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Although numerous adverse e�ects of alcohol addiction on health, behavior,

and brain function were widely reported, the neurobiological mechanism of

alcohol dependence remains largely unknown. In this study, a total of twenty-

nine patients with alcohol dependence and twenty-nine status-matched

normal controls (NCs) were recruited. Percent amplitude of fluctuation (PerAF)

was applied to identify alcohol-related brain activity deficits. We found

that alcohol dependence was associated with widespread di�erences in

the left orbitofrontal cortex, right higher visual cortex, right supramarginal

gyrus, right postcentral gyrus, and bilateral cerebellum posterior lobe with

decreased PerAF, but no brain areas with increased PerAF di�erences were

found. ROC curve showed that decreased PerAF revealed extremely high

discriminatory power with a high AUC value of 0.953, as well as a high

degree of sensitivity (96.6%) and specificity (86.2%), in distinguishing patients

with alcohol dependence from NCs. In the alcohol dependence group, the

amount of daily alcohol consumption showed significant negative correlations

with the right cerebellum posterior lobe and right higher visual cortex. These

findings suggest that the cerebellar-visual-orbitofrontal circuit was disturbed

by alcohol dependence. The proposed new method of PerAF may be served

as a potential biomarker to identify the regional brain activity deficits of

alcohol dependence.
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Introduction

Alcohol use is a leading risk factor for disease burden worldwide, accounting for

nearly 10% of global deaths among populations aged 15–49 years, and poses dire

ramifications for future population health in the absence of policy action today (1).

Alcohol addiction, a serious public problem, is characterized by morbid, excessive, and

continued alcohol consumption. It may have substantial heritability (2) and may lead

to high morbidity or mortality. Although alcohol consumption would relieve some

negative emotions, numerous adverse effects of alcohol addiction on health, behavior,

and brain function are widely reported, which may bring cancer, vehicle accidents,

cognitive disorder, and liver cirrhosis (3, 4).
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Rapid advances in neuroimaging techniques promote

researchers to further explore the neurobiology mechanism of

alcohol addiction and its consequence (5, 6). Brain imaging

methods have been widely used to evaluate the relationships

between the adverse effects of excessive alcohol use on regional

brain areas, neural circuitry, and behavior in humans (5).

Alcohol dependence has been found to be related to regional

activity deficits in several brain areas (3, 5, 7, 8). Resting-

state functional MRI (rs-fMRI) has developed rapidly in

recent years, enabling it to identify these changes and their

relationships with addictive symptoms (9). Therefore, the rs-

fMRI may be an applicable method to address the alteration

of regional brain activity associated with alcohol dependence

(10). Although an increasing number of studies have applied to

insight into the neuroimaging findings of alcohol dependence

(3, 5, 7, 8, 11, 12), its neurobiological mechanism remains

largely unknown.

Recently, the amplitude of low-frequency fluctuations

(ALFFs) has been widely applied to studying the regional brain

activity of alcohol dependence (3). It has served as an early

biological biomarker to monitor the spontaneous neuronal

fluctuation of regional brain activity of psychiatric disorders,

such as alcohol dependence due to its high test-retest reliability

(3, 10, 13–18). However, this method was easy to be influenced

by cardiac noise and physiological high-frequency respiratory.

Although the rs-fMRI design did not have an explicit task, a

similar metric to the percentage of signal change for the rs-

fMRI data can be formulated, by calculating the percentage of

blood oxygen level-dependent (BOLD) fluctuations relative to

the mean BOLD signal intensity for each time series, namely,

Percentage Amplitude Fluctuation (PerAF). The PerAF could

avoid the confounding mixture from voxel-specific fluctuation

amplitude in fractional ALFF and seems to be a promising

metric of voxel-level spontaneous BOLD activity. The PerAF

has been proven to have the best reliability relative to regional

homogeneity, ALFF, and degree centrality (19–21). Therefore,

the PerAF method may be more sensitive to describe the alcohol

dependence-induced regional brain activity alternation relative

to other rs-fMRI methods. However, its application to alcohol

dependence has not been studied.

Excessive and continued alcohol consumption could lead to

a variety of neuroanatomical and neurochemical alternations in

the neural circuitry, monoamine systems, neuropeptide systems,

ion channels, and amino acid neurotransmitter systems (22).

These changes are mainly reflected in altered regional brain

activity or neural circuitry (23). Therefore, we hypothesized

that alcohol dependence was associated with alcohol-induced

alternation in some specific regional brain areas or neural

circuitry. To test the hypothesis, we utilized the PerAFmethod to

evaluate the alternation of regional brain activity in patients with

alcohol dependence relative to normal controls (NCs), which

may yield promoting us to insight into the neurobiological

mechanism underlying alcohol dependence.

Materials and methods

Subjects

A total of twenty-nine patients with alcohol dependence

(20 males, 9 females; age, 48.62 ± 6.81 years; education, 9.52

± 2.87) and twenty-nine age-, sex-, and education-matched

NCs (18 males, 11 females; age, 48.48 ± 7.05 years; education,

8.48 ± 3.1 years at school) were recruited from our hospital

and community in this study. All patients should meet the

diagnostic criteria of alcohol use disorders based on DSM-IV.

The data of severity of the alcohol dependence questionnaire

(SADQ), alcohol use disorders identification test (AUDIT), and

life history (psychiatric disorders, years of drinking, and daily

alcohol consumption) were recorded.

All recruited subjects have not taken any treatment by

medications before. All subjects did not report any history of

other substance dependence or abuse, pathological brain lesions

or head trauma, and foreign implants, as well as any history

of neurological disorders or psychiatric illnesses (5, 7, 8). This

study was approved by the Ethical Committee of our hospital.

All subjects finished their written informed consent.

MRI data collection

We used a 3.0-Tesla MR scanner (Trio, Siemens, Erlangen,

Germany) to finish the rs-fMRI session. First, a total of

176 slices of high-resolution anatomical volumes in a sagittal

orientation [repetition time/echo time (TR/TE) = 1,950/2.3ms,

gap/thickness = 0/1mm, field of view (FOV) = 244mm ×

252mm, acquisition matrix = 248 × 256, and flip angle = 9◦]

were collected. Then, a total of 240 functional volumes (TR/TE

= 3,000/25ms, gap/thickness = 0.5/5.0mm, flip angle = 90◦,

acquisition matrix = 32 × 32, and FOV = 210mm × 210mm)

were collected. Before the rs-fMRI scan, all subjects were asked

to go to the toilet and rest quietly for at least 30min. During the

rs-fMRI scan, all subjects should wear black blinders and sponge

earplugs. All subjects were told to relax and think nothing.

Data analysis

The rs-fMRI data preprocessing was analyzed using

RESTplus version 1.2 (http://www.restfmri.net) toolbox,

including the form transformation, removing the first 10

functional volumes, slice timing and head motion correction,

spatial normalization, smooth with 6 × 6 × 6mm full-width

Gaussian kernel, linear detrending, and filter (low frequency,

0.01–0.08Hz). In our study, no subjects have a head motion

with more than 1.5mm maximum translation in any direction

and/or more than 1.5◦ of rotations. The Friston 24 head

motion parameters (6 head translation, 6 head rotation, and
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12 corresponding squared items) were used to regress out the

head motion effects (24–27). The remaining functional volumes

were spatially normalized to Montreal Neurological Institute

(MNI) space. All volumes were resampled and transformed the

resolution into 3 × 3 × 3 mm3. The covariates of head-motion

parameters, white matter, global mean signal, and cerebrospinal

fluid signal were removed using linear regression analysis.

The PerAF method is the percentage of the resting-state

frequency domain of the BOLD signal relative to the mean

signal intensity of each time series. Finally, the PerAF, mPerAF,

and z-transformation of zPerAF were generated.

Statistical analysis

Unpaired two-sample t-tests were applied to compare

the differences in demographic characteristics (age, years of

education, and AUDIT score) between patients with alcohol

dependence and NCs. The sex difference was calculated using

the chi-square (χ2) test. The threshold of p < 0.05 was used to

determine the differences. The statistical analysis was performed

using IBM Statistical Package for the Social Sciences version

21.0 (SPSS 21.0). For rs-fMRI data, first, one sample t-tests were

used to compare the within-group differences in brain areas

for alcohol dependence or NCs, respectively. The threshold of

voxel-wise p < 0.001 and cluster-level p < 0.001 was used to

determine the between-group differences for one-sample t-tests,

which was corrected by a false discovery rate (FDR). Then, a

two-sample t-test was used to analyze the PerAF differences in

regional brain activities between alcohol dependence and NCs,

which was corrected by AlphaSim using the threshold of voxel-

wise p < 0.01 and cluster-level p < 0.05 (minimum continuous

cluster voxel volumes ≥1,080 mm3). Age, years of education,

and sex were utilized as nuisance covariates of no interest for

these analyses.

Recently, the receiver operating characteristic (ROC) curve

was increasingly used to identify whether one imaging

parameter could be served as a potential biomarker to

discriminate between two different groups (10, 13, 15, 28–30). In

this study, we used the ROC curve to evaluate the discriminatory

ability of these regional brain deficits in distinguishing patients

with alcohol dependence from NCs. We applied Pearson

correlation to evaluate the correlations between behavioral data

and regional brain deficits. The threshold of p < 0.05 was used

to determine the differences.

Results

Sample characteristics

The demographic results of the two groups are presented

in Supplementary Table 1. Patients with alcohol dependence

differed from the NCs in sex (χ2 = 0.31, p = 0.581), age (t =

0.10, p = 0.94), and education level (t = 1.32, p = 0.19). NCs

showed lower AUDIT scores than that alcohol dependence (t =

20.35, p < 0.001). The mean duration of drink history, mean

SADQ score, and mean daily alcohol consumption was (27.93

± 10.28) years, (20.34 ± 6.89), and (239.66 ± 107.22) ml in the

patient group, respectively.

PerAF di�erences

The one-sample statistical maps showed that the covered

PerAF differences in regional brain areas of patients with

alcohol dependence (Figure 1A) were smaller than that of NCs

(Figure 1B). The between-group statistical maps exhibited that,

compared with NCs, patients with alcohol dependence showed

decreased PerAF differences in the right supramarginal gyrus

(BA 40), left orbitofrontal cortex (Brodmann’s area, BA 11), right

higher visual cortex (BA 18, 19, and 37), right postcentral gyrus

(BA 2), and bilateral cerebellum posterior lobe, but no increased

PerAF differences in brain areas were found between patients

with alcohol dependence and NCs (Table 1; Figures 2A–C).

ROC curve

Since the regional brain areas that exhibited between-group

differences may be potential biomarkers to distinguish patients

with alcohol dependence from NCs, we extracted the mean

PerAF values of these regional brain areas for ROC curve

analysis (Figure 3). Our findings suggest that these specific

regional brain areas had a high degree of discriminatory power

with an extremely high AUC value of 0.953 (Figure 4). Further

diagnostic analysis exhibited a high degree of sensitivity (96.6%)

and specificity (86.2%) of the PerAF with a cutoff value of 0.542.

Pearson correlation analysis

In the patient group, several correlation analyses between the

demographic results and the PerAF values of the regional brain

areas that exhibited differences between patients with alcohol

dependence and NCs were calculated. Our data showed several

significant correlations in the patient group (Figures 5A–D). The

SADQ score exhibited a positive correlation with AUDIT score

(r = 0.542, p= 0.002; Figure 5A).

The amount of daily alcohol consumption showed

significant negative correlations with PerAF values of right

cerebellum posterior lobe (r = − 0.459, p = 0.012; Figure 5B)

and right higher visual cortex (right lingual gyrus, r =− 0.349,

p = 0.063, Figure 5C; right middle occipital gyrus, r =

−0.378, p = 0.043, Figure 5D). Furthermore, the correlation

between the right cerebellum posterior lobe and the amount
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FIGURE 1

One sample t-test di�erences of alcohol dependence and NCs in PerAF maps. (A) One sample t-test di�erences of alcohol dependence. (B)

One sample t-test di�erences of NCs.R, right; L, left; NCs, normal controls; PerAF, percent amplitude of fluctuation.

TABLE 1 The PerAF di�erences between patients with alcohol dependence and NCs.

Brain regions of peak coordinates R/L BA Voxel volume (mm3) t-score of peak voxels MNI coordinates

X, Y, Z

Cerebellum Posterior Lobe L N/A 1,728 −3.01 −48−75−36

Cerebellum Posterior Lobe R N/A 1,269 −2.99 51−48−33

Medial Frontal Gyrus L 11 2,646 −3.11 −12 45−15

Lingual Gyrus, Cuneus R 18 22,977 −4.42 12−87−9

Middle Occipital Gyrus, Middle Temporal Gyrus R 18, 19, 37 1,593 −2.84 57−72 15

Supramarginal Gyrus R 40 2,511 −3.01 57−51 24

Postcentral Gyrus R 2 1,080 −2.97 42−42 66

The statistical threshold was set at a corrected significance level of individual two-tailed voxel-wise p < 0.05 using an AlphaSim corrected threshold of cluster p < 0.05.

PerAF, percent amplitude of fluctuation; NCs, normal controls; R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neurological Institute; N/A, not applicable.

of daily alcohol consumption was still significant even after

Bonferroni correction.

Discussion

This study is the first to utilize the proposed PerAF

method to identify alcohol-induced regional brain activity and

its relationship with alcohol consumption. In our study, the

following three main results were reported: (a) only decreased

PerAF differences in regional brain areas between patients

with alcohol dependence and NCs were reported, including

the left orbitofrontal cortex, right higher visual cortex, right

supramarginal gyrus, right postcentral gyrus, and bilateral

cerebellum posterior lobe. These brain areas may be interpreted

as impaired regional functional activity caused by long-term

alcoholism; (b) the regional brain areas that exhibited between-

group differences exhibited extremely high discriminatory

power in distinguishing the patients with alcohol dependence

from the NCs. Therefore, the proposed PerAF may be served

as a potential predictor to identify the alcohol-induced regional

brain activity deficits; and (c) in the alcohol dependence group,

the amount of daily alcohol consumption showed significant

negative correlations with regional brain activity deficits.

Patients with alcohol dependence have been found to be

associated with impaired balance and coordinating movement

(31). Poor regulation of coordinating movement was one of the

core characteristics of alcohol dependence (7, 8). The cerebellar

circuits are associated with motor control and driving behavior,

which have been shown to be impaired by alcohol dependence

and alcohol intoxication (5, 7, 32, 33). The cerebellum posterior

lobe is associated with the regulation of coordinating movement

and is particularly vulnerable to alcoholism (13, 31, 34).
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FIGURE 2

Altered PerAF in patients with alcohol dependence relative to NCs. (A) Cerebral viewer without cerebellum, (B) cerebral viewer in cerebellum, and

(C) axial view with whole brain. Blue color, decreased PerAF areas. R, right; L, left; PerAF, percent amplitude of fluctuation; NCs, normal controls.

Functional studies have shown altered regional neural brain

activity (3, 8) and resting-state functional connectivity in the

cerebellum in patients with alcohol dependence (5, 7, 35–

37). Morphological studies also found decreased gray matter

volumes in this area (38, 39), and this area may predict

the relapse risk of alcoholism (40). Our results of decreased

PerAF differences in the bilateral cerebellum posterior lobe

were consistent with these findings. Furthermore, the extent

of damage to the cerebellum positively correlated with the

amount of daily alcohol consumption. These findings may be

interpreted as functional impairment of the cerebellum caused

by alcohol dependence.

The higher visual areas are divided into two distinct

visual pathways, namely, the object and spatial property

processing pathways (7, 29, 41–43). The spatial property

processing pathway runs from the occipital lobe and up to

the posterior parietal lobe, which is also essential for guiding

movements. Damage to this pathway may disrupt the ability

of visual location. The decreased functional connectivity in

the higher visual cortex was reported in previous studies

(5, 7). Chen et al. found decreased functional connectivity

density of the visual pathway, and the visual pathway

exhibited a high degree of discriminatory power with an

extremely high sensitivity of 91.7% and specificity of 91.7%

(7). In this study, decreased PerAF differences in the spatial

property processing pathway were reported, which negatively

correlated with the amount of daily alcohol consumption. In

alcoholics, the concept of inefficiency includes difficulties in

isolating irrelevant information (44), which is necessary for

discriminating the targets from the distractors (5). Therefore,
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FIGURE 3

Beta value of between-group di�erences in PerAF in regional brain areas. PerAF, percent amplitude of fluctuation; NCs, normal controls; R, right;

L, left; CPL, cerebellum posterior lobe; MFG, medial frontal gyrus; LG, lingual gyrus; MOG, middle occipital gyrus; SG, supramarginal gyrus; PG,

postcentral gyrus.

FIGURE 4

ROC curve of PerAF di�erences in brain areas. ROC, receiver

operating characteristic; PerAF, percent amplitude of fluctuation.

our findings of decreased PerAF differences in the spatial

property processing pathway may reflect functional impairment

of the visual pathway.

Alcoholism has been found to cause anatomical and

functional damage to cognitive function, especially to verbal

and spatial working memory (45, 46). Luo et al. and Tu et al.

have reported impaired regional neural activity and functional

connectivity of the orbitofrontal cortex, and the extent of

damage of the orbitofrontal cortex positively correlated with

years of drinking (5, 8). In this study, decreased PerAF difference

in the orbitofrontal cortex was found in alcohol dependence

compared with the NCs. The orbitofrontal cortex is thought

to play an important role in the output of executive function

and compulsive drug-seeking behaviors (47). In this framework,

the decreased PerAF area in the orbitofrontal cortex may be an

important etiology of executive function deficits and compulsive

drug-seeking behaviors in patients with alcohol dependence.

Limitations

However, some limitations should be noted. First, resting-

state hemodynamic fluctuations (as well as EEG/MEG resting

state activations) are prone to skills (e.g., musicians), personality,

or psychiatric disorders. However, these factors are not

considered in this study. Second, relatively small sample size

was included. Third, some kind of psychiatric problems for

patients with alcohol dependence is not mentioned in this study.

Fourth, resting state “activations” are not activations in the true
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FIGURE 5

Pearson’s correlation. (A) Correlation between SADQ and AUDIT, (B) correlation between daily alcohol consumption and right cerebellum

posterior lobe, (C) correlation between daily alcohol consumption and right lingual gyrus, and (D) correlation between daily alcohol

consumption and right middle occipital gyrus. SADQ, severity of alcohol dependence questionnaire; AUDIT, alcohol use disorders identification

test; PerAF, percent amplitude of fluctuation.

neurophysiological sense but hemodynamic fluctuations and

may be associated with a couple of negative emotions.

Conclusion

The proposed method of PerAF may be served as a

potential sensitivity biomarker to identify alcohol-induced

regional brain activity deficits. Our findings have shown

altered regional brain activity deficits in the cerebellar-

visual-orbitofrontal cortex with an extremely high degree of

discriminatory power. These changes may be the etiology of

executive function deficits, compulsive drug-seeking behaviors,

and poor regulation of coordinating movement (e.g., driving

behavior) in patients with alcohol dependence, which could

expand our understanding of the pathophysiological mechanism

of alcohol dependence.
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