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Stroke, a cerebrovascular accident, is prevalent and the second highest cause

of death globally across patient populations; it is as a significant cause of

morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is

emerging as a promising treatment for alleviating neurological deficits, as

indicated by a great number of animal and clinical studies. The potential of

regulating the immune system is currently being explored as a therapeutic

target after ischemic stroke. This study will discuss recent evidence that MSCs

can harness the immune system by interacting with immune cells to boost

neurologic recovery e�ectively. Moreover, a notion will be given to MSCs

participating in multiple pathological processes, such as increasing cell survival

angiogenesis and suppressing cell apoptosis and autophagy in several phases

of ischemic stroke, consequently promoting neurological function recovery.

We will conclude the review by highlighting the clinical opportunities for MSCs

by reviewing the safety, feasibility, and e�cacy of MSCs therapy.

KEYWORDS

ischemic stroke, mesenchymal stem cells, immunomodulation, preclinical study,
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Introduction

Stroke is responsible for almost six million deaths, at least 10% of all mortalities

yearly, and two-thirds of stroke survivors remain disabled (1). Worldwide, over 80

million people have survived a stroke; 70% of incident strokes are ischemic (1). Although

recent evolutions of thrombectomy technology, as well as improvements in imaging

devices, have achieved ground-breaking changes in ischemic stroke therapy (2), given

its narrow therapeutic time window and the concern of hemorrhagic complications (3),

thrombolysis is still not performed routinely (4). In this context, it is urgent to yield

neurorestorative treatments for abrogating stroke-induced neurological deficits for both

basic scientists and clinical researchers. Cell therapy is emerging as a promising novel

modality for facilitating neurologic recovery after a stroke (5). Harnessing the immune
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system to function and effectively boost neurologic recovery

has transitioned from a theoretical possibility to a viable

therapeutic option for ischemic stroke. Mesenchymal stem

cells (MSCs) transplantation is an attractive therapy method

because they have the potential for proliferation, differentiation,

and immunomodulatory properties (6, 7). While the MSCs

can be derived from any type of tissue beyond the bone

marrow, adipose, and placenta, these MSCs share the same

core attributes of ability to cell migration patterns and

behave as immunomodulatory cells (8–10). In addition to

immunomodulation, growing evidence demonstrates that MSCs

are involved in multiple pathological processes by targeting

series downstream. Such downstream activities include the

inhibition of apoptosis and autophagy and the promotion of

angiogenesis, neurogenesis, and synaptic remodeling in several

phases of ischemic stroke (11, 12). MSCs may also be an ideal

candidate for cell transplantation therapy for ischemic stroke.

Despite growing evidence indicating that MSCs may improve

neurological function under pathological conditions, including

stroke (13, 14), data on the interaction between MSCs and

immunomodulation is limited. In this review, we summarize

the therapeutic effects of MSCs both in preclinical studies and

in clinical stroke trials. We also consider the mutual crosstalk

between MSCs and immune cells under stroke conditions.

Mesenchymal stem cells

Rodent bone marrow cells were first ectopically transplanted

into the kidney capsule by Friedenstein et al. in the 1960s and

1970s, showing an osteogenic effect (15). Given the potential to

differentiate into various cell lineages, Caplan et al. suggested

the “mesenchymal stem cells” term in 1991 (16, 17). MSCs

are multipotent fibroblast-like cells that, interestingly, exist

in various adult tissues, including adipose tissue, periosteum,

liver, spleen, muscle connective tissue, placenta, umbilical cord

blood, dental pulp, and aborted fetal tissues (18–20). Further,

The Mesenchymal and Tissue Stem Cell Committee of the

International Society for Cellular Therapy (ISCT) recommended

specific minimum MSC criteria to distinguish them from other

cell types by expression of many cell surface markers, including

CD73, CD90, and CD105, and the absence of expression of

CD45, CD34, CD14, CD19, CD11b, or Human Leukocyte

Antigen–DR isotype (21–23). Recently, a significant number

of novel cell surface markers associated with the stemness

within MSCs, namely SSEA1/4, CD44, CD146, and CD271,

have been revealed as well (23–26). A further two criteria are

that isolated cells show adherence to plastic in culture and

the capacity to differentiate into adipocytes, osteoblasts, and

chondroblasts in vitro (21–23). To date, MSCs have become

the most widely studied stem cell population and are studied

in various preclinical models and clinical settings alike. And

these studies have focused on the vital roles in coordinating

tissue responses to ischemic stroke in acute and post-acute

stroke settings, in which MSCs modulate cell survival, cell

apoptosis, autophagy angiogenesis, and immunosuppression

(23), consequently supporting neurological recovery.

Therapeutic application of MSCs in
preclinical ischemic stroke study

MSCs promote post-stroke cell survival

Upon an ischemic stroke, the cerebral artery occlusion

influences the survival of various brain cells, such as brain

neurons, glial cells, and vascular cells. Among these cells,

the neurons are the most vulnerable, and neuronal viability

plays a crucial role in neurological recovery after ischemic

stroke (27, 28). Studies in experimental models mimicking

ischemic stroke imply thatMSCs can abrogate ischemia-induced

neuronal survival and neurological function recovery. As such,

under such conditions, MSCs derived from bone marrow,

adipose tissue, and umbilical cord can significantly reduce

neuronal death (29–31). In addition, neurological recovery is

also associated with the successful restitution of vascular and

glial functions. During the ischemic lesion remodeling, neurons,

glial cells, and vascular cells can strongly interact with each

other, contributing to neurological recovery (27). Interestingly,

it is demonstrated that MSCs are involved in promoting the

survival of microglia, astrocyte, and endotheliocyte survival

via regulating many pathways (32–35). Notably, white matter

demyelination predates axonal injury in the early stage

of ischemic stroke, indicating a time window for stroke

intervention focusing on preventing or postponing axonal injury

throughmyelin regeneration (36). Meanwhile, Bagdasarian et al.

(37) applied therapeutic MSC to a rodent stroke model and

demonstrated their efficacy in white matter by comparison of

Diffusion tensor imaging and Neurite Orientation Dispersion

and Density Imaging metrics. MSCs exert many unique

biological effects, including self-recovery via promoting post-

stroke cell survival, providing a promising cellular therapeutic

approach for treating white matter injury (38).

MSCs suppress post-stroke cell apoptosis

Among the many cell death pathways (39), apoptosis

accounts for a large proportion of cell death under such a

condition (40), a rational and reactive performance made to

sacrifice specific cells for the benefit of the tissue. Researchers

have indicated that MSCs have vital roles in regulating cell

apoptosis. For example, Kong et al. (41) demonstrated MSCs

potentially protect the cortical neurons from OGD injury in

vitro by rescuing neurons from apoptosis. Xiao et al. (42)

indicated that bone marrow-derived MSC-exosomes repressed
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oligodendrocyte apoptosis via releasing exosomal miR-134, in

turn negatively regulating the caspase-8-dependent apoptosis

pathway. In addition to apoptosis, MSCs can promote cell

survival by alleviating parthanatos and necroptosis. By co-

culturing MSCs with hypoxic neurons, Kong et al. indicated

that MSCs prevented neurons from parthanatos by suppressing

the expression of nuclear translocation of apoptosis-inducing

factors (41). The reduction of neuronal necrosis kinase RIP1 and

RIP3 levels caused by MSCs, meanwhile, was tightly related to

the suppression of neuronal necroptosis (41).

MSCs suppress post-stroke cell
autophagy

Autophagy, another type of cell death, is an evolutionarily

conserved cellular mechanism that balances cellular nerve

homeostasis. It is a process that results from the injury in

cells’ internal conditions, including starvation, hypoxia, and

infection (43). MSCs can inhibit autophagy and, in turn,

promote cell survival. Kuang et al. (31) illustrated that the

application of adipose-derived MSC-exosomes suppressed the

autophagic response under both in vitro hypoxia and in vivo

cerebral ischemia regarding cell survival through transferring of

miR-25, as a consequence, supporting post-stroke neurological

function recovery. Moreover, the knockdown of SNHG12 in

MSCs boosted the effects of MSCs in suppressing hypoxia-

induced autophagy in brain microvascular endothelial cells

and MCAO rats by interacting with the PI3K/AKT/mTOR

signaling pathway (44). By contrast, MSCs can reverse ischemic

injury by enhancing autophagy as well (45, 46). Likewise,

Zeng et al. indicated that PC12 cells were exposed to oxygen-

glucose deprivation (OGD) and cocultured with MSCs secreted

extracellular vesicles (EVs). Under such conditions, MSC-

secreted EVs significantly attenuated pyroptosis mediated

by NLRP3 inflammasome by promoting AMPK-dependent

autophagy flux (47).

MSCs promote post-stroke angiogenesis

During post-stroke conditions, capillaries are dysfunctional,

and blood-brain barrier permeability is increased, consequently

aggravating the inflammatory reaction and neuronal necrosis.

In addition to rescuing and restoring neuronal cells, increasing

evidence has shown that increasing the survival of endothelial

cells, ameliorating brain angiogenesis, and mediating the

recanalization of brain collaterals are great therapeutic targets.

MSCs transplantation has been revealed to migrate to the

peri-infarct region and differentiate into neuronal, glial, and

endothelial cells to enhance neuroplasticity (30). Moreover,

MSCs act in an indirect paracrine way as well. MSCs have

also been shown to induce regenerative processes by increasing

the level of insulin-like growth factor 1 (IGF-1) and inducing

vascular endothelial growth factor (VEGF), angiopoietin-

1 (Ang-1), essential fibroblast growth factor (bFGF), and

neurotrophic factors in the host brain (48–51). These bioactive

factors of VEGF and Ang-1 are the most essential in promoting

neurological recovery by boosting neurogenesis. Besides that,

the hypoxia and 0.04 MHz ultrasound-modified MSCs and

MSCs-derived exosomes have been illustrated to have the

capacity to achieve angiogenic effects (14, 52–54). Significantly,

implantation of MSCs promoted angiogenesis and increased

neurogenesis by releasing these angiogenic and neurotrophic

factors. By conducting a three-dimensional analysis of the

neovascularization in the peri-infarct region, Toyama et al.

(55) and Chen et al. (56) demonstrated that the capillary-

like tube formation was significantly induced in stroke mice

treated with MSCs, suggesting a direct effect of MSCs on

facilitating angiogenesis.

MSCs support the post-stroke
immunomodulatory e�ects

MSCs-microglia interactions

Microglia, which comprise a significant immune cell

population in the central nervous system, appear as a

ramified structure with a small soma in the resting form

under physiological conditions (57, 58). When activated by

ischemic stroke, microglia increase in number and transform

to amoeboid forms characterized by the larger microglial cell

body and shorter bumps. The activation of microglia activation

is the first step in response to inflammation; further, the

other immune cells, such as T cells, neutrophils, and natural

killer cells, are activated (59, 60). While MSCs in microglial

activation have been widely studied, there is not enough

research on transplantation in ischemic stroke. Plenty of studies

investigating various donor cell-derived MSCs identified a novel

insight into crosstalk in ischemic stroke, and the role of MSCs in

microglial activation has begun to be recognized (14, 61–63). For

example, Yang et al. (64) indicated that bone marrow-MSCs can

shift the microglia phenotype from M1 to M2, contributing to

MSCs-induced brain repair. As a paracrine interaction between

MSCs and microglia, the synergistic effect of MANF and PDGF-

AA pathway governed M2 polarization. Furthermore, despite

peripheral LPS treatment before the stroke, increased CD16/32-

M1 microglia boosted the number of microglia surrounding

the peri-infarct region and diminished CD206-M2 microglia

on the post-stroke seventh day; they were rectified by the

administration of human umbilical cord MSCs (65). Moreover,

a series of researchers have accessed the effects of MSCs on

microglial activation (14, 61–75); more details are shown in
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TABLE 1 Preclinical stroke studies assessing the e�ect of MSCs on the activation of microglia.

Author Year Country Species Dosage Route MSCs

source

The main effects on microglia References

Cunningham et al. 2020 UK. Mice 1.4 x 106 Sub BM Have no effect microglial Iba1 expression (61)

Narantuya et al. 2010 Japan Rats NA IV BM Reduce microglial activation and MMP level (66)

Ishizaka et al. 2013 Japan Rats 1× 106 IA NA Suppress microglia activation in the

peri-infarct and core lesion

(67)

Yamaguchi et al. 2018 Japan Rats 1× 106 IA Blood Suppress microglia activation in the

peri-infarct cortex

(62)

Wang et al. 2014 China Rats 2× 106 IV BM Inhibit macrophages/microglia activation in

the ischemic brain

(68)

Wei et al. 2012 America Rats 1× 106 IV BM Inhibit microglia activation in the ischemic

brain

(14)

Nakajima et al. 2017 Japan Rats 1× 106 IV BM Inhibit microglia activation and

proinflammatory levels

(69)

McGuckin et al. 2013 France Rats NA Stereotaxis UC. Decrease markers of microglial activation

(lower ED1 and Iba)

(63)

Li et al. 2018 China Rats 1× 106 IV BM Inhibit microglia activation (70)

Lv et al. 2016 China Cells NA NA BM. Inhibit hypoxia-activated rat microglia (71)

Sheikh et al. 2019 Japan Rats 3× 106 IV BM Inhibit microglia activation (72)

Wang et al. 2013 Japan Rats 3× 106 IV BM Inhibit microglia activation and

proinflammatory gene levels

(73)

Yoo et al. 2013 South Korea Rats 5× 105 Stereotaxis BM. Inhibit microglia activation (74)

Sheikh et al. 2011 Japan Rats 3× 106 IV BM Decrease the accumulation of Iba-1+

microglia

(75)

Feng et al. 2020 China Mice 1× 106/20 g IV UC Inhibit CD16/32-M1 microglia, Promote

CD206-M2 microglia

(65)

Yang et al. 2020 China Rats 1× 106 IV BM Induce M2 microglia polarization through

PDGF-AA/MANF

(64)

NA, not available; IA, intraarterial; IV, intravenous; Sub, subcutaneous; BM, bone marrow; UC, umbilical cord; OGD, oxygen-glucose deprivation; MSCs, mesenchymal stem cell;

IL, interleukin.

Table 1. To sum up, the application of MSCs appears to inhibit

microglial activation and promote M2 polarization.

MSCs-neutrophils interactions

Neutrophils are the essential infiltrating cell type in the

ischemic brain the first few days after stroke (76), tightly

correlating with ischemic stroke-induced BBB disruption.

The preclinical stroke studies have implied that MSCs’

administration can reduce neutrophil accumulation in the

brain. Vehicle or EVs (the equivalent of 2 × 106 MSCs) were

intravenously administered to mice after transient intraluminal

middle cerebral artery occlusion (77). MSC-EVs decreased

specifically polymorphonuclear neutrophil infiltration in

ischemic brains of aged mice. Moreover, MSCs can boost the

beneficial effects of neutrophils on the brain. Bone marrow-

MSCs can potentially induce interleukin-17 (IL-17) production

in memory CD4+ T cells that, in turn, promote the enhanced

phagocytic activity of neutrophils (78). Still, bonemarrow-MSCs

may also protect resting and interleukin-8-activated neutrophils

from apoptosis, preserving their effector functions and

suppressing the reactive oxygen species production (79).

MSCs-natural killer (NK) cells interactions

NK cells, one type of lymphocyte, belong to a part of the

innate immune system that is well-known for the potential to

mediate cytotoxicity and produce cytokines (80).

The immunomodulatory effects of MSCs on NK cells

have been extensively studied in the peripheral regions. MSCs

are involved in inhibiting the differentiation, proliferation,

cytotoxicity, and activation of the NK cells through a variety of

cytokines (81). These cytokines may include prostaglandin E2

(PGE2), soluble human leukocyte antigen-G5 (sHLA-G5), and

transforming growth factor-β (TGF-β), which is partly linked

to glycoprotein A repetitions predominant on the surface of
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MSCs (82). Additionally, hypoxic MSCs can also repress NK

cell cytotoxicity and reduce the accumulation of host-derived

NK cells when transplanted in vivo, as a result, contributing to

ameliorating limb ischemia in allogeneic recipients (83).

MSCs-dendritic cells (DCs) interactions

The immune response to ischemic stroke consists of

inflammatory and regulatory processes. DC is one of the cell

types involved in innate and adaptive immunity. Upon an

ischemic condition, the brain DCs are increased at 24- and

72-h post-stroke and accumulated in the peri-infarct region

near invading T cells (84). Peripheral DC appearing in the

brain was apparent at 72-h post-stroke and was confined

primarily to the lesion core (84). MSCs are revealed to have

capacities to suppress DCs differentiation and maturation and

even reverse mature DCs to immature states (85–88). Gao

et al. (85) indicated that MSCs inhibited the differentiation

of human monocyte-derived DCs through both releasing IL-

10 and direct cell contact. Likewise, Zhao et al. (87) showed

that MSCs can differentiate mature DCs into a distinct

regulatory DC population characterized by a lower expression

of CD1a, CD80, CD86, and CD40 and a higher expression

of CD11b. Importantly, such an effect on inhibiting DCs

differentiation andmaturity is demonstrated to be linked to both

maintaining homeostasis of regulatory T cells and lower levels of

proinflammatory cytokines TNF-α andMHC II surface antigens

(86, 87).

MSCs-T cells interactions

T cells, which are involved in both innate and adaptive

immune responses, can be divided into the αβ subset and the

unconventional γδ subset (89). The αβ subset includes CD4+

T helper cells (Th1, Th2, Th17) that mainly modulate the

functions of phagocytes and granulocytes, CD8+ T cells that

have a cytotoxic role, and regulatory T cells (Treg) that regulate

immune responses (89). After the ischemia-onset, T cells are

revealed at the border of the infarct, where they appear within

days (90, 91). More specifically, CD8+ T cells are recruited

as early as 3 h post-ischemia onset, with CD4+ T cells and

NK T cells following within 24 h, and accumulation of these T

cells peaks 3 to 4 days after ictus (76, 92, 93). There is solid

evidence that MSCs are linked to direct immunosuppressive

properties via suppressing the activation and proliferation

of CD4+ and CD8+ T cells while promoting activation,

differentiation, and proliferation of Tregs through direct cell-

to-cell communication or releasing of various factors. Upon a

hypoxic-ischemic encephalopathy condition, MSCs can induce

persistent peripheral T-cell tolerance and inhibit the invasion

of T-cells into the preterm brain (94). During a critical limb

ischemia condition, MSCs showed effective prevention of Th1

priming, which was strongly related to an altered IL-12/IL-10

production (95). Likewise, in renal ischemia/reperfusion rats,

by releasing TGF-β, MSCs can not only suppress CD8+ T cells

but boost the development of Tregs, as a result, repressing T

cell-related inflammation (96). As such, MSCs might therefore

contribute to suppressing the activation and proliferation of

CD4+ and CD8+ T cells and promoting the proliferation

of Tregs during an ischemic condition. However, information

regarding this aspect of the interaction between MSCs and T

cells upon an ischemic stroke condition appears to be limited.

It is scarce, so additional and reliable data is urgently needed.

MSCs-B cells interactions

B cells, one part of the adaptive immune response, have

the capacity to present antigens, produce antibodies, and

activate the immune system (97). These cells are detectable in

insufficient quantities in the brain under normoxic conditions;

however, they are trafficked in larger quantities to the brain

tissues in response to injury (98, 99). B cell adoptive transfer

to mice does not contribute to acute pathology but can

support post-stroke recovery, independent of changing immune

populations in recipient mice (100). Completed and ongoing

clinical trials and preclinical studies on the therapeutic effects

of MSCs transplantation against immune-mediated diseases

have demonstrated an increased generation of B cells (101).

The effectiveness of related MSCs-B cell interaction-based

treatments dramatically depends on the functions of Bregs, as

MSCs can increase the secretion of IL-10 by Bregs (101). On

the contrary, several studies identified that MSCs are involved

in suppressing the activation and proliferation of B cells. For

instance, human adipose tissue-derived MSCs can inhibit the

proliferation and chemotaxis of B cells by inducing cell cycle

arrest in G0/G1 phase and regulating CXCR4 and CXCR5

expression, respectively (102). As such, in vitro, by secreting

various factors, MSCs decreased the proliferation of B cells

and the production of immunoglobulin (103). Taken together,

the combined effects on the proliferation and activation of

B cells are found in MSCs. However, the precise effect of

inhibition/promotion on B cells modulated under ischemic

stroke conditions is not fully clear yet. An overview of howMSCs

interact with immune cells is shown in Figure 1.

MSCs improve the post-stroke
neurological function recovery

The size of the infarct volume is tightly correlated with

ischemic stroke severity. In vivo experiments on MCAO rats

demonstrated that MSCs derived from bone marrow, adipose

tissue, and the umbilical cord could reduce the post-stroke

infarct volume (104). However, many conditions, such as the

source of MSCs, species injected, and the timing and dose

of MSC injection, can affect specific effects on decreasing
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FIGURE 1

An overview of how mesenchymal stem cells (MSCs) interact with immune cells. MSCs derived from various tissue sources can release a series

of mediators, which in turn interact with various immune cells, namely microglia, neutrophils, natural killer cells, dendritic cells, T cells, and B

cells. IL, interleukin; EVs, extracellular vesicles; MSCs, mesenchymal stem cells; NK cell, Natural Killer cell; IGF-1, insulin-like growth factor 1;

VEGF, vascular endothelial growth factor; bFGF, fibroblast growth factor; MCP-1, Monocyte chemoattractant protein-1; miR, microRNA; TGF-β,

transforming growth factor-β.

infarct volume after stroke. Along with such a reduction of

infarct volume, the behavioral test analyses illustrated better

test scores of mice/rats transplanted with MSCs at either time.

Of note, this better test performance in the corner turn test,

the rotarod test, balance beam test, tightrope test, and paw

slips recording was long-lasting and stable until the end of the

observation period (31, 105–107). It is suggested that MSCs

can potentially mitigate postischemic motor coordination

impairment in preclinical stroke experiments. Significantly,

post-stroke impairment of the blood-brain barrier and

perifocal vasogenic edema are also alleviated by endovascular

MSCs administration. Post-stroke edema, impairment of the

blood-brain barrier, as well as upregulation of aquaporin

4 (AQP4) water transport channels, play an essential role

in the progression of ischemia and deteriorating disease

recovery. Datta et al. (108) presented preliminary evidence that

1×105 endovascular MSCs at 6 h post-stroke down-regulates

AQP4 expression and alleviates vasogenic edema toward

neuroprotection. Likewise, MSCs protected blood-brain barrier

integrity by inhibiting the ischemia-induced astrocyte apoptosis,

owing to the downregulation of AQP4 expression via the p38

signaling pathway (109).

The underlying patterns of how
MSCs exhibit the therapeutic e�ects

MSC-EVs are critical players in treating
ischemic stroke

EVs, the membrane-enclosed nanoscale particles secreted by

all eukaryotes, always serve as a variety of molecular cargoes,
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such as peptides, lipids, proteins, and noncoding RNAs (43,

110). Based on the size of EVs, they can be divided into

three subtypes: exosomes, microvesicles, and apoptotic bodies

(111). Exosomes with a diameter of 30–150 nm form via the

fusion of multivesicular bodies with membrane and are further

released into the extracellular matrix (112, 113). Microvesicles

with a diameter of 200–1,000 nm are produced owing to

the outward budding of the plasma membrane (112, 113).

Conversely, apoptotic bodies with a diameter of 1,000–5,000 nm

are produced by dying cells and are even more abundant than

the two other particles (111). Only exosomes and microvesicles

are relevant to the therapeutic effects imparted by MSC-EVs.

When these nanosized vesicles are released from donor cells into

the extracellular matrix, they can be internalized by numerous

recipient cells. In turn, they transfer the above bioactive cargos

into recipient cells, including near and far from the secreting

cell, further serving as messengers and performing biological

functions. This cargo mix is revealed to mediate the biological

properties of EVs and, indirectly, the treatment of MSCs under

ischemic stroke conditions. The EVs derived from MSCs are

emerging to be an appealing therapeutic tool for ischemic stroke,

with the MSC-derived properties and the characteristics of

effortless storage, lower immunogenicity, higher safety profile,

and nature delivery vehicles. Previous research works indicated

that EVs derived from MSCs promoted post-stroke recovery.

They have the capacity to regulate the expression of recipient

cell genes, alter cell properties involved in ischemic stroke, and

mediate restorative effects, including cell survival, cell apoptosis,

cell autophagy, angiogenesis, neurological function recovery,

and immunomodulation, through a variety of molecular cargoes

transfer (13, 31, 33, 34, 42, 53, 114–142). Moreover, by inhibiting

the release of EVs, the beneficial effect on these aspects is also

suppressed. For example, by establishing a coculture model that

MSCs cocultured with hypoxic neurons and brainmicrovascular

endothelial cells, the results showed that the MSCs treatment

could inhibit the apoptosis of hypoxic neurons and restore the

tube formation of brain microvascular endothelial cells (143).

However, an inhibitor, GW4869, of EVs secretion can reverse

these beneficial effects, indicating that these EVs are the key

players that serve as the central mediator of the neuroprotective

and angiogenic effects of MSCs (143). Currently, studies are

paying attention to the function of the EVs isolated from

bone marrow, adipose tissue, and, sometimes, umbilical cord-

MSCs (144).

The critical role of noncoding RNAs
(NcRNAs) in treating ischemic stroke

Despite being well-established that most human RNA

transcripts cannot encode proteins, the emerging evidence

demonstrates that ncRNAs regulate cell physiology and shape

cellular functions (145, 146). ncRNAs can be divided into long

[namely long noncoding RNA (lncRNA) and circRNA] and

small ncRNAs [including microRNAs (miRNAs), tRNAs, and

piRNAs] by taking 200 nucleotides as the limit (147). miRNAs,

∼18–24 nucleotides in size, are much earlier reported and

the most discussed. lncRNAs are a large and heterogeneous

kind of ncRNAs with more than 200 nucleotides and are

involved in the modulation of transcription, translation, RNA

metabolism, as well as homeostasis (148–150). CircRNAs are

defined as circular covalently bonded structures associated

with a higher tolerance to exonucleases (151), which serve

as a scaffold for chromatin-modifying complexes, regulating

the expression level of parental genes, modulating mRNA

splicing, and acting as miRNA sponges (152, 153). Notably,

the aberrant expression of many noncoding RNAs has been

associated with aggressive pathologies. A variety of ncRNAs

are reduced in the ischemic brain or blood after ischemic

stroke, as previously reported for circSCMH1, miR-124-3p,

miR-126, miR-221-3p, and miR-132 (114–119, 154), whereas

other ncRNAs, namely miR-98 and miR-494, are increased

at defined follow-up (155–157). MSC-based therapies offer

an attractive approach because they promote cell survival,

angiogenesis, and neurological function recovery, suppress cell

apoptosis and autophagy, and regulate immunomodulation,

where ncRNAs play an essential role. Interestingly, these

ncRNAs were mainly derived from EVs, including lncRNA

MALAT1, miR-1-3p, miR-17-92, miR-22-3p, miR-25, miR-

26a, miR-26b-5p, miR-31, miR-124, miR-126, miR-132, miR-

133b, miR-134, miR-138-5p, miR-146a-5p, miR-181b, miR-

206, miR-210, miR-221-3p, miR-223-3p, miR-542-3p, and miR-

1290 (31, 33, 34, 42, 114, 115, 117, 119, 121–125, 129–

133, 135, 136, 138, 158). These EVs are isolated from bone

marrow and adipose tissue, as well as umbilical cord-MSCs.

Additionally, MSCs can regulate the expression of ncRNA

directly, in turn, to support neuroprotection. For instance, Yang

et al. indicated that MSCs-mediated mesencephalic astrocyte-

derived neurotrophic factor paracrine signaling, the PDGF-

AA/miR-30a∗/XBP1/MANF pathway, synergistically mediates

MSC-induced M2 polarization (64). Likewise, Huang et al.

found that, with enhanced cell homing, MSCs can be applied

to deliver miR-133b to boost the expression level of miR-

133b in an ischemic lesion and further improve therapeutic

effects (159). To sum up, MSCs can not only directly regulate

the level of ncRNA but also indirectly regulate the level of

ncRNA in the form of secreting exosomes, thus promoting the

improvement of neurological function recovery. More details

regarding preclinical studies that evaluate the effect of MSC-

ncRNA on treating ischemic stroke are shown in Table 2

(31, 33, 34, 42, 64, 114, 115, 117, 119, 121–125, 129–133, 135,

136, 138, 158, 159).
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TABLE 2 Preclinical studies evaluating the e�ect of MSC-non-coding RNA on treating ischemic stroke.

Authors Country, year ncRNA Expression Source Donor cell Recipient cell Main function

Zhong and Luo (135) China, 2021 miR-1-3p Upregulation EVs ucMSCs Primary neurons Promote cell viability and inhibit

apoptosis

El Bassit et al. (158) USA, 2017 lncR MALAT1 Upregulation EVs MSCs HT22 neuronal cells Promote cell viability

Xin et al. (131) China, 2017 miR-17-92 Upregulation EVs MSCs Neurons, glial cells Promote neuroplasticity

Zhang et al. (123) China, 2021 miR-22-3p Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Kuang et al. (31) Germany, 2020 miR-25 Upregulation EVs ADSCs Primary neurons Inhibit autophagy

Hou et al. (124) China, 2021 miR-26a Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Ling et al. (132) China, 2020 miR-26a Upregulation EVs USCs NSCs Promote neurogenesis

Li et al. (122) China, 2020 miR-26b-5p Upregulation EVs ucMSCs SH-SY5Y, PC12,

microglia

Inhibit apoptosis and inflammation

Lv et al. (125) China, 2020 miR-31 Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Yang et al. (133) China, 2017 miR-124 Upregulation EVs BMSCs NPCs Promote neurogenesis

Geng et al. (119) China, 2019 miR-126 Upregulation EVs ADSCs Neurons, ECs, BV2 Promote neurogenesis and inhibit

inflammation

Feng et al. (114) China, 2018 miR-132 Upregulation EVs BMSCs Primary neurons Promote cell viability and inhibit

apoptosis

Xin et al. (121) China, 2013 miR-133b Upregulation EVs BMSCs Neurons, AS Promote neurite outgrowth

Xiao et al. (42) China, 2018 miR-134 Downregulation EVs BMSCs OLs Inhibit apoptosis

Deng et al. (34) China, 2019 miR-138-5p Upregulation EVs BMSCs Primary AS Inhibit apoptosis

Zhang et al. (33) China, 2021 miR-146a-5p Upregulation E.V.s ucMSCs BV2 microglia Inhibit inflammation

Yang et al. (129) China, 2018 miR-181b Upregulation EVs ADSCs BMECs Promote angiogenesis

Zhong and Luo (135) China, 2021 miR-206 Upregulation EVs ucMSCs Primary neurons Promote cell viability and inhibit

apoptosis

Zhang et al. (130) China, 2019 miR-210 Upregulation EVs BMSCs BMECs Promote angiogenesis

Ai et al. (115) China, 2021 miR-221-3p Upregulation EVs BMSCs Primary neurons Inhibit apoptosis and inflammation

Zhao et al. (136) China, 2020 miR-223-3p Upregulation EVs MSCs BV2 Inhibit inflammation

Cai et al. (117) China, 2021 miR-542-3p Upregulation EVs MSCs HA1800 AS Inhibit apoptosis and inflammation

Yue et al. (138) China, 2019 miR-1290 Upregulation EVs ucMSCs Primary neurons Inhibit apoptosis

Yang et al. (64) China, 2020 miR-30a* Upregulation Cells MSCs Microglia Inhibit inflammation

Huang et al. (159) China, 2017 miR-133b Upregulation Cells MSCs Neurons/Astrocytes Promote cell viability

BMSCs, Bone marrow-derived mesenchymal stem cells; ADSCs, adipose-derived stem cells; ucMSCs, umbilical cord mesenchymal stem cells; USCs, human urine-derived stem cells; EVs,

Extracellular vesicles.

The critical role of trophic factors and
cytokines in treating ischemic stroke

Preclinical studies in rodent models of ischemic stroke

have uncovered the potential effectiveness of the administration

of trophic factors in ischemic brain injury recovery. The

brain-derived neurotrophic factor (BDNF), glial cell line-

derived neurotrophic factor (GDNF), and vascular endothelial

growth factor (VEGF) are the most described (160). MSCs

released or stimulated the release of three aforementioned

neurotrophic factors associated with the contribution of

ischemic stroke recovery. After administration, MSCs migrated

from the vascular system outside the lesion to the area of

the lesion core or peri-lesion to reduce the infarct volume

by secreting BDNF, GDNF, and VEGF (161, 162). BDNF

protein, highly expressed in the hippocampus, is known to

affect the survival and proliferation of several neural cells,

including cerebellar and cortical neurons (163). BDNF rapidly

boosts in response to ischemic brain injury, contributing to

reducing neuronal apoptosis and promoting neuronal survival

(163). GDNF, produced by glial cells after brain injury,

accelerates the survival and recovery of several types of mature

neurons, including motor and dopaminergic neurons (164).

VEGF, produced by neurons and astrocytes, is involved in
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FIGURE 2

Some of the underlying therapeutic mechanisms associated with the mesenchymal stem cells (MSCs) in ischemic stroke. MSCs are isolated and

identified from various tissue sources. These MSCs produce extracellular vesicles (EVs), noncoding RNAs (ncRNAs), trophic factors, chemokines,

and cytokines by paracrine mechanisms to promote neurological recovery. Based on the EVs size, they can be divided into three subtypes,

namely exosomes (30–150nm), microvesicles (200–1,000nm), and apoptotic bodies (1,000–5,000nm). ncRNAs primarily include microRNA,

long noncoding RNA, and circRNA. BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; VEGF, vascular

endothelial growth factor; bFGF, basic fibroblast growth factor; IL, interleukin; TGF-β, transforming growth factor-β; HGF, hepatocyte growth

factor; miR, microRNA.

various stages of neurodevelopment (proliferation, migration,

differentiation, synaptogenesis, myelination (160). Additionally,

VEGF stimulates angiogenesis by stimulating endothelial cell

proliferation and migration and increases blood-brain barrier

integrity (160). Notably, further growth and trophic factors,

namely TGF-β, bFGF, IGF-1, HGF, and HGF, released or

regulated by MSCs, are also involved in post-stroke neurological

recovery. The types of cytokines released directly by MSCs or

indirectly modulated in response to neuroinflammation due to

stem cell transplantation are huge. They cannot be discussed

in full detail here. Briefly, anti-inflammatory cytokines of IL-

10 and IL-13, proinflammatory cytokines IL-8, IL-1α, and IL-

12, and pleiotropic cytokines of IL-6, IL-11, IL-16, and IL-

1β, correlated to immune function modulation after ischemic

stroke, are revealed to be directly or indirectly produced by

MSCs (165). In summary, MSCs played diverse therapeutic

roles by secreting a series of trophic factors and cytokines.

Hence, gene modification could be performed to enhance the

therapeutic effects of MSCs by modulating the trophic factors

and cytokines. However, attention should be given to the adverse

effects of trophic factors and cytokines due to the adverse

concentration. Some of the underlying therapeutic mechanisms

associated with MSCs in ischemic stroke are summarized in

Figure 2.

Therapeutic application of stem cells
in clinical ischemic stroke study

Meta-analysis: The clinical application of
MSCs in treating ischemic stroke

A comprehensive literature search of several electronic

databases, namely PubMed, Cochrane Library, EMBASE,
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TABLE 3 Main characteristics of the clinical study assessing stem cells in treating ischemic stroke.

References Country Study

design

Sample

size

Stem cell type Cell dosage Injection

route

Follow-up

Bhatia et al. (166) India RCT 20 Autologous

BMMNCs

6.1× 108 IV 1 year

Bang et al. (181) South Korea RCT 30 Autologous MSCs 5× 107/2 times IV 12 months

Meng et al. (179) China Non-RCT 120 Autologous MSCs 2.97× 109 IV Half a year

Lee et al. (171) South Korea RCT 52 Autologous MSCs 5× 107/2 times IV 5 years

Bhasin et al. (174) India Non-RCT 24 Autologous

BMMNCs

5.46× 107 IV 24 weeks

Bhasin et al. (175) India Non-RCT 40 Autologous

BMMNCs and

MSCs

5.54× 107 IV 24 weeks

Prasad et al. (172) India RCT 120 Autologous MSCs 2.8× 108 IV 1 year

Chen et al. (167) China RCT 30 Autologous PBSCs 3–8× 106 IA. Half a year

Bhasin et al. (176) India Non-RCT 20 Autologous

BMMNCs

6.28× 107 IV 8 weeks

Ghali et al. (178) Egypt Non-RCT 39 Autologous

BMMNCs

1× 106 IA 1 year

Bhasin et al. (177) India Non-RCT 12 Autologous MSCs 5–6× 107 IV 4 years

Hess et al. (169) UK/USA RCT 129 Allogeneic MAPC 1.2× 109 IV 1 year

Jin et al. (170) China RCT 20 Autologous

BMMNCs

1× 107 Subarachnoid 7 years

Fang et al. (168) China RCT 16 Autologous EPSs

and MSCs

2.5× 106/kg/2 times IV 4 years

Savitz et al. (173) USA RCT 48 Autologous BM

ALDHbr Cells

3.08× 106 IA 1 year

Moniche et al. (180) Spain Non-RCT 20 Autologous

BMMNCs

3.38× 106 IA Half a year

ALDHbr, aldehyde dehydrogenase; BMMNC, bone marrow-derived mononuclear cell; EPS, endothelial progenitor cell; IA, intra-arterial infusion; IV, intravenous infusion; MSCs,

mesenchymal stem cells; PBSC, peripheral blood stem cell; MAPC, multipotent adult progenitor cells; RCT, randomized controlled trial.

and Web of Science, was performed by two researchers

independently from the inception of these databases to 30

June 2022. We retrieved studies assessing stem cells in

treating ischemic stroke by adopting the following keywords:

“stem cell” together with “ischemia,” “stroke,” “middle cerebral

artery occlusion,” or “MCAO.” References from the identified

reports were manually searched to identify other potential

qualifying studies. The specific screening process is shown in

Supplementary Figure 1. A total of 16 reports were included

in this section from South Korea, India, the UK, China, the

United States, Egypt, and Spain, which were conducted varied

from 2005 to 2019 (166–181). Table 3, Supplementary Table 1

described the characteristics and quality assessment of included

studies, respectively. The Stata, version 12.0, was used for

endpoint analyses. When I2 > 50%, the data were deemed

to have apparent heterogeneity, and a random-effect model

was adopted. Otherwise, a fixed-effects model was adopted.

Among all outcomes, weighted mean differences (WMD)

or rate differences (RDs) with 95% CIs were applied for

the assessment.

First, this study analyzed the efficacy of MSCs on patients

with ischemic stroke through the modified Rankin Scale (mRS),

National Institutes of Health Stroke Scale (NIHSS), and Barthel

index (BI). Data on mRS were provided by night studies.

There are 219 and 227 participants in the MSCs and control

groups. The patients treated with MSCs were associated with a

statistically significant lowermRS value (WMD,−0.354; 95%CI,

−0.681 to −0.027; P = 0.034, Figure 3A). Similarly, seven and

nine studies reported the data of NIHSS and BI, respectively.

The cross-sectional data from various studies were plotted and

demonstrated that the NIHSS was statistically lower (WMD,

−1.538; 95% CI, −2.506 to −0.571; P = 0.002, Figure 3B) and

BI was statistically higher (WMD, 7.444; 95% CI, −4.488 to

10.401; P < 0.001, Figure 3C) in the MSCs group than that

of the control group. Second, we also evaluated the safety of

MSCs on patients with ischemic stroke; 15 studies (356 and 354
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FIGURE 3

Forest plot for meta-analysis of the modified Rankin Scale (mRS) (A), National Institute of Health Stroke Scale (NIHSC) (B), Barthel index (BI) (C),

and death rate (D).

patients in the MSCs and control group, respectively) reported

the death rate. No significant heterogeneity was observed, and

a fix-effect model was used (I2 = 40%, P = 0.055). The

death rate between the experimental and control groups was

statistically significant (RD, −0.046; 95% CI, −0.086 to −0.005;

P = 0.026, Figure 3D). More details regarding the results are

described in Supplementary Table 2. Altogether, stem cell-based

therapies have the capacity to improve neurological deficits

and activities of daily living in patients with ischemic stroke.

However, several common limitations exist for current studies,

such as small sample size, long-term waiting for MSC culture,

age of participants, heterogeneity of ischemic brain injury site,

and severity (155, 156).

The clinical translation of MSC-based therapy for ischemic

stroke is booming, and MSCs are expected to improve the

sequence of ischemic stroke in patients. Nevertheless, this

treatment has led to some controversy as well. (I) Stem cell

translation has the potential to result in tumor formation (157).

For example, stem cells derived from embryonic stem cells may

have the potential for tumorigenicity. Moreover, a reduction

of genetic modification of stem cells will be associated with a

lower risk of tumor formation. (II) the controlled treatment

of transplanted exogenous stem cells to regulate differentiation

and achieve the desired therapeutic effect has yet to be studied

(157, 182). (III) the insufficient brain delivery and retention and

the invasiveness of current administration routes prevent MSCs

from fully exerting their clinical therapeutic potential (183). (IV)

the issue of immune rejection is also necessary to be addressed.

Although MSCs rarely express the major histocompatibility

complex, they can still cause some immunological issues (182).

Conclusion

The application of MSCs in treating ischemic stroke is

vast. In preclinical settings, the transplantation of MSCs

offers an excellent opportunity for adjuvant ischemic stroke

treatment, participating in multiple pathological processes,

such as increasing cell survival angiogenesis and suppressing

cell apoptosis and autophagy. Importantly, immunomodulation
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is another excellent target of MSCs by interacting with

a variety of immune cells, namely microglia, neutrophils,

NK cells, DCs, T cells, and B cells. However, no large-

scale randomized, double-blind, multicenter clinical study

exists to prove their effectiveness. In clinic, MSCs have

many advantages: they are easy to harvest, expand, and

store for a long time and are convenient to manage

in many ways. Additionally, their clinical use does not

raise many ethical issues. Increasing evidence supports the

potential of MSCs to treat stroke, and autologous stem

cell-based therapies can improve post-stroke neurological

deficits and daily living activities in patients with minimal

clinical adverse events. Nevertheless, the heterogeneity of

MSCs is the primary barrier to their clinical application

and therapeutic effect. Nonetheless, despite these issues, the

application of MSCs appears to achieve neuroprotective effects,

which result from the release of EVs and modification of

various signaling pathways, such as ncRNAs, trophic factors,

and cytokines.
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