1 A C 105.00 (69.1) 169.00 (76.1) 0.701 (0.441–1.112) 0.130

H2 G C 32.00 (21.1) 45.00 (20.3) 1.049 (0.630–1.745) 0.854

H3 G T 15.00 (9.9) 8.00 (3.6) 2.929 (1.210–7.094) 0.013i

Bold values are considered statistically significant (p < 0.05).
iPower= 0.820.

in migraineurs compared to control subjects (50). Although

accordingly with most prior studies, no significant association

between migraine susceptibility and rs1799983 variant was

observed in the overall SEC population of the current study,

subgroup analysis demonstrated that homozygosity for themore

common G allele of the rs1799983 variant in the NOS3 gene

seems to be associated with remarkably increased migraine

susceptibility in the male population of the current study;

thus, NOS3 rs1799983 may serve as an independent risk factor

for migraine susceptibility in male population. Besides diverse

ethnical background, the observed inconsistency of the findings

concerning the association of the rs1799983 with migraine

susceptibility may be attributable to the greater percentage

of female participants in most studies due to the female

preponderance of migraine; consequently, the results largely

reflect the association of theNOS3 genetic variant with migraine

in female population. Genetic influence seems to be more robust

in male migraineurs, as suggested by findings from GWAS

in migraine, probably due to the considerable environmental

and hormonal effect on disease prevalence in females (27).

The aforementioned data in addition to the evidence for an

association between stronger migraine family history and lower

age-at-onset (27), could also possibly explain the lower age-at-

onset observed in male patients of the current study compared

to female migraineurs (Figure 3). Furthermore, in the overall

migraine population, the NOS3 rs1799983 variant T allele
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TABLE 10 Association analysis of the UCP2 rs660339 variant with physical activity as migraine trigger.

Physical
activity

CC (%) CT (%) TT (%) OR (95%
CI)

p ORadj
(95% CI)∗

padj
∗

Yes (n= 39) 20 (51.3) 15 (38.5) 4 (10.3) CC vs. CT vs. TT - 0.110 - 0.111i

No (n= 159) 53 (33.3) 80 (50.3) 26 (16.4) CC vs. CT+ TT 2.105

(1.036–4.279)

0.037 2.135

(1.046–4.358)

0.037

C (%) T (%) TT vs. CT+ CC 0.585
(0.191–1.786)

0.341 0.588
(0.189–1.826)

0.358

Yes (n= 78) 55 (70.5) 23 (29.5) CT vs. CC+ TT 0.617
(0.302–1.263)

0.184 0.599
(0.290–1.237)

0.166ii

No (n= 318) 186 (58.5) 132 (41.5) C vs. T 1.697
(0.994–2.899)

0.051 - -

∗Adjusted for age, gender, BMI, and smoking status.

Bold values are considered statistically significant (p < 0.05).
iPower= 0.441.
iiPower= 0.709.

FIGURE 3

Violin plots displaying the mean age at disease onset in male

and female migraine subjects.

showed a trend of association with migraine attack duration

longer than 24 h, with homozygous and heterozygous carriers

of the variant T allele experiencing longer migraine attacks

as compared to homozygous for the more common G allele.

Likewise, in a study by Güler et al., the rs1799983 TT genotype

was significantly more prevalent in patients with headache

duration >24 h compared to patients with duration <24 h (51).

Contrarily, no significant association of the NOS3 rs1799983

variant with attack duration was observed in a study by Eröz

et al. (50).

The gene encoding for catalase (CAT), a crucial endogenous

antioxidant enzyme which detoxifies hydrogen peroxide

(H2O2), is located on chromosome 11 (11p13) (52). The

rs1001179 (C262T) variant in the promoter region of the

CAT gene causes alteration at the transcription factor binding

site (53, 54). The variant T allele seems to confer enhanced

transcriptional rate, while data concerning the influence of

the rs1001179 on enzyme activity are controversial (55). Saygi

et al. reported no significant differences in CAT rs1001179

genotype or allele frequency distribution among children and

adolescents with MwA, MwoA, and controls (56). Similarly,

Gentile et al. found no significant differences in genotype and

allele frequencies between female chronic migraine population

and healthy controls (37). Although not correlated to migraine

and migraine subtypes per se, accordingly with previous studies,

the rs1001179 variant in the CAT gene seems to delay disease

onset in the migraine population of the current study; TT

and CT genotypes were associated with a later age at onset,

feasibly indicating a delayed migraine onset for the carriers of

the variant T allele. In addition, homozygosity for the variant T

allele of the CAT rs1001179 seems to be associated with sleep

and weather changes as triggering factors inducing migraine

attacks. Epidemiological data showed a correlation between

early migraine onset and enhanced relative risk in first-degree

relatives, indicating a genetic component in migraine onset (27).

Therefore, the findings of the current study point toward CAT

as a candidate disease modifying genetic factor.

The enzyme glutathione peroxidase 1 (GPX1) is a major

endogenous selenium-dependent antioxidant in defense

against oxidative stress. The human GPX1 gene encoding for

glutathione peroxidase is located on chromosome 3 (3p21)

and contains the non-synonymous rs1050450 variant which

is a C to T alteration in exon 2, resulting in an amino acid

substitution from proline (Pro) to leucine (Leu) (57, 58). This

genetic variant is associated with altered enzyme activity and

may potentially influence a person’s antioxidant capacity. In

particular, the minor T (Leu) allele has been associated with
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decreased GPx1 activity (54, 59–61). To the author’s knowledge,

this is the first study investigating the relationship of the GPX1

rs1050450 variant and migraine phenotypes. The results of

the current study indicated an association between GPX1

rs1050450 variant and migraine attack duration. In particular,

a significantly more frequent prevalence of the variant T allele

and TT homozygosity was observed in patients with longer

attack duration (>24 h) compared to patients with shorter

attack duration (≤24 h); thus, the presence of the variant T

allele seems to be related with prolonged migraine attacks in

the SEC migraine population of the study. A study by Alp et al.

indicated a significant negative correlation between total thiol

(-SH) levels and headache duration in patients with MwoA (62).

Considering the correlation of the variant T allele with reduced

GPX1 activity and the negative correlation of the total -SH

levels with migraine attack duration, carriers of the T allele may

experience longer attack duration due to reduced antioxidant

capacity and thus reduced ability to neutralize oxidants possibly

leading in prolonged migraine attacks.

Glutathione S-transferases (GSTs) constitutes a family of

phase II xenobiotic metabolizing enzymes that catalyze the

conjugation of reduced glutathione (GSH) with hydrophobic

electrophilic compounds to generate readily excretable or less

toxic metabolites; thus, they can detoxify various harmful

substances including reactive oxygen species (ROS) (63, 64).

Several factors can influence the activity of this antioxidant

enzyme including polymorphic genetic variants (65). The

GSTP1 gene is located on chromosome 11 (11q13) (66). The

most reported GSTP1 genetic variants are the rs1695; an A

to G transition at nucleotide 313 resulting in an isoleucine

(Ile) to valine (Val) substitution (I105V) in exon 5, and the

rs1138272; a G to T transition at nucleotide 341 resulting

in an alanine (Ala) to valine (Val) (A114V) substitution in

exon 6. These genetic variants result in decreased enzyme

activity and detoxification capacity of the protein (67, 68). The

current study did not detect any significant association of the

GSTP1 variants with the susceptibility to develop migraine or

migraine subtypes and clinical phenotypes. Likewise, Gentile

et al. found no significant association of the rs1645 variant with

CM susceptibility (37). Nevertheless, a significant association

of alcohol consumption reported as migraine trigger with the

presence of the variant allele haplotype of GSTP1 rs1695 and

rs1138272 [Val105/Val114 or Grs1695T rs1138272 (GSTP1∗C)

haplotype] was revealed in the migraine cohort of the current

study. Alcohol consumption can increase brain oxidative stress

through various mechanisms, mainly due to its metabolism

by CYP2E1 enzyme and the subsequent production of ROS

(69). The isoenzyme Glutathione S-Transferase Pi 1 (GSTP1)

can promote brain detoxification and cell protection by

modifying the effect of neurotoxins and OS products (70). The

Val105/Val114 haplotype is associated with lower enzymatic

activity leading to incomplete catabolization of toxicants and

potentially to higher oxidative stress levels (67). Therefore, the

investigated functional genetic variants, which result in the

substitution of two amino acids in the enzyme active site altering

its activity and therefore its antioxidant function (71), may

render the brainmore vulnerable to oxidative damage reinforced

by alcohol consumption.

Mitochondrial uncoupling protein 2 (UCP2) is an anion

transporter located in the inner mitochondrial membrane

(72). UCP2 is widely expressed, including immune system

and subcortical brain structures, and is involved in oxidative

stress, cellular homeostasis, energy production, and cell survival.

A major function of UCP2 is dissipating proton gradient

energy and suppressing the generation of ROS (73, 74). UCP2

downregulation is associated with enhanced oxidative stress

and inflammation (75). Hence, UCP2 acts protectively against

cell death induced by ROS in the central nervous system

(76). The UCP2 gene is located on chromosome 11 (11q13)

(77). One of the most reported UCP2 variant is the missense

variant rs660339 in exon 4, a C to T transition, resulting

in an amino acid substitution at position 55 of the UCP2

(Ala55Val) which seems to modify the uncoupling degree and

consequently protein activity (72). In particular, the Val/Val

genotype has been associated with lower degree of uncoupling,

increased metabolic efficiency, lesser fat oxidation, reduced

energy expenditure, higher exercise efficiency, higher risk of

obesity and diabetes, elevated atherogenic index, and greater

weight loss compared to the Ala/Val and Ala/Ala genotypes

(77, 78). UCP2 demonstrates tissue specific physiological

effects as suggested by its tissue-specific regulation e.g.,

in the brain UCP2 functions as a regulator of oxidative

stress. Therefore, the effects of UCP2 variants may be tissue

depended (77). The results of the current study indicated

no significant association of the UCP2 rs660339 variant with

migraine susceptibility and clinical phenotypes. However, a

significant association was revealed with physical activity as

triggering factor for migraine attacks; CC (Ala/Ala) genotype

and C (Ala) allele were significantly more prevalent among

migraineurs reporting physical activity as migraine trigger.

Ahmetov et al. suggested an association between the variant

T (Val) allele and higher maximum oxygen uptake (VO2max)

(79, 80). Additionally, a large cross-sectional population-

based study by Hagen et al. revealed an inverse correlation

between peak oxygen uptake (VO2peak) and migraine in adults

aged between 20 and 50 years, with significantly enhancing

prevalence of migraine with lower VO2peak. Furthermore, a

strong association of physical activity with migraine aggravation

was observed in adult subjects younger than 50 years-old

in the lowest VO2peak quantile. Consequently, the authors

suggested that the inverse relationship between headache and

VO2peak may be elucidated by shared genetic predisposition

factors between migraine and low VO2peak status (81). Taken

together, the findings of the current study may indicate

UCP2 gene as a candidate genetic factor predisposing to

both migraine and low VO2peak, with homozygous patients
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for the UCP2 rs660339 wild-type C (Ala) allele reporting

more frequently intense physical activity as migraine trigger

possibly due to lower VO2peak levels. To the authors’

knowledge, this is the first report investigating the association

of the UCP2 rs660339 variant with migraine phenotypes

and features. Further larger-scale studies estimating VO2max

levels alongside the identification of the genotypic profile

for the rs660339 variant and possibly additional variants in

the UCP2 gene are needed to validate the findings of the

current study.

Certain limitations of the current study should be

acknowledged. Firstly, the study population was limited

to SEC migraineurs and headache-free controls to avoid

biased introduced by genetic variability within different

populations, possibly rendering the findings relevant only

for this specific population. Secondly, the sample size was

relatively small, particularly in migraine subgroups, thus

the effect of low frequency alleles might not be detected.

Moreover, the functional implication of the investigated

genetic variants on the encoded antioxidant proteins and

other related biomarkers was not examined, restricting the

acquisition of additional information. Finally, the current study

examined only a limited number of oxidative stress-related

SNPs. Since migraine is a multifactorial disease influenced by

multiple genes, the combined role of the examined genes and

other functional genes and loci in migraine susceptibility and

clinical phenotypes in SEC and other populations needs to be

further investigated.

5. Conclusion

In conclusion, the study provides supportive evidence

for potential implication of OS-related SNPs in migraine

susceptibility and associated clinical phenotypes and features,

i.e., age-at-onset, attack duration, andmigraine triggers, in a SEC

case-control population. Migraine is a common multifactorial

disorder with several small effect size genetic variants, together

with environmental factors conferring disease susceptibility.

Unraveling the genetic susceptibility of migraine phenotypes

and features could potentially contribute to disease diagnosis,

to more accurate understanding of disease pathophysiology, and

eventually to the identification of novel targets for therapeutic

treatment. An enigma although remains the magnitude of

genetic susceptibility for migraine phenotypes and clinical

features and if this is relevant for both genders to the same

degree. While oxidative stress and genetic variability seem to

play a key role in the pathophysiology of migraine, the precise

link between these factors has not been fully understood yet.

The current study examines for the first time the potential

association of multiple common oxidative-stress related genetic

variants with migraine susceptibility and clinical phenotypes

in a SEC population. The possible association of certain OS-

related genetic variants with migraine features indicated by the

current study further supports the involvement of OS-related

mechanisms in migraine pathophysiology. Nonetheless, larger-

scale multicenter studies are needed to extend and further

validate the current findings in SEC and other populations,

considering gene-gene and gene environment interactions. The

current findings could potentially assist in migraineurs risk

stratification strategies and contribute to precision diagnosis and

therapy of migraine.
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