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Traumatic neuromas are infrequent in clinical settings but are prevalent

following trauma or surgery. A traumatic neuroma is not a true malignancy,

rather, it is a hyperplastic, reparative nerve reaction after injury and typically

manifests as a nodular mass. The most common clinical manifestations

include painful hypersensitivity and the presence of a trigger point that causes

neuralgic pain, which could seriously decrease the living standards of patients.

While various studies are conducted aiming to improve current diagnosis

and management strategies via the induction of emerging imaging tools and

surgical or conservative treatment. However, researchers and clinicians have

yet to reach a consensus regarding traumatic neuromas. In this review, we

aim to start with the possible underlying mechanisms of traumatic neuromas,

elaborate on the diagnosis, treatment, and prevention schemes, and discuss

the current experiment models and advances in research for the future

management of traumatic neuromas.
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1. Introduction

The history of neuromas dates back to 1634 when Ambroise Pare first described

the painful neuroma and treated neuroma with massage and oil. In 1811, Odier (1)

discovered that the bulbous stump tissue in the proximal ending of a transected

nerve could be extremely sensitive. It was not until 1828 that the term “neuroma”

was coined by Wood (2), who conducted the first pathological research on such

nerve injuries. From then on, the understanding of traumatic neuromas grew steadily,

including the introduction of Morton’s neuroma by Morton (3), the elucidation of

the actual mechanism forming these neuromas by Huber and Lewis (4), and the

classification system put forward by Swanson (5), who also defined neuromas as

cutaneous and post-traumatic.
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A neuroma is not a conventional neoplasm that arises

from malignant cells, but a local non-neoplastic proliferation

of the injured nerve. Neuromas mostly occur when normal

nerve conduction is damaged by injury, inadequate surgical

repair, or in some cases, chronic fibro-inflammatory irritation.

In this case, the reinnervation process is deterred when nerve

reconstruction is interrupted by the interpolation of scar tissue.

Depending on the nature of the trauma, traumatic neuromas

can be largely categorized into terminal neuroma and neuroma-

in-continuity (6). Terminal neuromas are generally observed

in limb amputation, lower extremities in particular, where the

nerve is completely transected without a distal end, rendering it

impossible to reestablish innervation by the injured nerve. On

the other hand, neuroma-in-continuity results from a fusiform

swelling of the injured site following the trauma and is further

divided into two subtypes: (1) total or partial transection of the

nerve; (2) repeated blunt trauma to the nerve. The former type

of trauma could cause fusiform neuromas, which are commonly

seen in the digital nerve and median nerve, while the latter form

of trauma causes thickening of the fibrous tissue surrounding the

nerve, which is involved in cases of Morton neuroma, Bowler’s

thumb (7), and lateral femoral cutaneous neuropathy (8). It can

be concluded that given the mechanism of traumatic neuromas,

it is highly related to traumatic limb injury and occurs mostly in

orthopedic patients.

The most common main complaint in patients suffering

from peripheral traumatic neuromas remains paresthesia in

the innervated area and a painful nodule at the site of injury.

Pain, as mentioned before, is among the most common clinical

symptoms, including painful hypersensitivity and the presence

of a trigger point that causes neuralgic pain. Patients may feel

burning, stabbing, raw, gnawing, or sickening sensations. These

symptoms could lead to psychological distress and a severe

decrease in the quality of life (9). In this review, we aimed to

provide a comprehensive understanding of traumatic peripheral

neuroma and its related research progress.

2. Epidemiology

Traumatic neuromas, as infrequent as it is, are prevalent

following trauma or surgery. As previously described, a

traumatic neuroma is not a true malignancy. Instead, it

is a hyperplastic, reparative nerve reaction after injury

and typically manifests as a nodular mass. It is secondary

to the abnormal growth of nerves and connective tissue

attempting to reinnervate the region following an entire

or partial nerve segment due to an accidental or surgical

trauma (10, 11). As nerve lesions, traumatic neuromas are

characterized as neuroma-in-continuity (NIC) following partial

nerve transection or end-bulb neuromas (EBN) following the

total disruption (12). Traumatic neuromas exhibit proximal

continuity with the parent nerve, similar to the “tail sign”

shown in peripheral nerve sheath tumors (PNSTs), indicating

a neurogenic origin. On the other hand, EBNs do not present

distal continuity with the parent nerve, whereas NICs are

continuous both proximally and distally (13).

3. Risk factors and pathophysiology

Many studies have found that inhibiting nerve growth factor

(NGF) following nerve damage lowers neuroma growth and

neuropathic pain in rat models (14). Furthermore, localized

deactivation of the brain-derived nerve factor (BDNF) has

been found to greatly reduce neuropathic pain and influence

the regeneration of sensory fibers. In contrast, excessive

concentrations of BDNF promote the growth of neuromas and

neuropathic pain (15).

Traumatic damage to a peripheral nerve leads to

multidimensional cell proliferation, regeneration failure,

and deformed architecture of the nerve. Due to post-

traumatic obstruction of axonal flow and subsequent Wallerian

degeneration, the nerve segment distant to the site of damage

has unique and complicated physiology (16).

Nevertheless, the ability of axons to regenerate and the

growing support of Schwann cells (SCs) decrease with time

and distance from a trauma (17). On condition that two

severed nerve segments are distant respectively, or the proximal

end is missing (amputations), axon regeneration occurs in

an unstructured manner (18, 19). In some instances, the

simultaneous proliferation of wound-healing cells and signaling

molecules might result in collagen remodeling and scar

formation and eventually forms a neuroma (9). Several studies

and case reports have defined traumatic neuroma as having a

tangled shape consisting of connective tissue, Schwann cells, and

regenerated axons (20–23).

In painful neuromas, inflammatory signaling factors (22,

23) and myofibroblasts (24) have been reported. While the

microscopic characteristics of a fully formed neuroma have been

thoroughly recorded, little is known about the cellular structure

of neuromas in their early stages of development, from nerve

damage to initial neuroma formation. Further studies in this

field is helpful to generate new and improved therapies that

target the earliest stages of neuroma development and prevent

the accompanying discomfort (25).

4. Diagnosis and clinical evaluation
of traumatic neuromas

As a result of injuries or surgical procedures, traumatic

neuromas generally present as a firm, oval, slow-growing,

palpable nodule with a painful sensation, not larger than 2 cm

in diameter. Common symptoms include pain, stiffness, pain

hypersensitivity to light tactile stimuli, or neuralgic pain with
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a trigger point (26). It is vitally important that clinicians pay

close attention to the previous medical history of patients with

the above symptoms for an accurate initial diagnosis.

Regarding histopathology, Seddon’s initial classification of

peripheral nerve injuries is based on a three-tiered severity scale:

neurapraxia, axonotmesis, and neurotmesis (27). In terms of

Electrodiagnosis, axonotmesis and neurotmesis have the same

characteristics. The symptoms of axonotmesis are reversible, but

those of neurotmesis are irreversible due to disordered axon

regeneration. In such instances, complete realignment of the

sectioned fascicles and optimum neural tube repair necessitates

surgery (28). Following Sudden, the traumatic damage to

peripheral nerves was further classified into five classes by

Sunderland (29). However, these categories are determined

using a presumed prognosis without objective data on the

anatomical damage. From this perspective, imaging may be

useful for distinguishing between reversible axonotmesis and

irreversible neurotmesis.

As trauma majorly affects working-age individuals, delayed

management also causes economic and social harm (30, 31).

While the classification systems mentioned proved effective

in clinical practice, more often than not clinicians are faced

with the dilemma that the injured nerve may branch into

more regional nerves, even along the length of a nerve the

degree of injury may vary. The localization of traumatic

neuromas primarily depends on physical examination and

medical history, and the application of medical imaging tools.

Ultrasound (US) and magnetic resonance imaging (MRI)

can be utilized to examine the anatomy and topography of

peripheral nerves in order to determine the location, extent,

and type of damage (32–37). In examining a limb trauma,

it is crucial to examine the probability of nerve structure

involvement. A thorough clinical history, physical examination,

and electrodiagnostic testing (electromyography—EMG and

nerve conduction velocity studies—NCVs) are sufficient to

diagnose a nerve injury; nevertheless, a complete qualitative

and quantitative assessment of the structural damage is not

possible. Determining the kind of anatomical damage and

the injury’s severity is crucial in deciding whether surgical

therapy is necessary since time is crucial for a successful

prognosis (38). In addition, a comprehensive morphological

diagnosis of a traumatic lesion is crucial in determining optimal

care (conservative or surgical treatment) (32, 39). Therefore,

the clinical examination strongly recommends morphological

imaging using US or MRI (Table 1). The US is a useful

utility not only to access the continuity of nerve but also in

post-operative follow-up and detection of complications (39).

MRI T2-weighted imaging provides high-resolution imaging of

peripheral nerve anatomy in combination with fat and flow

suppression (34, 41). Many researchers recommend MRI for

examining anatomical nerve damage, considering it appropriate

for a high-quality assessment (42–45). On the other hand, other

researchers believe the two procedures are complementary,

favoring the US as an initial examination andMRI for evaluating

anatomical regions where US access is difficult or impossible or

where US details seem insufficient or do not correspond with

clinical suspicion and/or EMG results (33, 36).

Currently, few researchers have compared the diagnostic

accuracy of the two techniques (36, 46), indicating that both

US and MRI can detect the damaged region with a high level

of anatomical details and pathological results that correspond

with EMG testing. In research by Zaidman et al. (36), it was

determined that the US had a greater sensitivity than MRI (93

vs. 67%, respectively), assuming the same level of specificity

(86%). In contrast, Aggarwal et al. (46) observed that MRI is

more sensitive than US (95 vs. 81%), attributing this to the

deployment of a high-field (3 Tesla) MRI scanner; nevertheless,

these scanners are not yet accessible for all clinicians. The

advantages and limitations of US and MRI are listed in

Table 2. The US offers a more affordable alternative, and while

well-tolerated by patients, the US shows results in real time.

Obtaining dynamic information is also achievable if the patient

is requested to undertake certain actions while the physician

performs the exam (Figure 1) (60). This dynamic examination

provides essential objective data for an overall evaluation of

nerve and surrounding tissue damage. On the other hand, high-

resolution ultrasound (HRU) is now been identified as a useful

tool in the diagnosis of lesions of traumatic neuromas (39, 61–

63). HRU can achieve imaging of all main nerves running the

limbs including the medial nerve, ulnar nerve, radial nerves,

sciatic nerves, common peroneal nerves, and posterior tibial

nerves, while still demonstrating the transections, lacerations,

hematoma or neuroma formation clearly and accurately (35).

Early diagnosis of the location and type of a lesion is

crucial for prognosis and treatment since there is a limited

clear opportunity for efficient reinnervation and, if fails, the

commencement of alternative treatment measures, such as

nerve surgery. Nerve recovery begins immediately upon axonal

transection when the denervated muscle fibers and skin regions

begin producing neurotrophic signals that attract any adjacent

surviving axons and induce sprouting of these axons into the

denervated tissue (64). The rapid process of reinnervation is

known as collateral reinnervation, where the surviving axons

in the fascicle innervate the motor units and skin regions of

their injured counterparts. In severe nerve damage, when over

75% of the axons in a fascicle is destroyed, the remaining axons

in the bundle will be unable to reinnervate every motor unit

and skin region, which calls for proximal ingrowth of new

axons. The rate of proximal reinnervation is around 1mm each

day, which can be deterred if the length between the nerve

lesion and target muscle is too great, as in the case of distal

muscles of the lower leg and sciatic nerve injury, since over time

there are irreversible alterations in the muscle and neural axon

tubes that inhibit further abnormal growth and reinnervation

(65). Moreover, injury to the connective tissue constructs of

the nerves may result in perineural fibrosis and scarring that
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TABLE 1 Nerve injury classification following Seddon and Sunderland theories.

Seddon Sunderland Description MRI∗ Ultrasound∗

Neuropraxia I Conduction block T2 hyperintensity The decreased echogenicity of the nerve

(hypoechoic)

Axonotmesis II Discontinuity of axon with Wallerian

degeneration

T2 hyperintensity with increased size

Hyperintensity in muscles due

to denervation

Decreased echogenicity and increased

caliber of the nerve

III Scarring of the endoneurium Endoneurium can-not is delineated with

the current MR technique T2

hyperintensity with increased size

Hyperintensity in muscles due

to denervation

Focal echogenicity decreases with the

increased caliber with a change in

echotexture of the affected muscles

IV A neuroma in continuity with the

formation of scar which blocks nerve

regeneration

T1 hypointense, T2 hyperintense focal

enlargement with loss of fascicular

pattern. Hyperintensity in muscles due

to denervation

The hypoechoic fusiform lesion is in

continuity with the nerve with loss of

fascicular architecture and altered

echogenicity of denervated muscles

Neurotmesis V Rupture of the nerve End neuroma formation at the proximal

end with denervation changes in muscle

Hypoechoic neuroma at the proximal

end with local soft tissue edema and

denervation changes in muscle

Mackinnon

and Dellon

type VI

Mixed injury Variable findings with nerve

heterogeneity and muscle denervation

changes

Hypoechoic enlarged with mixed

findings of scarring, discontinuity, or

neuroma formation

∗The data was obtained from Agarwal et al. (40).

TABLE 2 Advantages and disadvantages of US and MRI in the traumatic damage to peripheral nerves.

Comparison items Ultrasonography Magnetic resonance imaging

Spatial resolution Excellent Good

Contrast resolution Good Excellent

canning planes Multiple planes (the transducer can be oriented in multiple

ways, referring to nerve anatomy)

Multiple planes (2D and 3D acquisitions)

Scan times Fast Long

Nerve assessment Dynamic Static

Extension of nerve tract examined Wide, based on need Limited by the dimensions of the FOV

Denervation changes in muscles Chronic (atrophy, fatty infiltration) Early and chronic (edema, atrophy, fatty infiltration)

Deep structures Limitation No limitations

Less accessible anatomical areas Limitation No limitations

Contraindications No Yes

Patient compliance Good Poor

Cost Low High

Operator dependence High Less

The data was obtained and modified after Visalli et al. (47).

can inhibit future axon development. The therapeutic frame for

nerve surgery focuses on an effective evaluation of the extent of

the injury, which is typically performed clinically and may be

enhanced by electromyography (EMG) via localizing the exact

site of the lesion and the distance between it and the influenced

muscle and skin, and identifying morphologic changes of the

damaged nerve that indicate transaction or intraneural scarring.

By analyzing the regeneration potential, this data will influence

surgical decision-making (66).

5. Treatment

The process of nerve reconstruction is accompanied by

scar formation in the injured site, which eventually results in

traumatic neuroma formation (67, 68). Treatment of traumatic

neuromas is based on the removal of disturbed nervous tissue

or neurolysis to improve the microenvironment surrounding

axons and achieving partial or complete remission of painful

symptoms (Table 3). Once the neuroma is formed, the priority
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FIGURE 1

(A) Longitudinal and transverse ultrasound images of the left traumatic neuroma of the superficial branch of the radial nerve; (B) longitudinal and

transverse images of the neuroma; (C, D) traumatic neuroma of the superficial branch of the radial nerve of the left wrist.

TABLE 3 Possible methods during or post-operation for prevention of traumatic neuromas formation.

Prevention categories Prevention methods E�ectiveness

Surgical skills Tight ligation, scissors cut, CO2 laser, and oblique nerve

cutting (48–50)

Good (regular connection between fibers formation)

No nerve gap or free tension injury Direct nerve repair with or without supporting conduits or

gel (51, 52)

Good (depends on surgeon skills)

Nerve gap Veins autologous, autologous nerve graft (53) Various (depending on the size of the nerve gap)

Recurrent traumatic neuroma Amputation Targeted nerve implantation, Terminated nerve stump

(49, 54, 55)

Excellent (axons arborize into the intramuscular motor

nerve branches)

Nerve support Nerve conduits, fibrin glue, tacrolimus (FK506) (56, 57) Various (depending on the severity of the injury)

Others NGF inhibitor, stem cells, and 3D conduits (58, 59) Under observation, promising result

for clinicians is to relieve symptoms and limit further disease

development (54).

5.1. Surgical treatment

Surgical treatment is so far the most effective therapeutic

method to manage peripheral traumatic neuromas (Figure 2).

Various operative techniques have been invented for the

management of peripheral traumatic neuroma occurring at

different sites (69, 70), including nerve repair, distal nerve

ending transposition tomuscle, vein, or bone (71, 72), capping of

distal nerve-ending with soft tissues or conduits (73–76). In the

surgical management of traumatic neuroma, one predominant

factor for the selection of operative technique is the continuity

of the severed nerve, that is whether there is an adjacent distal

nerve stump for future nerve reconstruction and reinnervation.

As the described condition is vitally important and greatly

affects the selection of operation method, conventional surgical

treatment in this section is categorized following this criterion

before the proposition of several emerging surgical approaches

(Figure 3).

For terminal peripheral neuroma where the distal nerve

ending is not available, surgical neurectomy is considered where

the target nerve is first identified via neurolysis. At this point,

palpation of the target nerve should reproduce neuropathic
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FIGURE 2

Cases of surgical management in four patients su�ering from

traumatic neuromas. (A) A 32-year-old female patient with a

2-year history of painful mass on the radial side of the right

wrist; (B) a traumatic neuroma of the middle finger in a

34-year-old female patient as a result of previous finger tope

amputation, (C) a 24-year-old patient with a traumatic neuroma

on the wrist, (D) 33-year-old female presented a left index finger

traumatic neuroma with local radiation pain for half a month,

the patient had a history of left index finger injury by scissors

several years ago.

pain in the patient, and resection proximal to the neuroma

is performed, followed by transposition of the proximal nerve

ending to nearby muscles, bones, and veins, thus reducing

connective tissue formation around the nerve post-surgery to

obtain a better pain relief effect. This surgical method has been

tested out by various researchers and clinicians. In 1984, Mass

et al. (77) transposed the hand neuroma into the bone, and 18

of 20 neuromas showed acceptable results. Laborde et al. (72)

combined excision of the neuroma with transposition of the

proximal palmar cutaneous branch of the median nerve to the

pronator quadratus muscle, which freed the nerve from wrist

motion and environmental stimulation. Transposition between

the superficial and deep flexor muscles is also applicable. Koch

et al. (78) studied the resection of the neuroma and transposition

of the nerve stump into an adjacent vein, where 22 of 23

patients reported positive long-term results. While the above

surgical methods are mainly aimed at nerve trunks such as radial

nerve and ulnar nerve, smaller, unknown sensory nerve injuries

require a more specific mapping technique. Conventionally, this

is achieved by marking the painful area while the patients are

awake and applying local anesthetic while incising progressively

to identify discrete painful areas (79).

For traumatic peripheral neuroma-in-continuity where the

distal ending is available, traditional treatments include external

neurolysis, internal neurolysis, excision of the neuroma and

transposition of the nerve, etc. External neurolysis or internal

neurolysis is used to free the nerve from surrounding scar tissue

while maintaining its integrity. Patients with an unsuccessful

neurectomy as the primary treatment often suffer from a true

neuroma. When the nerve is dispensable, the neuroma-in-

continuity can be excised and transposed elsewhere.

Novel treatments targeting neuromas without distal ends

mainly include transplantation of innervated tissue to cover

the neuroma and targeted muscle reinnervation. In the former

type, a muscle flap is always used, Reisman and Dellon (80)

adopted a local transfer of the abductor digiti minimi muscle

flap to treat palmar wrist pain. In the latter type, the cut,

distal end of a peripheral nerve is transferred to a nearby

muscle target or nerve target, for example, the deep peroneal

nerve is transferred to the tibialis anterior muscle and the

superficial peroneal nerve is transferred to the peroneus longus

muscle (81), interdigital neurorrhaphy for treatment of digital

neuromas. In addition to the techniques mentioned above,

repeated intervention and higher amputations are rarely advised

since it adds to the anxiety and pain of the patient (82). On the

other hand, novel treatments for neuroma-in-continuity include

the application of vascularized soft tissue or nerve conduits to

cover the neuromas. A study by Krishnan et al. (83) showed

that vascularized soft tissue coverage of painful peripheral nerve

neuromas could be an effective method. Peterson and Adham

(84) achieved satisfactory outcomes using an acellular dermal

matrix conduit in the treatment of traumatic neuropathic pain

at the wrist. Yan et al. (85) found that an aligned nanofiber

conduit can significantly facilitate nerve regeneration, inhibit

neuroma growth, and reduce traumatic neuropathic pain after

neurectomy in a rat sciatic nerve model. Siemionow et al. (86)

investigated the efficacy of the epineural sheath jacket as a

novel technique for neuroma prevention in the rat sciatic nerve

model and gained outcomes comparable to the muscle burying

technique. Synthetic conduits may be a promising field in

treating traumatic neuroma in the future. In general, traditional

techniques combined with novel techniques are more effective

in treating traumatic peripheral neuroma. Recently, treatment

of traumatic peripheral neuroma has shifted from hiding injured

nerves to attempting nerve healing (81). Some literature reviews

support this conceptual shift (87, 88). However, more research is

required in the future to match suitable operative methods with

specific clinical settings.

The numerous techniques that have been attempted suggest

that no one technique is completely effective or superior

to other techniques, instead, each technique fits the certain

situation of nerve injuries. Poppler et al. (89) and Ives et al.
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FIGURE 3

A general summary of surgical methods for traumatic neuromas. Blue boxes indicate conventional methods and purple boxes indicate novel

methods.

(90) compared various surgical treatments for neuroma of the

extremities, including excision alone, excision and cap, excision

and transposition, excision and repair, neurolysis and coverage,

and found no difference in efficacy.

5.2. Conservative treatment

Treatment of traumatic peripheral neuroma usually starts

with medication. Anti-neuropathic drugs include membrane-

stabilizing agents (gabapentin, pregabalin, etc), anticonvulsants

[carbamazepine (91), topiramate, phenytoin, lamotrigine, etc],

antidepressants (amitriptyline, doxepin, etc), opioid analgesics

(pethidine hydrochloride, etc) and muscle relaxants (baclofen,

etc). Gabapentin and pregabalin (92) are considered the first-

line effectivemedicine to inhibit central sensitization by affecting

the calcium channels and reducing excessive neurotransmitter

release. Although anti-neuropathic drugs were used as initial

treatment, they often failed to obtain effective results while

exposing the patients to side effects.

Other nonoperative management of traumatic peripheral

neuroma includes physiotherapy, local injections (anesthetic,

steroid, and alcohol), cryotherapy, radiofrequency ablation,

shockwave therapy, and electrical stimulation. According to

a systematic review from Samaila et al. (93), corticosteroid

injections appear to be a safe treatment allowing good results

with a very low complication rate. Alcohol injections in a

study by Gurdezi et al. (94) showed that although the short-

term results are encouraging, alcohol injection does not offer a

permanent resolution of symptoms for most patients and can

be associated with considerable morbidity. Ultrasound-guided

radiofrequency ablation is a novel treatment modality, where a

probe is inserted at the site of the neuroma, and the temperature

is raised at 85◦C for 90 s in an attempt to sever adjacent

nerve endings and shows short-term success rates of 80%−85%

(95–97).

Friedman et al. (98) performed a retrospective case

series review in patients who had undergone sonographically

guided cryotherapy for Morton’s neuromas, postsurgical and

posttraumatic neuromas, and idiopathic neuralgia, where 15

of 20 patients had a positive response to cryotherapy. On the

other hand, Friedman et al. (99) did a study of extracorporeal

shockwave therapy for an interdigital neuroma in 13 patients

and obtained positive therapeutic results.

Continuous high-frequency electrical stimulation can be

used to control the hypersensitive state of the injured nerve

according to the gate control theory proposed by Wall et al.

(100). A study by Stevanato et al. (101) showed that all patients

experienced pain relief within a few minutes of treatment

(>75 and >95% in most), with long-lasting pain relief with
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a reduction in mean Numerical Rating Scale of 76.2% after 6

months and of 71.5% after 12 months. No significant adverse

events were observed.

6. Prevention

Traumatic neuroma patients generally suffer from low

life quality caused by function abnormalities, chronic pain

syndrome (traumatic neuropathic pain) which may continue

for weeks or years, and psychological issues (26, 102, 103).

As prevention is better than cure, the first defense line

against traumatic neuroma is the prevention of such events.

Reconnecting the two ends of the injured nerve after nerve

transection is important to obtain a better outcome and decrease

the incidence of traumatic neuroma (104).

Several techniques have emerged to prevent traumatic

neuroma based on better surgical treatment of peripheral

nerve injuries. The incidence of developing traumatic neuroma

increases along with the application of electrocoagulation or

cryo-neurolysis, compared with other methods such as tight

ligation or scissors cut and CO2 laser, indicating that applying

the right neurectomy method helps to prevent traumatic

neuroma (48, 49). Furthermore, some studies have investigated

how the direction of nerve cutting can prevent traumatic

neuroma formation, and they found that oblique nerve cutting

displayed a better outcome compared with perpendicular

or transverse cutting. This phenomenon occurred majorly

because oblique nerve cutting leaves long and short nerve

fibers, where a growth pathway will be formed between them

(50). Amputated or untreated peripheral nerve injuries have

a higher incidence of traumatic neuroma formation than

neurorrhaphy (51). Direct nerve repair, on the other hand,

can be divided into epineural repair and grouped fascicular

repair and requires a tension-free environment and microscope

magnification to obtain better recovery and prevention of

traumatic neuromas (52).

NGF was experimentally proved to inhibit NGF decreasing

neuroma formation, and minimizing neuropathic pain in

traumatic neuroma formation after peripheral nerve injury (14),

by applying an antibody against a specific receptor (trkA),

or antibody against brain-derived neurotrophic factor (BDNF)

which is usually upregulated after nerve injury by NGF (56).

Fibrin glue proves its effectiveness in peripheral nerve repair

by reducing the inflammatory response and improving axon

regeneration. Also, Davis et al. showed that the continuous

release of local tacrolimus (FK506) to repair site cloud actively

inhibits neuroma formation (57). They used 3D-printing

technology to create a polyethylene Y-shape conduit loop, where

the nerve will be connected instead of direct connection to

autografts. Other studies pointed out that the use of stem cells

could improve nerve regeneration and possibly reduce neuroma

formation, which could be a potential advanced traumatic

neuroma prevention method (58, 59).

7. Experimental neuroma model

Experimental research attaches great importance to the

treatment and management of traumatic neuromas. Over the

years, with an enormous amount of neuroma models proposed

in different animals, there is no model that could be of reference,

for each model has its own strengths and weaknesses (105).

Rats are the most common species studied in animal models

of traumatic neuroma, for the anatomy of rat nerves is well-

established and similar to human anatomy (58, 86, 106–109).

Besides, themodel has a large number of standardized functional

tests, making the experimental results easy to evaluate (110, 111).

However, one of the major drawbacks of the rat models is that

peripheral nerve regeneration is much faster in rodents than in

humans, and made worse by the fact that only relative short

nerve gaps can be obtained in rodents, making it difficult to

compare this in vivo model with humans and to further apply

treatment into clinical trials. Compared to rats, limiting further

use of these mice models.

Rabbits used to be common traumatic neuroma models

(112–115). Compared with mice models, rabbits yield longer

regeneration time, worse nerve regeneration, and longer gaps

which resembles humans more (116). However, the major

disadvantage of the rabbit neuroma models is that rabbit

nerve anatomy and limb muscle function differ significantly

from human beings (117). Although similar to human beings,

Primates are rarely used in research because of ethical

concerns (118).

According to the research, the sciatic nerve, saphenous

nerve (48), sural nerve (119), and tibial nerve (120, 121)

can be used for modeling. Among these nerves, the sciatic

nerve has gradually become the most common site for the

animal model of a traumatic neuroma given the fact that the

sciatic nerve is easy to expose and observe, while others are

rarely used now (58, 86, 106, 107). After exposure of the

sciatic nerve and its trifurcation under the microscope, the

nerve is sharply dissected 3–10mm distal from the trifurcation

(108, 113, 114). To prevent spontaneous regeneration of the

distal nerve stump, at least 10mm of the distal nerve stumps

should be removed and discarded (106–108). Finally, the

presence or absence of a traumatic neuroma was determined

by gross observation, ultrasound, hematoxylin-eosin staining,

and immunofluorescence (106, 122). After reaching the

predetermined time of the experiment or the growth and

formation of the neuroma, the animals were sacrificed, and the

nerve stump on the severed side and the contralateral normal

nerve were harvested for neuroma adhesion evaluation, weight

ratios, western blot analysis, and histological analysis.
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8. Advances in research

In order to cover and cope with the recent advances and

findings of traumatic neuromas of peripheral nerves, research

has been conducted to improve and decrease the scientific

gaps in this issue. Agarwal et al. (40) assessed the role of

using imaging tools (high-resolution ultrasonography and MR

neurography) and precise anatomical localization in diagnosing

peripheral mononeuropathy. With IRB consent, a hospital-

based prospective analytical investigation was conducted on

180 peripheral nerves in 131 individuals with symptoms of

peripheral mononeuropathy in a context with limited resources.

Generally, the proton density fat-saturated MR sequence

had the best diagnosis accuracy (93.89%), followed by high-

resolution ultrasonography (80%). The proton density fat-

saturated sequence showed the maximum sensitivity, whereas

the T1 MR sequence had the highest specificity. It was

determined that the cumulative diagnostic accuracy of both

modalities was 93.33%, with an 80% negative predictive value.

Ultrasound and MRI revealed nerve interruption cases, but

MRI was more effective at identifying neuromas. With the

development of devices with a higher frequency and enhanced

MR field strength, imaging of peripheral nerves is more

accurate. Nerve imaging permits anatomical delineation and

identification of the precise location of involvement. This

comparative analysis highlights the significance of imaging in

detecting peripheral nerve diseases, with an accuracy of 93.89%

for MRI, which might act as the imaging gold standard. High-

resolution ultrasonography can serve as a viable screening

method since it is faster, more cost-effective, and has an accuracy

of 80%, which is equivalent to other diagnostic techniques. The

authors concluded that these two imaging techniques are not

mutually exclusive. Instead, they complement one another and

can be utilized in tandem to diagnose peripheral neuropathies

using imaging.

Around 2.8% of hospitalized trauma patients suffer from

acute peripheral nerve damage (123). Consequent significant

disorder and socioeconomic effects have prompted continued

research efforts on this subject (124). If a tension-free direct

approximation of the nerve stumps is achievable, the epineural

nerve suture is the treatment option. However, if tension-free

coaptation is impossible, the current gold standard is autologous

nerve transplantation (ANT) (125). Nevertheless, given the

restricted accessibility of donor nerves and the morbidity

associated with donor sites, new procedures are required to

assist in peripheral nerve surgery. Nowadays, it is generally

accepted that the material utilized to assist peripheral nerve

regeneration should ideally consist of a totally biodegradable

matrix that does not negatively impact regeneration during

biodegradation (126). Despite significant advances in tissue

engineering, no substance or bio-mimicking idea has yet

demonstrated improved peripheral nerve regeneration results

compared to the ANT, the current gold standard for bridging

peripheral nerve deficits (125). In addition to the well-existing

substances, chitosan is a relatively potential new substance in

peripheral nerve regeneration. Due to its global availability, low

cost, complete biodegradability, safe byproducts, and potentially

compromising on the regeneration process (127). According

to the literature, chitosan was shown to promote axonal

regeneration [Kanazawa et al. (128), Stenberg et al. (129)],

minimize severe scarring and enhance functional recovery (130),

and inhibit further neuroma development peripheral nerve

damage (131).

Relying on the processing of chitosan, the degree of

acetylation (DOA) might vary, influencing both the molecular

weights and solvent properties (132). In addition, the DOA

has been found to be a factor that influences the survival,

proliferation, and cellular activity of regeneration-supporting

cells such as SC (133). However, the accurate adjustments

of chitosan matrices remain problematic, as the mechanical

rigidity, the biodegradation period, the spatial architecture, and

the sterilization process all have the potential to influence the

axonal regeneration process and must be considered across the

manufacturing system (134). Furthermore, chitooligosaccharide

(COS), a byproduct of chitosan, has been discovered to

stimulate cell proliferation and inhibit apoptosis in SC, the

essential cell for adequate axonal regeneration (135, 136).

Furthermore, Wang et al. (137) contributed stimulating effects

of COS to an expedited cell cycle leading to enhanced SC

proliferation. Additionally, COS boosts the CCL2 production

by down-regulating the miR-327 of the SC, resulting in

improved migration to the damaged area (138). He et al. (139)

examined the anti-apoptotic impacts of carboxymethylated

chitosan (CMC) on SC by lowering caspase-3,−9, and Bax

activities and enhancing Bcl-2 activities in CMC-treated SC.

To protect the SC from oxidative stress, COS led to a decline

in malondialdehyde activity and an increase in superoxide

dismutase (SOD) activity. Subsequent in vivo tests on a

rabbit model of axonotmesis revealed that daily intravenous

injections of COS for 6 weeks dramatically enhanced peripheral

nerve regeneration. Interestingly, the amount of regenerated

myelinated nerve fibers, the thickness of the myelin sheath, and

the compound muscle action potential (CMAP) as a measure

of electrophysiological recovery were considerably greater in

COS-treated individuals.

Traumatic neuroma-caused traumatic neuropathic pain has

long bothered doctors and patients, scientists widely debate

the reasons for traumatic neuropathic pain, and the therapy is

difficult. Uncertain is the clinical therapy of painful neuroma.

Specialists have developed numerous therapeutic methods in

this discipline. However, there is currently no accepted standard

treatment (26). Treatment strategies have been explored in

animals and people, but pharmacotherapies (antidepressants,

antiepileptics) continue to be the core of the care of traumatic

neuropathic pain. Nerve stump transpositions into a muscle,

vein, or bone are regarded as effective, traditional surgical
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treatments for persistent conditions, especially using soft tissue

(83, 131, 140), and the usage of conduits (24, 131, 141, 142);

which reflected an effective potential in traumatic neuropathic

pain treatment. In recent decades, novel surgical procedures,

including tube-guided nerve capping, electrical stimulation,

and adipose autograft, have significantly increased the variety

of treatments for traumatic neuropathic pain (143). Balcin

et al. (144) hypothesized that nerve transplantation into a vein

might limit the growth of painful neuromas. Contrasted the

transposition of the nerve stump into a nearby vein or muscle as

a surgical therapy for a painful neuroma. According to their pre-

operative proportions in the muscle group 3 and 12months after

surgery, translocation into a vein resulted in decreased intensity

and evaluating pain levels and enhanced sensory, as measured

by the visual analog scale and the McGill pain score. This was

connected with greater activity levels and enhanced function. In

addition, the transposition of the nerve stump into an adjacent

vein is favored over its relocation into a muscle. Myofibroblasts

are strongly expressed in neuromas, and it is believed that they

contribute to pain by compressing the collagen matrix around

the sensitive non-myelinated fibers that proliferate to produce a

neuromatous protuberance (83). Krishnan et al. (83) found that

covering painful peripheral nerve neuromas with vascularized

soft tissue might be an effective but difficult therapeutic strategy.

For years, all types of nerve conduits have been used to repair

nerve abnormalities (145), and have also been launched to treat

painful neuromas (141).

9. Conclusion and future directions

Traumatic neuromas have long been a clinical challenge

for doctors and researchers. While the standard classification

system has been set based on Seddon’s and Sunderland’s theories,

the imaging technology remains in dispute as opinions are

divided in selecting the optimal tools among US, MRI, HRUS,

EMG, and ect. The diagnosis of traumatic neuromas, with the

utility of imaging tools, is based most generally on the previous

medical history of nerve injury or operation and symptoms

including pain hypersensitivity and the presence of trigger

points that causes neuralgic pain. Concerning the management

of traumatic neuromas, while surgical procedures are still

the most effective treatment method, researchers are eager to

develop more non-surgical methods including medication and

physical therapy for treatment and prevention of traumatic

neuromas. Although clinicians have yet to reach a consensus

on a standardized management strategy of traumatic neuromas,

it is clear that proper surgical procedures are vital for the

prevention of traumatic neuromas. The future perspectives for

management of traumatic neuromas, therefore, is most likely

the prevention strategy during and post-operation, including

an improved surgical approach, or the application of implants

with a sustained release of medication that guides proper

nerve regeneration.
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