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Background: Radial, ulnar, or median nerve injuries are common peripheral

nerve injuries. They usually present specific abnormal signs on the hands

as evidence for hand surgeons to diagnose. However, without specialized

knowledge, it is di�cult for primary healthcare providers to recognize the

clinical meaning and the potential nerve injuries through the abnormalities,

often leading to misdiagnosis. Developing technologies for automatically

detecting abnormal hand gestures would assist general medical service

practitioners with an early diagnosis and treatment.

Methods: Based on expert experience, we selected three hand gestures with

predetermined features and rules as three independent binary classification

tasks for abnormal gesture detection. Images from patients with unilateral

radial, ulnar, or median nerve injuries and healthy volunteers were obtained

using a smartphone. The landmark coordinates were extracted using

Google MediaPipe Hands to calculate the features. The receiver operating

characteristic curve was employed for feature selection. We compared the

performance of rule-based models with logistic regression, support vector

machine and of random forest machine learning models by evaluating the

accuracy, sensitivity, and specificity.

Results: The study included 1,344 images, twenty-two patients, and thirty-

four volunteers. In rule-based models, eight features were finally selected. The

accuracy, sensitivity, and specificity were (1) 98.2, 91.7, and 99.0% for radial

nerve injury detection; (2) 97.3, 83.3, and 99.0% for ulnar nerve injury detection;

and (3) 96.4, 87.5, and 97.1% for median nerve injury detection, respectively. All

machine learningmodels had accuracy above 95% and sensitivity ranging from

37.5 to 100%.

Conclusion: Our study provides a helpful tool for detecting abnormal gestures

in radial, ulnar, or median nerve injuries with satisfying accuracy, sensitivity, and

specificity. It confirms that hand pose estimation could automatically analyze
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and detect the abnormalities from images of these patients. It has the potential

to be a simple and convenient screening method for primary healthcare and

telemedicine application.

KEYWORDS

peripheral nerve injury, hand pose estimation, hand gesture, abnormal gesture

detection, expert system, machine learning

Introduction

Peripheral nerve injury (PNI) is devastating and frequently

results in life-long disability, severely decreasing patients’ quality

of life. It affects more than one million people worldwide,

with an incidence of ∼13–23 per 100,000 persons per year

(1, 2). Among PNIs of the upper limb, radial, ulnar, and

median nerve injuries are common, causing sensory and motor

dysfunction in the control area of the damaged nerves. In

medical practice, early detection of nerve injury may prevent

patients from delayed diagnoses, delayed repairs, and potentially

worse outcomes. However, the anatomical complexity of the

hand may bring difficulties in examination and diagnosis (3).

According to a large German database of hand and forearm

injuries, nerve injuries were among the most commonly missed

injuries, accounting for 24.8% of missed hand injuries (4). The

misdiagnosis rate would be considerably higher in areas with

insufficient specialized services. In China, for example, there

have been reports that most treated patients with missed nerve

injuries were from primary healthcare hospitals (5, 6).

The clinical diagnosis of nerve injury depends on

clinical history, clinical symptoms, and physical and

neurological examinations (7, 8). Among the examinations,

electromyography (EMG), nerve conduction studies (NCS),

MRI, and high-resolution ultrasonography have been

successfully used as diagnostic methods for PNI (9–11).

However, these examinations are expensive, invasive, and rely

on specialized equipment and professional operators, restricting

their application in primary assessment. Given these problems,

there is a need for an affordable, non-invasive, and accessible

method to detect possible nerve injuries for initial evaluation of

the hand, significantly helping clinicians who are not specialized

in hand surgery and benefiting patients in remote or rural

areas. Some abnormal signs or deformities of the hand may

indicate the nerve injuries, such as the limited extension of

the wrist and digits for radial nerve injury, the claw hand

deformity and the Wartenberg sign for ulnar nerve injury, and

the ape hand deformity for median nerve injury. These clinical

experiences have been well-acknowledged in hand surgery,

where nerve injuries can lead to various morphological changes

based on the different innervation of the hand (12, 13). So

far, deformity of digit(s)’ joint(s) has been used to describe

specific nerve injury as supporting evidence (14–16). This

unique connection between abnormalities and nerve injury was

determined by the independent anatomical nerve innervation

to the muscle. Additionally, it is possible to observe these

abnormalities through several gestures. Therefore, detecting

abnormal gestures can be a simple method for predicting hand

nerve injuries.

With the advancement in computer vision, hand pose

estimation is possible using automatic analysis techniques

for detecting the hand and predicting the articulated joint

locations from images or videos (17, 18). Hand pose estimation

is crucial and popular in achieving several tasks, such as

gesture recognition (19), action recognition (20), and sign

language recognition (21), in general populations. There has

been an increasing interest in hand pose estimation techniques

for medical research and application, such as investigating

automatic assessment of hand rehabilitation (22) and using

3D cameras for the classification of Parkinson’s disease (23).

These techniques seem to help extract the features of the

hand. Among them, MediaPipe Hands is a deep-learning-

based hand-tracking solution provided by Google. It does not

require specialized hardware and is adequately light to run in

real-time on mobile devices; it can also predict 21 landmarks

of a hand from a single RGB camera with high prediction

quality (24). MediaPipe Hands are popular in human-computer

interaction systems and applications of virtual and augmented

reality (21, 24, 25). However, it remains unknown whether

MediaPipeHands could detect the abnormalities in patients with

nerve injuries, distinguish normal and abnormal gestures in the

medical application, and further predict possible injuries based

on rule-based methods.

The purpose of the present study was to propose an

automatic method for abnormal hand gesture detection caused

by radial, ulnar, or median nerve injury. We hypothesize that

hand pose estimation could provide specific features to classify

the presence of nerve injury and predict the exact type of injury.

Materials and methods

Participants recruitment

The experimental procedure of this study is illustrated

in Figure 1. From June 2021 to October 2022, we recruited
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preoperative patients with unilateral radial, ulnar, or median

nerve injuries who were scheduled to undergo surgery in our

department. The diagnosis was made after a comprehensive

evaluation of the related history, the observation of typical

abnormal gestures, and EMG or ultrasound examination, which

was further confirmed in the surgical exploration. Patients with

anymusculoskeletal disease (such as tendon rupture or arthritis)

and neurological diseases (such as stroke and traumatic brain

injury) that would influence the movement of the hands (not

including the wrist joint) and those who refused to participate

were excluded. A group of healthy volunteers were also invited

during this period. The inclusion criteria for the volunteers were

the absence of symptoms such as clumsiness or numbness of

hands and no abnormal findings in the physical examination

that indicated nerve injuries. All participants understood the

study’s protocol and cooperated in taking the images. Verbal

consent was obtained for the usage of their images for research

purposes. This study was approved by the institutional review

board of the First Affiliated Hospital of Sun Yat-sen University

(ID: [2021]387).

Design of gestures

Based on the expert experiencementioned above (12, 13), we

chose three gestures (Figure 2) to detect abnormalities caused

by radial, ulnar, or median nerve injuries as three binary

classification tasks. The normal and the expected abnormal

gestures were demonstrated as follows:

• Gesture 1 was used to detect radial nerve injuries.

Participants were requested to make a maximum abduction

of digits to the medial and lateral sides with full extension.

Patients with radial nerve injury would have impaired

functions of the musculus abductor pollicis longus, the

musculus extensor pollicis longus, the musculus extensor

pollicis brevis, and the musculus extensor digitorum. The

patients were expected to have difficulties extending all

metacarpophalangeal (MCP) joints.

• Gesture 2 was used to detect ulnar nerve injuries.

Participants were requested to make adduction of digits

in full extension toward the middle finger. Patients with

ulnar nerve injury would have impaired the function

of the musculus lumbricales 3 and 4 and the musculus

interosseous palmaris. This would lead to flexed proximal

interphalangeal (PIP) joints and distal interphalangeal

(DIP) joints of the ring and little fingers (the claw

hand deformity) and limited adduction of the ring and

particularly the little fingers (the Wartenberg sign).

• Gesture 3 was used to detect median nerve injuries.

Participants were requested to perform a tip-to-tip pinch

between the thumb and the index finger, i.e., to form an

“OK” gesture. Patients with median nerve injury would

have impaired functions of the musculus opponens pollicis,

the musculus flexor pollicis brevis, and the musculus

lumbricales 1 and 2. When performing this gesture, the

decreased range of palmar abduction of the thumb would

occur, and it could have trouble flexing the thumb and

index finger, even a failure to make contact with the tips

of the two digits.

Experimental setup

Before taking images, all participants washed and cleaned

their hands. Jewelry, watches, and clothing on the wrist or hand

were removed. Then, the hand was placed on the test table with

the forearm kept in a supination position. Participants would

first perform Gesture 1 for radial nerve classification. Injured

hands with radial nerve injury were put in the target group;

injured hands with ulnar or median nerve injury and hands

without nerve injury were put in the non-target group. Then,

stratified random sampling was used between the target and

non-target groups to form the training and testing sets. The ratio

of training to testing sets was∼3:1. Next, Gesture 2 and Gesture

3 were performed in the same way to separate respective training

and testing sets.

Each gesture was requested to be performed four times with

a rest interval of ∼10 s to obtain more available data. For every

gesture of a hand, four images were obtained. The images were

taken 40–50 cm above the hand between a slightly radial view

and a slightly ulnar view using a smartphone (iPhone XS Max,

Apple Inc., image resolution: 1,980∗1,080 p) to make themmore

different. If the forearm had limited supination, images would be

taken from the exact distance parallel to the palm.

Data processing

All images were analyzed using MediaPipe Hands solution

(Version 0.8.9) with Python (Version 3.8). MediaPipe Hands

would first detect and locate the hand through a palm detector

algorithm. If the hand was successfully located in the image,

then the coordinates of the landmarks could be obtained by its

landmark model (24) (Figure 3). If the algorithm did not detect

the hand, the image could not be recognized and was excluded

from further analysis. After receiving the coordinates, features

could be automatically calculated using the following equations:

θ = cos−1
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FIGURE 1

Diagram of the experimental procedure.

Equation (1) calculates the targeted angle θ , where
−→
S1 and

−→
S2 represent the vectors of the related phalanges (26);

Equation (2) calculates the targeted distance d, where

x1, y1, z1 and x2, y2, z2 represent the coordinates of the

related landmarks;

Equation (3) standardizes any distance values d
′
by dividing

its original distance doriginal by the distance between the

landmarks of the tip and IP joints of the thumb dstandard.

Feature selection and model
establishment

Since the radial, ulnar, and median nerves have independent

innervations to the muscle (mentioned in the “Design of

gestures” section), medical knowledge and expert experience can

provide a series of primary and anatomical-based features. For

example, the ulnar nerve is related to the movement of the ring

and little fingers, so the features of these two fingers are much

more important than the other digits, and irrelevant features

could be ignored. In this consideration, we predetermined 23

features with our experience, including joints’ angles, key point’s

distance, and their combinations (Table 1), for feature selection

and model establishment.

In the study, two different methods for model establishment

were compared. One was the rule-based method, which means

that the model was built under a manually designed feature

selection and decision-making processes based on knowledge

and experience. The other was the machine learning (ML)

method, which means that the whole process was learned from
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FIGURE 2

Samples of normal and abnormal gestures.

the data. The logistic regression (LR) model, the support vector

machine (SVM) model, and the random forest (RF) model were

chosen for the ML method. For each gesture, one rule-based

model and three ML models were established.

In the rule-based method, feature selection for the

predetermined features was analyzed using the receiver

operating characteristic (ROC) curve, a standard method to

assess the performance of binary classification models (27, 28).

The classification efficacy of features could be assessed by

calculating the area under the curve (AUC), which was thought

to be poor (<0.6), fair (0.6–0.7), good (0.7–0.8), very good

(0.8–0.9), or excellent (>0.90) (29). We calculated the AUC of

predetermined features using the training sets, filtered features

with an AUC below 0.8, and selected at least two features in

each gesture classification model as the classifiers. Next, we

determined the threshold value of each classifier according to

ROC curves. Finally, all classifiers were ensembled according to

the rules of the model: if every classifier was below the threshold,

the gesture was predicted as normal and regarded as uninjured;

otherwise, the gesture was predicted as abnormal and regarded

as injured.

In the ML models, all predetermined features were taken,

standardized, and trained in the training sets using scikit-

learn python application program interface (API) (https://

scikit-learn.org.cn/). Grid search with 5-fold cross-validation

was performed to find the best hyperparameters, enhancing

the efficacy of the ML models. The feature selection of ML

models was “embedded” and completed in the training process.

We used “coef_” API in the LR and SVM models and

“feature_importances_” API in the RF model to evaluate the

importance of features and compare the results of feature

selection between rule-based and machine learning methods.
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FIGURE 3

The 21 landmarks of the skeleton model of MediaPipe Hands.

Performance analysis

The performance of the rule-based model and the LR,

SVM, and RF models was evaluated using the testing sets for

accuracy, sensitivity, and specificity. The confusion matrixes

were used to visualize the agreement between the prediction and

the actual label. The indices used in this study were calculated

as follows:

accuracy =
TP + TN

TP + FP + TN + FN
× 100%

sensitivity =
TP

TP + FN
× 100%

specificity =
TN

FP + TN
× 100%

where

TP represents the number of abnormal gestures correctly

predicted as abnormal,

FP represents the number of normal gestures wrongly

predicted as abnormal,

FN represents the number of abnormal gestures wrongly

predicted as normal,

TN represents the number of normal gestures correctly

predicted as normal.

Statistical analysis

For predetermined features, the mean values in all target and

non-target groups were presented as mean± standard deviation

(SD) with a 95% confidence interval (CI). An independent t-

test was used to analyze the difference between the target and

non-target groups. Subgroup analysis was also performed for

features in each rule-based model with an independent t-test.

A P-value of <0.05 was considered statistically significant. The

statistical analysis was performed using IBM SPSS version 25

(IBM, Armonk, NY, USA).

Results

The study included twenty-two patients and thirty-four

healthy volunteers who met the inclusion and exclusion criteria.

The demographic of the participants is summarized in Table 2,

where the mean ages of patients and volunteers were 33.04

± 12.00 and 34.67 ± 13.84, respectively. Detailed information

on patients is shown in Table 3. Among the patients, ten were

diagnosed with radial nerve injury, five with ulnar nerve injury,

one with median nerve injury, and six with combined ulnar and

median nerve injuries. We obtained 1,344 images in total, with

448 images in each gesture classification task. MediaPipe Hands

failed to recognize four images, and the overall recognition rate

was 99.7%. All non-recognized images belonged to the training
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TABLE 1 Description and statistical analysis of the predetermined features.

No. Feature name Description Group Mean SD 95% CI P AUC

Gesture 1

01 ag_thumb_MCP Angle of thumb MCP joint Non-target 5.49 3.59 (5.083, 5.889) 0.00 0.95

Target 21.36 7.27 (18.540, 24.181)

02 ag_index_MCP Angle of index MCP joint Non-target 8.46 3.30 (8.090, 8.831) 0.00 0.85

Target 19.02 9.95 (15.163, 22.876)

03 ag_middle_MCP Angle of middle MCP joint Non-target 4.87 2.39 (4.606, 5.142) 0.00 0.89

Target 17.44 11.74 (12.884, 21.987)

04 ag_ring_MCP Angle of ring MCP joint Non-target 6.99 3.14 (6.639, 7.343) 0.00 0.85

Target 19.80 11.87 (15.203, 24.407)

05 ag_little_MCP Angle of little MCP joint Non-target 13.75 6.37 (13.038, 14.466) 0.00 0.68

Target 24.73 16.13 (18.479, 30.989)

Gesture 2

06 ag_ring_PIP Angle of ring PIP joint Non-target 6.75 7.08 (5.950, 7.548) 0.00 0.68

Target 13.81 12.95 (9.145, 18.482)

07 ag_ring_DIP Angle of ring DIP joint Non-target 4.74 6.28 (4.030, 5.447) 0.00 0.68

Target 13.05 15.13 (7.596, 18.507)

08 ag_ring Sum of feature 06 and 07 Non-target 11.49 12.51 (10.076, 12.899) 0.00 0.67

Target 26.87 27.13 (17.084, 36.646)

09 ag_little_PIP Angle of little PIP joint Non-target 7.02 4.48 (6.511, 7.523) 0.00 0.66

Target 12.46 9.35 (9.086, 15.828)

10 ag_little_DIP Angle of little DIP joint Non-target 5.85 5.72 (5.208, 6.498) 0.00 0.71

Target 13.70 12.43 (9.218, 18.184)

11 ag_little Sum of feature 09 and 10 Non-target 12.87 9.57 (11.790, 13.950) 0.00 0.66

Target 26.16 21.39 (18.445, 33.871)

12 web3 Angle of the third webspace Non-Target 1.58 1.00 (1.462, 1.688) 0.00 0.99

Target 6.50 1.83 (5.837, 7.158)

13 web4 Angle of the fourth webspace Non-target 1.75 1.51 (1.583, 1.924) 0.00 0.89

Target 8.33 5.27 (6.433, 10.234)

Gesture 3

14 ag_thumb_CMC* Angle of thumb CMC joint Non-target −28.16 6.62 (−28.902,−27.427) 0.19 0.59

Target −30.16 5.61 (−32.785,−27.534)

15 ag_thumb_MCP* Angle of thumb MCP joint Non-target −24.10 9.88 (−25.198,−22.997) 0.01 0.65

Target −30.61 12.01 (−36.229,−24.991)

16 ag_thumb_IP* Angle of thumb IP joint Non-target −42.20 19.62 (−44.39,−40.019) 0.72 0.49

Target −39.89 28.04 (−53.009,−26.765)

17 ag_thumb* Sum of feature 14, 15, and 16 Non-target −94.47 19.51 (−96.64,−92.293) 0.38 0.61

Target −100.66 30.51 (−114.934,−86.378)

18 ag_index_MCP* Angle of index MCP joint Non-target −32.72 5.41 (−33.327,−32.122) 0.03 0.39

Target −29.91 6.87 (−33.129,−26.694)

19 ag_index_PIP* Angle of index PIP joint Non-target −70.28 18.33 (−72.319,−68.237) 0.02 0.33

Target −55.08 25.78 (−67.146,−43.018)

20 ag_index_DIP* Angle of thumb DIP joint Non-target −36.99 13.85 (−38.531,−35.445) 0.62 0.54

Target −40.21 28.77 (−53.675,−26.748)

21 ag_index* Sum of feature 18, 19, and 20 Non-target −139.99 19.53 (−142.166,−137.815) 0.20 0.60

Target −125.21 49.30 (−148.279,−102.131)

22 ag_palmab* Angle of thumb palmar abdution Non-target −19.95 8.34 (−20.881,−19.023) 0.00 0.87

Target −9.30 4.43 (−11.379,−7.231)

23 dis_tip Distance of thumb tip to index tip Non-target 0.72 0.28 (0.693, 0.756) 0.02 0.66

Target 1.19 0.81 (0.813, 1.575)

SD, standard deviation; CI, confidence interval; AUC, area under the curve. The unit for all angle features was degree. Feature 23 was a standardized value with no unit. Features after

selection in the rule-based models were presented in bold.

*Represents a negative value that was taken for this feature to adapt the classification rules.
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set of Gesture 3. In total, three rule-based models and nine ML

models were established.

The statistical analysis of the predetermined features is

shown in Table 1. In the independent t-test, all 23 predetermined

features significantly differed between target and non-target

groups, except 5 in Gesture 3. In the rule-based methods, eight

features were selected after feature selection. In the subgroup

analysis (shown in Figure 4), most selected features showed

no significant difference in the non-target groups, except the

angle of the third webspace and the tip distance between the

thumb and the index finger. When compared with the ML

method, selected features in the rule-based method also showed

higher weight or importance in the ML models. For example,

in Gesture 2, the angles of the third and fourth webspaces were

selected in the rule-based model and were the only features in

the logistic regression model. The hyperparameters, coefficients,

TABLE 2 Demographics of the participants.

Patients (N = 22) Volunteers (N = 34)

Age (year) 33.04± 12.00 34.67± 13.84

Gender (male) 21 (95.5%) 17 (50%)

Dominate hand (right) 22 (100%) 34 (100%)

and feature importance of all ML models are summarized in

Supplemental material 1.

The performance of all models is shown in Table 4,

Figure 5. The accuracy, sensitivity, and specificity of rule-

based models were (1) 98.2, 91.7, and 99.0% for radial

nerve injury detection; (2) 97.3, 83.3% and 99.0% for ulnar

nerve injury detection; and (3) 96.4, 87.5, and 97.1% for

median nerve injury detection, respectively. In the ML models,

radial nerve injury classification achieved the best performance

with 100% accuracy. In all classification tasks, the rule-based

method maintained sensitivity above 80%. In comparison, lower

sensitivity appears in median nerve injury classification, with

62.5% in the SVM and RF models and only 37.5% in the

RL model.

Discussion

An abnormal gesture can be recognized by well-trained

hand surgeons and indicates the presence of radial, ulnar, or

median nerve injury before the diagnostic examination. In

line with this diagnosis, we designed an automatic detection

procedure for abnormal gestures enabled by an advanced hand

pose estimation algorithm and rule-based models. According

to the result, several features help detect the abnormalities

TABLE 3 Characteristics of the patients.

No. Gender Age Injured side Radial nerve injury Ulnar nerve injury Median nerve injury

P1 Men 67 Right
√ √

P2 Men 27 Left
√ √

P3 Men 36 Left
√

P4 Women 27 Left
√

P5 Men 36 Right
√

P6 Men 37 Right
√

P7 Men 31 Left
√

P8 Men 29 Right
√

P9 Men 58 Right
√

P10 Men 26 Left
√

P11 Men 19 Right
√ √

P12 Men 21 Right
√

P13 Men 26 Right
√

P14 Men 21 Left
√

P15 Men 32 Left
√

P16 Men 35 Left
√

P17 Men 36 Right
√

P18 Men 27 Left
√ √

P19 Men 17 Right
√ √

P20 Men 32 Left
√

P21 Men 46 Left
√ √

P22 Men 41 Right
√
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FIGURE 4

The subgroup analysis of features after selection. *Represents a significant di�erence among the hands with non-injury, untargeted injury, or

targeted injury of all selected features (P < 0.05, independent t-test).

from images to predict the type of nerve injuries. Nevertheless,

our study is not intended to replace the role of clinicians or

create a diagnostic method. We aimed to provide a simple,

effective, and convenient way to alert the possible nerve injuries

for unspecialized healthcare providers based on anatomical

knowledge and clinical experience.

In this study, MediaPipe Hands, one of the novel pose

estimation techniques, has been used as an automatic feature

extraction method for classification tasks. We observed that

the calculated angles from the landmark coordinates were

not precisely in agreement with the manual assessment. For

example, in the non-target groups of Gesture 1 and Gesture

2, all MCP joints and the PIP and DIP joints of the ring

and the little fingers were higher than 5◦. The mean value

of the little MCP joint even reached 13.75◦. When the digits

are completely extended, these values are expected to be

near 0◦ for people without nerve injury. There are several

possible reasons to explain the differences. First, the pose

estimation predicts the spatial coordinates of the landmark,

yet manual goniometry usually measures the landmark on the

surface of the hand. Second, the landmarks are not precisely

the same, for there are no landmarks at the base of the

metacarpals but only a single wrist landmark in MediaPipe

skeleton models (24, 30), which may lead to noticeable

differences in measuring the angles of MCP joints. In similar

studies, a portable infrared camera called Leap Motion has

been reported in functional assessments of hand rehabilitation

(22). Researchers also found that the measurement result of
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TABLE 4 Performance of all classification models.

Rules based Logistic regression SVM Random forest

Gesture 1

Accuracy 98.21% 100.00% 100.00% 100.00%

Sensitivity 91.67% 100.00% 100.00% 100.00%

Specificity 99.00% 100.00% 100.00% 100.00%

Gesture 2

Accuracy 97.32% 96.43% 97.32% 100.00%

Sensitivity 83.33% 66.67% 75.00% 100.00%

Specificity 99.00% 100.00% 100.00% 100.00%

Gesture 3

Accuracy 96.43% 95.54% 97.32% 97.32%

Sensitivity 87.50% 37.50% 62.50% 62.50%

Specificity 97.12% 100.00% 100.00% 100.00%

FIGURE 5

The performance of all classification models, shown in confusion matrixes.

Leap Motion was not favorable with manual measurement

(31–34).

Under such circumstances, the threshold value of features

could not be directly determined by clinical experience.

Therefore, the training sets were used for feature selection

and finding the cutoff. In the rule-based method, we used a

filter strategy with a ROC curve because absolute distinctions

exist between the injured and uninjured hands both in
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images and from the clinical practice experience. According

to the independent t-test, all selected features could effectively

categorize normal and abnormal gestures. Besides, the subgroup

analysis further proved that, in each gesture, features between

targeted and untargeted injuries were completely different,

while features between untargeted injuries and non-injury

were similar. In other words, our method is consistent with

anatomical knowledge. Our study shows that MediaPipe Hands

is competent at providing features for qualitative analysis.

However, four unrecognized images in Gesture 3, one from the

uninjured hand of a patient and three from the hand with radial

nerve injury, also suggest that there is still room to propose

estimation improvement. More annotated data and datasets

are needed (35), especially for the medical population and the

medical setting.

The rule-based models have been compared with

three machine-learning models commonly used for binary

classification in medical research (36–38). In the feature

selection process, similar results are obtained for rule-based and

MLmethods, for the selected features in rule-based models have

higher coefficients in the LR models and higher importance in

the RF models. In the performance analysis, high specificity in

all models shows the prediction for uninjured people is easy

and correct. The sensitivity of ML models fluctuates from 37.5

to 100%. In comparison, the sensitivity of our models is stable

from 83.3 to 91.7%, mainly because our rules seek the most

essential and valuable features but might miss some synergistic

effects among them. The overall performance of our methods

is satisfactory. We believe that medical knowledge and clinical

experience were the keys to maximizing the classification

performance, even using minimal features and simple rules.

They work as a shortcut to find the right features and make

the detection performance in our tasks comparable to machine

learning models.

The rule-based method is also interpretable (39, 40), which

means the process is easier to modify and understand in

human terms. It can provide expertise more conveniently

and spread expert knowledge to primary healthcare providers.

Tang et al. (11) reported a quantitative assessment method

for upper-limb traumatic PNI. In their study, the presence

of radial, ulnar, or median nerve injury was identified under

an expert system using the data of surface EMG with 81.82%

sensitivity and 98.90% specificity. Compared with Tang et al.,

our study possesses a little higher sensitivity and more

straightforward implementation. Unlike surface EMG, taking

images is more convenient and comfortable for patients. We

are confident that our method has reliable results and is

much easier to be applied by primary healthcare providers.

As smartphones have become available and acceptable tools

for telemedicine (41) and during the COVID-19 pandemic,

performing virtual hand examinations through images and

videos raises excellent interests in the medical field (42,

43). The proposed method has the potential to be a

convenient screening tool for online health services and

remote areas.

The relatively small sample size should be the main

limitation of the present study. Since this was a prospective

study and there was no available dataset of hand images with

PNIs, continually updating our dataset is necessary to provide

better automatic healthcare solutions. The smallest sample size

in our study is patients with median nerve injury, which might

weaken the generalizability of the proposed method. Although

the differences between normal and abnormal gestures are

noticeable, minor feature changes are highly possible when the

sample size becomes more extensive. At present, our study only

focuses on detecting nerve injuries and cannot detect abnormal

gestures caused by other injuries, such as tendon rupture. In

addition, the detection accuracy relies on the compliance of

the users. Further study should invite more users in remote or

rural areas to verify whether the rightful gestures can also be

performed without the supervision of clinicians. Finally, our

method functions as decision support to prevent missing nerve

injuries in the primary assessment. After the initial discovery

of the nerve injury, comprehensive examinations, differential

diagnoses, and medical treatments are necessary.
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