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To screen for common target genes in intracranial aneurysms (IA) and type

2 diabetes mellitus (T2DM), construct a common transcriptional regulatory

network to predict clusters of candidate genes involved in the pathogenesis

of T2DM and IA, and identify the common neurovascular markers and

pathways in T2DM causing IA. Microarray datasets (GSE55650, GSE25462,

GSE26969, GSE75436, and GSE13353) from the GEO database were analyzed

in this research. Screening of the IA and the T2DM datasets yielded a

total of 126 DEGs, among which 78 were upregulated and 138 were

downregulated. Functional enrichment analysis revealed that these DEGs

were enriched for a total of 68 GO pathways, including extracellular matrix

composition, coagulation regulation, hemostasis regulation, and collagen

fiber composition pathways. We also constructed transcriptional regulatory

networks, and identified key transcription factors involved in both the

conditions. Univariate logistic regression analysis showed that ARNTL2 and

STAT1 were significantly associated with the development of T2DM and IA,

acting as the common neurovascular markers for both the diseases. In cellular

experiments, hyperglycemic microenvironments exhibited upregulated STAT1

expression. STAT1 may be involved in the pathogenesis of IA in T2DM

patients. Being the common neurovascular markers, STAT1 may acts as novel

therapeutic targets for the treatment of IA and T2DM.

KEYWORDS
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Introduction

Diabetes mellitus (DM) is a clinical syndrome characterized by high blood glucose

levels due to a combination of genetic and environmental factors. It is categorized as

type 1 (T1DM) or type 2 (T2DM) depending on the underlying cause. T2DM is the more

common type of DM, and it is primarily manifested by insulin resistance or relatively

insufficient insulin secretion (1). Furthermore, T2DM is usually accompanied by micro

andmacroangiopathy, including diabetic eye disease, diabetic nephropathy, diabetic foot,

cerebral infarction, myocardial infarction, and other manifestations, seriously affecting

the quality of life and life expectancy of patients (2–4). However, effective intervention
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in reducing blood glucose reduces the incidence of

cardiovascular events. Daqing et al. found that a 6-year

lifestyle intervention reduced the incidence of diabetes and

cardiovascular events (heart attack, cerebral infarction, and

heart failure) by 49 and 26% over 30 years, in people with

impaired glucose tolerance (5).

Themolecular mechanisms associated with the development

of aneurysms are complex. Although the cause of intracranial

aneurysms (IA) is still poorly understood, it is thought

to be a result of a combination of factors, including

hemodynamic, morphological, and clinical factors (6–8).

Hemodynamic disorders can induce endothelial dysfunction,

induce macrophages to release pro-inflammatory cytokines and

matrix metalloproteinases (MMPs) to digest the extracellular

matrix (ECM), and induce apoptosis of vascular smooth muscle

cells (SMCs), resulting in the loss of vessel wall integrity

and development of aneurysm (9–11). In addition, vascular

morphological factors are also important in the development

of aneurysm. High glucose-induced reactive oxygen species

(ROS) may be involved in the activation of c-Jun N-terminal

kinase (JNK) pathway, which in turn triggers caspase-3 and

promotes apoptosis of vascular endothelial cells, leading to

changes in the vascular structure (12). Additionally, ROS can

induce vascular SMC senescence and aneurysm formation

by activating nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-κB) (13). In contrast, immunosuppressants

can limit aneurysm growth by reducing JNK activation,

decreasing the inflammatory response, and reducing endothelial

cell activation (14).

These studies suggest that T2DM can induce the

development of IA; however, the underlying mechanism is

unclear. The hemodynamic and vascular structural damage

induced by T2DM is considered to be an important factor

in the development of aneurysms. Free fatty acid (FA)

concentrations are elevated in the blood of diabetic patients due

to excessive release of adipose tissue and its reduced uptake by

skeletal muscles (15–17). The liver increases very low density

lipoproteins (VLDL) production and cholesteryl esters synthesis

to eliminate the excess FA. Free cholesterol contributes to

atherosclerosis by activating toll-like receptor proteins (TLRs)

and prolonging the activation of p38 mitogen-activated protein

kinase (MAPK), thereby causing degenerative variations in the

arterial wall and promoting the development of aneurysms

(18, 19). A few studies have shown that platelet reactivity is

elevated in T2DM patients, leading to impaired coagulation

regulation, increasing the risk of cardiovascular events (20).

In addition, an increase in plasma coagulation factors (e.g.,

factor VII and thrombin) and a decrease in endogenous

anticoagulants (e.g., thrombomodulin and protein C) in DM

patients, increases the risk of thrombosis, which can cause

altered hemodynamics and aneurysm development (21, 22). A

decrease in the expression of MMP-2 and 3 and an increase in

the expression of tissue inhibitor of metalloproteinases (TIMP),

in response to high glucose induction, can cause vascular lesions

that induce aneurysm formation (23).

In previous studies, diabetes and IA prevalence and growth

were paradoxically negatively associated, and this protective

effect may have been attributed to diabetes drugs (24). As a

result, the specific relationship between diabetes and IA remains

unclear (25). Diabetes is a risk factor for vascular dysfunction

(26). It is a consequence of vascular dysfunction that IA

occurs (27, 28). Recent developments in bioinformatics have

provided us with an effective method for establishing the link

between diabetes and neurovascular diseases, including IA (29–

36). Transcription factors (TFs) are an important breakthrough

in the study of disease associations (37–40). Currently, it is

unclear whether TFs in peripheral blood can serve as effective

markers for T2DM and IA. Therefore, identifying TFs that are

differentially expressed in peripheral blood of T2DM and IA

patients may provide a new avenue for the prevention and

diagnosis of T2DM and IA.

In order to further explore the association between

T2DM and IA, we analyzed the correlation between the

differentially expressed genes (DEGs) common to IA and T2DM

through multi-omics analyses and constructed a transcriptional

regulatory network by using logistic regression curve analysis.

The results of this analysis provide a theoretical basis for IA

pathogenesis in T2DM patients and provide theoretical support

for its diagnosis and treatment.

Methods

Data acquisition and pre-processing

For the following keywords: diabetes mellitus, type 2

diabetes mellitus, or intracranial aneurysms, we searched the

NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). In

order to screen the dataset and ensure that relevant data

was recorded, the following criteria were used: (i) samples

included both normal and disease samples; (ii) the dataset

was capable of completing expression profiling based on the

array method; (iii) the species was restricted to Homo sapiens;

and (iv) raw data was available for analysis. The IA-associated

gene expression microarray datasets (GSE26969, GSE75436, and

GSE13353) and T2DM-associated gene expression microarray

datasets (GSE55650 and GSE25462) were obtained via the

Gene Expression Omnibus (GEO) database. GSE26969 dataset

included three unruptured IA and the corresponding control

samples, GSE75436 included 15 IA and the corresponding

superficial temporal artery samples, and GSE13353 included

eight unruptured IA samples. The GSE55650 dataset included

12 T2DM and 11 control samples with family history of

DM, while the GSE25462 dataset included 10 T2DM and

25 control samples with family history of DM. Thus, we

included a total of 26 disease and 18 control samples for
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TABLE 1 Sources of data related to intracranial aneurysms and T2DM.

ID GSE number Platform Samples Diseases

1 GSE26969 GPL570 3 patients, 3 controls Intracranial arterial aneurysm

2 GSE75436 GPL570 15 patients, 15 controls Intracranial arterial aneurysm

3 GSE13353 GPL570 8 patients Intracranial arterial aneurysm

4 GSE55650 GPL570 12 patients, 11 controls Type 2 diabetes

5 GSE25462 GPL570 10 patients, 25 controls Type 2 diabetes

IA and 22 disease and 36 control samples for T2DM as

show in Table 1.

Di�erential expression analysis

R software (version 4.0.2) was used to process the download

matrix file and platform. Gene symbols were assigned to

the probe names corresponding to the IDs. The mean value

was chosen when multiple probes corresponded to one gene.

In addition, for each of the two disease categories, we

used the ComBat function in the sva (v3.40.0) package to

eliminate batch effects between multiple datasets and retain

the biological differences between the disease and control

samples. Thereafter, we normalized the samples using the

normalize Between Arrays function in the limma (v3.48.3)

package (41). Differential expression analysis (DEA) was

done individually for the IA and the T2DM datasets using

the limma package, and the thresholds for DEGs were

set as |log2FC| > 1 and FDR <0.05. Furthermore, the

intersection analysis is integrated in the dataset using Venn

Analytics (Venn).

Weighted co-expression network
construction and module identification

By analyzing gene expression data, WGCNA (Weighted

Correlation Network Analysis) constructs gene co-expression

networks (42). By analyzing association relationships between

genes, WGCNA categorizes genes into modules. Finally,

correlation analysis between these modules and sample

phenotypes is used to examine molecular features of specific

phenotypes. The expression profiles of the two disease categories

were integrated and the expression distributions of all the

samples were normalized using the normalizeBetweenArrays

function in the limma (v 3.48.3), and the genes in the top 25%

of the standard deviation (Ngene = 5,720) were selected for

subsequent analysis. Thereafter, we conducted weighted gene co-

expression network analysis (WCGNA) using the WGCNA (v

1.70-3) package (43), and the strength of association between

the nodes was determined by using the adjacency matrix. The

pickSoftThreshold function of WGCNA was used to calculate

the scale free fit index (R2) corresponding to different soft

thresholds, and the first soft threshold that marked the R2 > 0.9

was selected. The soft threshold β was set at 8. Subsequently,

we transformed the adjacency matrix into a topological overlap

matrix (TOM), to quantitatively describe the similarity of nodes

by comparing the weighted correlation between two nodes and

other nodes. Thereafter, we performed hierarchical clustering

to identify co-expression modules, each containing at least 50

genes. Lastly, we computed module eigengene (ME) and merged

the similar modules (abline= 0.1).

Identification of significant co-expressed
genes

Pearson correlations between ME and the disease types

were calculated and their significance was calculated using the

corPvalueStudent function. Finally, the intersections between

the gene modules that were significantly associated with both

the disease types and the commonDEGs of the two disease types

were taken as the target genes.

Construction of transcriptional
regulatory networks

We obtained 8,427 human-related transcriptional regulatory

relationships, including 795 TFs from the TRRUST (v2)

database, which collects a large number of manually-calibrated

TF-target regulatory interactions (44). Subsequently, we

extracted the transcriptional regulatory networks associated

with the target genes and visualized them using cytoscape

(v 3.8.0).

Enrichment analyses

The enrichGO function in the clusterProfiler (v 4.2.2)

package was used to enrich the set of genes of interest into GO
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entries, and those with a p-value of <0.05 were considered to be

significantly enriched (45). The samples were divided into high

and low expression groups based on STAT1 expression values.

Then the GSEA function in the clusterProfiler package was used

to screen for activated (p-value< 0.05 and NES> 1) or inhibited

(p-value < 0.05 and NES < 1) biological process (BP) pathways

in the different groups.

Western blot and cell culture for
detecting protein expression

The Shanghai Institute of Cell Biology, Chinese Academy of

Sciences has provided us with human umbilical vein endothelial

cell line (ECV-304). Cells were cultured in RPMI1640 medium

containing 10% FBS at 37◦C in a 5% CO2 incubator. The cells

were cultured in groups and given different concentrations of

D-glucose to stimulate ECV-304 cell line for the same time

(24 h), and the experiment was divided into two groups as

follows: (i) control group: Glucose 5.5 mmol/L; (ii) diabetic

group: Glucose 16.5 mmol/L. By using the BCA method,

total protein was extracted from the cells and quantified.

SDS-PAGE electrophoresis of 12% proteins was used for

separation, PVDF membranes were sealed with 5% skimmed

milk powder for 1 h at room temperature, rinsed three times

with TBST, incubated overnight at 4◦C with the primary

antibody, rinsed with TBST three times, then incubated at

room temperature for 1 h with the HRP-labeled secondary

antibody, rinsed three times, and then ECL-illuminated for color

development. The results were analyzed by chemiluminescence

imaging system.

ComPPI constructs protein interaction
networks

The ComPPI database (version 2.1.1) is a comprehensive,

open source database for analyzing experimental results

in biochemistry, molecular biology, proteomics, as well as

proteomic and interactomic research in bioinformatics and

network science, contributing to cell biology, medicine, and drug

design. STAT1 is the input gene and the result file of ComPPI

is exported. R software imports the program file along with the

input data file and annotates the file after defining the input

parameters. Based on ComPPI, we obtained the STAT1 protein

interactions network map.

Statistical analysis

Each experiment was replicated at least three

times. Means and standard deviations (SDs) are used

to express quantitative data. All statistical tests and

graphs were generated using the Project R software

(version 4.0.2). To detect differentially expressed genes

(DEGs), Bayesian tests were used. P-values < 0.05 were

considered significant.

Results

Identification of genes co-expressed in IA
and T2DM

We selected the GSE26969, GSE75436, GSE13353,

GSE55650, and GSE25462 datasets from the GEO database for

the analysis to include as many disease samples as possible,

while minimizing the impact of batch effects on the analysis.

The number of samples, disease types, and platform information

included in each dataset are shown in Table 1.

DEGs were identified after removing batch effects

between multiple datasets (Figures 1A,B). We screened

822 upregulated and 837 downregulated genes in IA and

1678 upregulated and 1474 downregulated genes in T2DM

(Figures 1C,D).

Screening for target genes

The expression profiles of IA and T2DM were integrated

and normalized, and hierarchical clustering analyses of all the

samples revealed that the different types of samples could be

well distinguished (Figure 2A). We used WGCNA to identify

the gene modules associated with disease types, and set the

soft threshold (β) at 8 for constructing the scale-free network

(Figure 2B). Subsequently, we constructed the adjacency matrix

and TOM to identify the co-expressed gene modules. A total

of 12 gene modules were identified using mean hierarchical

clustering and dynamic tree cropping methods (Figure 2C). The

red and salmon modules were significantly associated with both

IA and T2DM (Figure 2D) and were considered to be clinically

significant for subsequent analysis. DEA demonstrated that, in

both the diseases, 206 and 214 genes were downregulated and

upregulated, respectively (Figure 2E). Furthermore, combined

results of DEA and WGCNA revealed that 78 genes were

downregulated and 138 genes were upregulated in both

the diseases (Figure 2F). These 216 genes showed the same

dysregulation pattern in both the diseases and were significantly

associated with disease onset, suggesting a possible common

pathogenic molecular mechanism between both the diseases;

therefore, they were considered as the target genes for IA

and T2DM. The target genes were significantly enriched to

68 GO pathways (Figure 3A), including ECM composition,

coagulation regulation, hemostasis regulation, and collagen

protofibril composition pathways.
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FIGURE 1

Integration of datasets and di�erential expression analysis. (A) First and second principal components of the intracranial aneurysm

(IA)—GSE13353, GSE26969, and GSE75436 datasets before and after eliminating the batch e�ects. (B) First and second principal components of

the type 2 diabetes mellitus (T2DM)—GSE25462 and GSE55650 datasets before and after eliminating the batch e�ects. (C) Volcano plots of

di�erentially expressed genes (DEGs) in IA and T2DM. (D) Volcano plots of DEGs in T2DM.
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FIGURE 2

Screening of target genes. (A) Dendrogram of clusters for all the samples. (B) R2 of scale-free model fit analysis corresponding to di�erent soft

threshold values; R2 of the red horizontal line is 0.9. (C) Dendrogram of the genes in the top 25% of the standard deviation based on dissimilarity

measure (1-TOM) clustering; color bars are used to mark di�erent modules. (D) Heat map of correlation between module eigengenes (ME) and

clinical phenotypes; red and salmon modules are significantly correlated with both intracranial aneurysm (IA) and type 2 diabetes mellitus

(T2DM). (E) Venn diagram of di�erentially expressed genes (DEGs) for IA and T2DM. (F) Venn diagram of common DEGs for IA and T2DM with

red and salmon modules, in which 216 genes were considered as significant target genes.
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FIGURE 3

Key transcription factors associated with the target genes. (A) 216 target genes enriched to gene ontology (GO) pathways, including 8 molecular

function (MF) pathways, 10 cellular component (CC) pathways, and 50 biological process (BP) pathways. (B) Transcriptional regulatory networks

associated with target genes; the size of nodes is proportional to degree. (C) Transcription factors (TFs) with degree ≥5, including: STAT1, RELA,

NFKB1, SP1, STAT3, SP3, and TP53. (D–J) ROC curves of STAT1, RELA, NFKB1, SP1, STAT3, SP3, and TP53 in intracranial aneurysm (IA) and type 2

diabetes mellitus (T2DM) diagnosis.

Construction of target genes-related
transcriptional regulatory networks and
identification of key TFs

The differential expression of target genes in IA and T2DM

may be related to the regulation of TFs. To identify the key

TFs associated with the occurrence of IA and T2DM, we

constructed a target genes-related transcriptional regulatory

network (Figure 3B), including 130 TFs and 44 target genes,

among which ARNTL2 and STAT1 were both the target genes

as well as TFs. Seven TFs in the network had a degree value

≥5 (Figure 3C), and these TFs may play a key regulatory role
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FIGURE 4

Biological process pathways associated with STAT1 in intracranial aneurysm and type 2 diabetes mellitus. (A) Top 5 biological process (BP)

pathways (BP) that were significantly activated in patients with intracranial aneurysm (IA) and type 2 diabetes mellitus (T2DM) with high STAT1

expression. (B) Top 5 BPs that were significantly inhibited in patients with IA and T2DM with high STAT1 expression. (C) Top 5 BPs that were

significantly activated in patients with T2DM with high STAT1 expression. (D) Top 5 BPs that were significantly inhibited in patients with T2DM

with high STAT1 expression.

in the pathogenic mechanism of both the diseases. We further

explored the potential clinical diagnostic value of these seven

TFs (STAT1, RELA, NFKB1, SP1, STAT3, SP3, and TP53) by

plotting their ROC curves based on univariate logistic regression

in the diagnosis of the two diseases (Figures 3D–J). The results

showed that the AUC values of STAT1 in both diseases were

>0.8 indicating that it was significantly associated with the

occurrence of both the diseases. Determining its biological

functions in IA and T2DM will facilitate the understanding

of the common pathogenic mechanisms between IA and

T2DM. As a result, STAT1 was selected for further functional

pathway analysis.

Functional pathways involved in STAT1 in
IA and T2DM

We screened for the BP pathways associated with STAT1

expression levels in IA and T2DM using gene pooling

enrichment analysis. The results revealed that in both IA and

T2DM, a large number of immune response-related pathways,

including adaptive immune response, lymphocyte-mediated

immunity, and neutrophil chemotaxis were activated in

the high STAT1 expression group (Figure 4A), while the

synaptic-related pathways were inhibited (Figure 4B).

In T2DM, the renal vascular development and posterior
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renal-associated epithelial mesenchymal transition pathways

were activated in the high STAT1 expression group

(Figure 4C), while the calcium transfer-related pathways

were inhibited (Figure 4D). Therefore, STAT1 plays a key

role in immune and vascular function-related pathways in IA

and T2DM.

Analysis of diabetes mellitus-related high
STAT1 expression and its protein
interactions

Experimental studies with WB demonstrated that ECV-304

cells exposed to high glucose expressed STAT1 (p < 0.05)

(Figure 5A). The hyperglycemic microenvironment may

upregulate STAT1 in endothelial cells by upregulating STAT1.

The ComPPI database was used to identify the proteins that

interact with STAT1 at different cell sites (Figure 5B). GO

functions enriched in these STAT1-interacting proteins include

interferon–gamma–mediated signaling pathway, peptidyl–

tyrosine modification, peptidyl–tyrosine phosphorylation,

retromer complex, transcription factor complex, RNA

polymerase II transcription factor complex, non–membrane

spanning protein tyrosine kinase activity, ubiquitin–like

protein ligase binding, and protein tyrosine kinase activity

(Figure 5C). And the STAT1-interacting proteins are mainly

found in the KEGG pathways of Th17 cell differentiation,

JAK–STAT signaling pathway, and Kaposi sarcoma–associated

herpesvirus infection (Figure 5C). In diabetes and IA, ISG15

was upregulated as a co-interacting protein of STAT1, while

PTP4A3 was downregulated as a co-interacting protein of

STAT1 (Figure 5D). Accordingly, ISG15 and PTP4A3 may

interact with STAT1 to affect diabetes and IA, though more

studies are needed (Table 2).

Discussions

T2DM accounts >90% of DM cases globally, and it is

characterized by hyperglycemia, low insulin production, and

insulin resistance. Long-term hyperglycemia is likely to lead

to poor blood flow to the extremities, resulting in reduced

vascular elasticity and blood flow blockage. IA are abnormal

bulges that occur in the walls of intracranial arteries. Although

its etiology is unclear, it is believed that cerebral arteriosclerosis

and rising vascular pressure are related to its development.

Comparative analysis of the symptoms and causative factors

of both the diseases suggested the existence of a common

pathogenesis. Therefore, we used RNA-seq data from public

databases to obtain genetic features as well as regulatory

mechanisms that are common between IA and T2DM. In this

study, a total of 216 DEGs were screened from 5 GSE datasets,

among which 78 were upregulated and 138 were downregulated.

Additionally, 12 gene modules were identified using WGCNA,

two of which were significantly associated with both IA

and T2DM. Furthermore, in the transcriptional regulatory

network constructed using the DEGs, ARNTL2 and STAT1 were

identified to be the target genes as well as TFs in both the

disease samples.

ARNTL2, also known as BMAL2, belongs to the PAS

(Per-Arnt-Sim) superfamily. PAS proteins play an important

role in adapting to the circadian oscillations, and disruption

of circadian rhythms leads to predisposition to metabolic

syndromes, such as obesity and diabetes (46–48). A cohort study

showed that the A/G and A/A genotypes of BMAL2 rs7958822

showed a higher adjusted advantage ratio than the G/G genotype

in obese men (OR = 2.2), suggesting a significant association

between the BMAL2 rs7958822 genotype and T2DM in obese

subjects (49). BAML2 can regulate circadian rhythms, and

interventions in the circadian patterns of activity and feeding

can have significant effects on body weight and metabolism

(47, 50). A study revealed that insulin resistance and blood

glucose concentrations were improved after overexpression of

BMAL2 (51).

STAT1 belongs to the STAT family and mediates the

expression of a variety of genes (52–54). Several studies

have reported that STAT1 gain-of-function mutations induce

the diabetes and multiple autoimmune diseases (55–57).

Furthermore, it has been shown that diabetes risk factors, such

as hyperglycemia and hyperlipidemia can exacerbate diabetes

symptoms by activating NF-κB and STAT1, which together

reduce the number of B cells. Another study indicated that

CD40L, the physiological ligand of TNFR-5, can activate NF-κB

activity in pancreatic islet β-cells, thus inducing islet cell death

(58). In addition, one study found that inhibition of the JAK1-

STAT1 pathway could protect pancreatic β-cells from cytokine-

induced cell death, and improving the T2DM symptoms (59).

STAT1 can also be involved in interferon-γ (IFN-γ), TLR4,

and interleukin-6 (IL-6) activation pathways thereby amplifying

pro-inflammatory signals, leading to increased SMC leukocyte

migration, leukocyte adhesion to endothelial cells, and foam

cell formation, thereby promoting atherosclerosis and atheroma

formation (60).

Through the enrichment analysis of ARNTL2 and STAT1,

target genes were enriched to 68 GO pathways, including ECM

composition, coagulation regulation, hemostasis regulation, and

collagen fiber composition pathways. Among these, BMAL2

regulates the transcription of anticoagulant thrombomodulin

and PAI-1 by forming a heterodimer with CLOCK; therefore,

abnormal expression of BMAL2 may cause coagulation

disorders (61, 62). STAT1 inhibits thrombin-induced STAT-

DNA binding activity and TIMP-1 mRNA expression, thereby

inhibiting the coagulation process and promoting thrombosis

(63). Furthermore, thrombosis can lead to hemodynamic

changes that may promote the development of aneurysms.

Therefore, it may be assumed that BAML2 and STAT1
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FIGURE 5

Interaction and functional analysis of the highly expressed STAT1 protein in diabetes mellitus. (A) WB experimental study to verify the di�erential

expression of STAT1 in ECV-304 cell lines in the high glucose and control groups; (B) Analysis of STAT1 interaction proteins at di�erent cell sites

using the ComPPI database; (C) Protein interactions with STAT1 enrichment; (D) Relationships between proteins interacting with STAT1 and

genes di�erentially expressed in diabetes and IA cross-tabulation analysis. *p < 0.05.

can influence the development of aneurysmal complications

in T2DM.

In summary, we screened ARNTL2 and STAT1 by

constructing a transcriptional regulatory network through

multi-omics analyses, and the gene pathways were enriched for

clotting regulation and ECM-related pathways. Therefore, it is

important to investigate their role in the hemostatic regulatory

pathways in T2DM, which can help in the diagnosis and

treatment of future complications. However, our study is yet to

be validated by in vitro experiments to further clarify the specific

molecular mechanisms.

Conclusions

ARNTL2 and STAT1 are aberrantly expressed in T2DM and

IA and act as common neurovascular markers for both the

diseases. ARNTL2 and STAT1 are involved in hyperglycemic
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TABLE 2 Protein information of PTP4A3 and ISG15 obtained from the ComPPI database.

Source Target Location ComPPI score Expression in diabetes and IA

STAT1

PTP4A3 Cytosol/mitochondrion/nucleus/secretory-pathway/extracellular 0.9974 Common down

ISG15 Cytosol/nucleus/extracellular/extracellular 0.9600 Common up

metabolism and coagulation-related regulation of T2DM,

causing aneurysms. The findings of this study provide novel

diagnostic and therapeutic targets for T2DM complications.

Data source

In the paper, microarray datasets (GSE55650, GSE25462,

GSE26969, GSE75436, and GSE13353) from the GEO database

were analyzed.
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