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Disrupted topological
organization of the motor
execution network in Wilson’s
disease

Long Zhu†, Hongxi Yin†, Yanxin Wang*, Wenming Yang,

Ting Dong, Lei Xu, Zhifeng Hou, Qiao Shi, Qi Shen,

Zicheng Lin, Haixia Zhao, Yaqin Xu, Yanyan Chen, Jingjing Wu,

Zheng Yu, Man Wen and Jiaying Huang

Department of Encephalopathy, The First A�liated Hospital of Anhui University of Traditional

Chinese Medicine, Hefei, China

Objective: There are a number of symptoms associated with Wilson’s disease

(WD), including motor function damage. The neuropathological mechanisms

underlying motor impairments in WD are, however, little understood. In this

study, we explored changes in the motor execution network topology in WD.

Methods: We conducted resting-state functional magnetic resonance

imaging (fMRI) on 38 right-handed individuals, including 23 WD patients and

15 healthy controls of the same age. Based on graph theory, a motor execution

network was constructed and analyzed. In this study, global, nodal, and edge

topological properties of motor execution networks were compared.

Results: The global topological organization of the motor execution

network in the two groups did not di�er significantly across groups. In the

cerebellum, WD patients had a higher nodal degree. At the edge level, a

cerebello-thalamo-striato-cortical circuit with altered functional connectivity

strength in WD patients was observed. Specifically, the strength of the

functional connections between the cerebellum and thalamus increased,

whereas the cortical-thalamic, cortical-striatum and cortical-cerebellar

connections exhibited a decrease in the strength of the functional connection.

Conclusion: There is a disruption of the topology of the motor execution

network in WD patients, which may be the potential basis for WD motor

dysfunction and may provide important insights into neurobiological research

related to WD motor dysfunction.
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Introduction

Hepatolenticular degeneration (HLD), also known as
Wilson’s disease (WD), is a rare autosomal recessive metabolic

disease in adolescents, which is mainly characterized by liver
damage and movement disorders (1). The liver and brain are

the main organs that are damaged in WD patients, and the most

commonly affected parts of the brain are the basal ganglia, where

the striatum, amygdala and claustrum are located. Although the

basal ganglia are most commonly affected, cerebral atrophy is

also a common finding. For example, SmolinskiLukasz et al. (2)

found that the severity of cerebral atrophy is closely related to

the neurological impairment of WD patients by measuring the

brain volume of WD patients. Later, SmolinskiLukasz et al. (3)

conducted a long-term longitudinal study on brain atrophy in

WD patients, and found that the incidence of brain atrophy in

neurological WD patients was significantly increased, which was

related to the progression of neurological impairment. Almost

all patients with neurological WD show brain MRI changes (4).

On MRI images of WD patients, symmetrical T1 hypointensity

and T2 hyperintensity were observed in the lenticular nucleus.

Depending on the different nuclei involved, the lesions show

signs like “woodpecker”, “figure eight”, “double figure eight” and

“butterfly with wings”, and MRI enhanced scan shows that the

lesions are not enhanced (5). Abnormalities in corpus callosum

signals suggest a wider range of brain damage and neurological

dysfunction (6). In addition, WD patients may have different

degrees of cerebral atrophy such as narrowing of gyri and

deepening of sulci (7–9). However, brain atrophy is not limited

to the cortical region. Volume measurement of corresponding

parts on MRI images of WD patients showed that the volume of

caudate nucleus, globus pallidus and thalamus decreased (10).

Approximately half of WD patients have different degrees of

neurological symptoms, the common manifestations of which

are dystonia, tremor, limb stiffness, bradykinesia and other rare

neurological symptoms (11). Dystonia can show blepharospasm

(eye muscles), torticollis (neck muscles), writing spasm (hand

muscles), and exaggerated facial expressions (facial muscles)

due to the different muscle groups involved. When the muscles

around the vocal cords are involved, dyspnea and dysarthria

can occur. Tremors can occur in both stationary and motor

state, and the common ones are essential tremors and postural

tremors. Some WD patients show parkinsonian symptoms

such as limb stiffness, bradykinesia and slow walking, which

are easy to be misdiagnosed. Ataxia and other neurological

symptoms are rare (5). Neurological manifestations are equally

varied but are generally dominated by movement disorders

(12). Converging evidence indicates a definite association

between Wilson’s disease and motor impairments. A study of

non-motor symptoms in WD demonstrated that movement

disorders are the core neurological features of the disease (13).

Additionally, a molecular genetics study of WD found that

WD was caused by mutations in a large number of different

genes, which made the molecular diagnosis complicated to

achieve. The genetic map of dopa-responsive dystonia has

been mapped, however, the genetic basis of many movement

disorders, such as essential tremor and restless legs syndrome,

remains unclear (14). A study on eye movement performance

in WD found that patients with WD had ocular saccade

impairments, including latencies, hypsometry and increased

error rates in antisaccades (15). Another large sample study on

eye movements in WD disease found that WD was associated

with impaired voluntary control of saccades and disturbance of

smooth chase eye movements, while reflex saccades seemed to

be preserved (16). Medalia et al. found that the independent

sequelae of copper induced central nervous system (CNS)

injury were motor, memory and psychiatric symptoms (17). A

multimodalmagnetic resonance study found that the asymmetry

of fiber projection may be the main cause of motor asymmetry

in WD patients (18). Although these findings exist, the

neuropathological mechanisms underlyingWDmotor disorders

are still poorly understood.

Human brains are increasingly recognized to be intricate

networks of highly connected neurons (19). Graph theory

has been introduced as a powerful method for the study of

the complexity of brain networks, with nodes representing

anatomically defined brain areas and edges representing

functional or structural connections between pairs of nodes

(20–23). The application of graph-theoretic methods facilitates

the systematic description of topological properties of brain

networks from global, node, and edge perspectives, which

cannot be achieved by using independent component analysis

or seed-based functional connectivity analysis. via of these

methods, complex brain networks have been shown to exhibit

high global integration and high local properties, thereby

supporting high efficiency at lower wiring costs (24–30).

In our previous study, we applied graph theory to unravel

abnormalities in brain networks in patients withWD previously.

For example, in the study of changes in the global topological

properties of functional and structural networks in WD

patients, we found that both functional and structural networks

have typical small-world properties in both groups. What’s

more, compared with healthy controls, WD patients exhibited

disruptions of structural networks, which was characterized

by an increased clustering coefficient and characteristic path

length and decreased global and local efficiency. In past

graph theoretical studies of WD patients, however, whole-

brain networks have been studied rather than subnetworks

containing specific functions, such as motor control. The

latter aspect may contribute to our understanding of the

underlying neural mechanisms of WD-related symptoms, such

as dyskinesia symptoms.

Our study focused on the motor execution network since

WD and motor impairments are closely related, and we

hypothesized that motor execution networks in WD patients

would be abnormal. We applied graph theory to resting-state
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fMRI data, aiming to detect group differences in the topological

properties of exercise executive networks in WD patients and

healthy controls.

Methods

Participants

The present study enrolled 38 right-handed individuals,

including 23 patients with WD and 15 healthy controls. To

ensure that WD patients could receive MRI scans and to

reduce the artifacts generated by head movements as much

as possible, 23 WD patients with motor impairments with

decreased head vibration were selected for the experiment.

WD patients with a mean age of 22.3 years (range: 15–

36 years) were recruited from the inpatient department at

The First Affiliated Hospital of Anhui University of Chinese

Medicine. Only hnospitalized patiets were selected because

they were extreme cases, who may have more typical and

defined brain dysfunction. The participants were recruited

from the hospital and schools through advertising and had

an average age of 24.67 years (range: 15–36 years). The study

was conducted in accordance with the Declaration of Helsinki

and was approved by the Medical Research Ethics Committee

of First Affiliated Hospital of Anhui University of Chinese

Medicine. Every subject was informed of the study and given a

written consent.

The diagnoses of WD were determined according to The

Guidelines for the Diagnosis and Treatment of Hepatolenticular

Degeneration in China 2021 (31). The inclusion criteria for WD

patients were as follows: ① age of 15–36-years-old; ② right-

handed; ③ patients diagnosed with WD for the first time or

those patients diagnosed with WD in the past but who had

stopped drug therapy for more than 1 year; and ④ the UWDRS-

IB score (32) suggests motor dysfunction. Healthy controls were

included with the following criteria: ① age of 15–36-years-

old; ② right-handed; and ③ no obvious physical or mental

disorders. The following exclusion criteria were used for all

of the participants: a history of head trauma with impaired

consciousness lasting more than 5min, a history of drug or

alcohol abuse, pregnancy and any physical illness diagnosed

via interviews and medical records review. Additional exclusion

criteria for all of the participants included a state of anxiety

and depression, which were diagnosed by using the 24-item

Hamilton Rating Scale for Depression (HAMD) (33) and the

14-item Hamilton Rating Scale for Anxiety (HAMA) (34). The

HAMD is a score for the degree of depression of the subjects.

When the score was >8 points (which indicates that there may

be depression), this patient was excluded. The HAMA is a score

for the degree of anxiety of the subjects. When the score was

more than 7 points (which indicates that there may be anxiety),

this patient was excluded.

MRI data acquisition

MRI data were acquired by using a 3.0-Tesla MR system

(Discovery MR750, General Electric, Milwaukee, WI, USA).

We used tight, comfortable foam padding to reduce subject

head movement, and earplugs were used to reduce noise from

the scanner. 3D T1-weighted images were acquired by using a

brain volume (BRAVO) sequence with the following parameters:

repetition time (TR) = 8.16ms; echo time (TE) = 3.18ms;

inversion time (TI)= 450ms; flip angle (FA)= 12◦; field of view

(FOV)= 256 mm×256mm; matrix= 256× 256; slice thickness

= 1mm, no gap; 184 sagittal slices; and acquisition time= 357 s.

BOLD images were acquired by using a GRE-SS-EPI sequence

with the following parameters: TR/TE = 2,000/35ms; FOV =

220 mm×220mm; matrix = 64 × 64; FA = 90◦; slice thickness

= 3mm; gap = 0.5mm; 36 interleaved transverse slices; 185

volumes; and acquisition time = 370 s. We asked all subjects to

close their eyes during the MRI scan, move as little as possible,

not think about anything in particular, but not fall asleep. To

ensure that only images without visible artifacts were included

in the analysis, all MR images were visually inspected.

FMRI data preprocessing

Resting-state BOLD data preprocessing step used Statistical

Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/

spm). The following steps of the analysis were performed. ①

Slice timing. The first 10 time points were removed to allow

the signal to equilibrate and to acclimate the participants to the

scanning noise. The remaining time points were corrected for

the acquisition time delay between layers. ② Realignment. After

slice timing, the motion between the time points was corrected

by realignment. During realignment, three translational and

three rotational motion parameters were computed. Head

movements of all participants’ BOLD signal data were within

thresholds (i.e., translational or rotational parameters<2mm or

2◦). ③ Normalization. In the normalization step, the personal

structural image was first registered to the average functional

image. Subsequently, the transformed structural image was

segmented by using the DARTEL technique, and the standard

Montreal Neurological Institute (MNI) space was obtained

(35). Finally, by using the above two deformation parameters

estimated in the first step, each filtered feature image space was

normalized to MNI space and resampled to 3 × 3 × 3mm

cubic voxels. ④ Detrending. ⑤ Filtering. The datasets were

then bandpass filtered in a frequency range of 0.01–0.08Hz. ⑥

Regression. Several nuisance covariates (the estimated motion

parameters based on the Friston-24 model, the white matter

signal and the cerebrospinal fluid signal) were regressed out

from the data. We also calculated the framewise displacement

(FD), which indices the volume-to-volume changes in the

head position. There was no significant difference in the mean
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FD (Wilcoxon rank-sum test of two independent samples, Z

= −0.923, 0.356) between the WD (0.093 ± 0.043) group

and the control (0.104 ± 0.048) group. It has been reported

that signal spikes caused by head movement can significantly

affect the final resting-state fMRI results, even after regression

of linear head movement parameters (36). Consequently, we

further regressed the spikes when the FD at a particular time

point exceeded 0.5.

Construction of motor execution
network

Based on a previous study, we selected the motor execution

network regions of interest (ROIs) for node definition (37).

The ROIs included 21 regions, such as the bilateral anterior

inferior cerebellum (AICb; MNI coordinate: left−22/-45/-49,

right 16/-45/-49), basal ganglia (BG; left−25/-14/8, right 22/-

2/12), dentate nucleus (DN; left−28/-55/-43, right 19/-55/-39),

supplementary motor area (SMA; left−5/-4/57, right 5/-4/57),

superior parietal lobule (SPL; left−22/-62/54, right 16/-66/57),

primary motor cortex (M1; left−38/-22/56, right 38/-22/56),

dorsolateral premotor cortex (PMd; left−22/-13/57, right 28/-

10/54), ventrolateral premotor cortex (PMv; left−49/-1/38, right

53/0/25), superior cerebellum (SCb; left−25/-56/-21, right 16/-

59/-21), thalamus (Th; left−10/-20/11, right 7/-20/11) and right

postcentral gyrus (PCG; 37/-34/53) (Figure 1). According to

the predefined coordinates in the study by Wang et al. (37),

a 10mm diameter sphere for each ROI was created, which

guaranteed that there was no overlap between each pair of

ROIs according to their Euclidean distance. By averaging the

BOLD time series across all of the voxels within each ROI, we

obtained the representative mean time series for each subject.

Pearson correlation coefficients between the regional mean time

series of all possible pairs of nodes were calculated to define

the edges, thus resulting in a 21 × 21 correlation matrix for

each subject. Due to the Interpretation unclear of the negative

correlations (38, 39), our analysis of positive correlations

was restricted.

Network analysis

To further denoise spurious correlations between regions,

we retained only the surviving correlations at the significance

level P <0.05 threshold (Bonferroni correction). A correlation

threshold-defined by significance level has been used previously

in brain network studies (40–43). At last, each correlationmatrix

was subjected to a threshold and converted into a binary matrix,

wherein the entry aij = 1 if the absolute value of the Pearson

correlation coefficient between regions i and j was larger than

the threshold and aij = 0 otherwise. Additionally, each edge was

weighted based on its functional connectivity.

Network metrics

GRETNA software (http://www.nitrc.org/projects/

gretna) was used to perform graph theory analysis of

motion execution network (41), and calculate the global

network and node level indicator. The formulation, usage and

interpretation of these network measurements are reviewed in

Rubinov et al. (44).

Small-world attributes

The most frequently used metrics are the small-world

properties of brain networks, including clustering coefficient Cp,

characteristic path length Lp, normalized clustering coefficient

Gamma, normalized characteristic path length Lambda and

small-worldness Sigma (45). CP measures the density of

cliquishness or local density of the network, which characterizes

network segregation. In network integration, Lp measures the

extent of average connectivity or overall routing efficiency

of the network. By scaling the average clustering coefficient

and characteristic path length of 100 matched random brain

networks, these random brain networks have the same

number of nodes, edges and degree value distribution as

the real brain networks (46), thus resulting in a normalized

clustering coefficient Gamma and normalized characteristic

path length Lambda. The two measurements can also be

combined into a simple quantitative metric (small-worldness,

Sigma= gamma/lambda).

Network e�ciency

Small-world properties have been found in brain networks,

enabling the efficient transfer of parallel information at

relatively low costs (47). From the perspective of information

transmission, network efficiency is a biologically relevant metric

for describing brain networks (47, 48). The network efficiency at

the global and local levels was calculated. The global efficiency

Eg represents the capability of parallel information transfer over

the network. The local efficiency Eloc reflects the fault tolerance

of the network, which indicates how well the information is

communicated within the neighbors of a given node when this

node is eliminated.

Nodal degree

Node degree refers to the sum of the number of

connections (binary graphs) or connection weights (weighted

graphs) of all edges directly connected to a given node.

Due to its simplicity and high test-retest reliability, node

degree is the most commonly used index to measure node

centrality (49, 50). An node with a high nodal degree

is considered to be a hub, which is highly connected to

other nodes.
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FIGURE 1

Locations of the nodes belonging to the motor execution network. AICb, anterior inferior cerebellum; BG, basal ganglia; DN, dentate nucleus; L,

left; M1, primary motor cortex; PCG,postcentral gyrus; PMd, dorsolateral premotor cortex; PMv, ventrolateral premotor cortex; R, right;

SCb,superior cerebellum; SMA, supplementary motor area; SPL, superior parietal lobule; Th, thalamus.

Statistical analysis

Di�erences in clinical variables

All of the statistical analyses were performed by using

the SPSS 21.0 software package (SPSS, Chicago, Ill). The

age, HAMA and HAMD scale scores of the WD and

HC groups were compared by using the Wilcoxon rank-

sum test of two independent samples for the numerical

variable data. The sex differences between the groups were

detected by using the Fisher’s exact probability method.

The mean framewise displacement (FD) of the two groups

was calculated by using (http://www.nitrc.org/projects/

gretna) (41), and a two-sample T-test was performed with

this software.

Di�erences in network metrics

To determine whether global and nodal attributes were

significantly different between WD and healthy controls, we

performed a two-sample T-test for each brain network metric

(small-world attribute, network efficiency, node degree), and

the effects of age, sex, and mean FD were regressed. For global

metrics, we adopted a significance level of P <0.05. To address

the issue of multiple comparisons, we tested the node degree

at the expected significance level of 0.05 to see if it could be

corrected for by FDR.

To detect connectivity measures (i.e., functional

connectivity strength) of the motor execution network, we

used a network-based statistical (NBS) approach (51) to locate

specific connectivity that changed significantly in WD patients.

First, a primary cluster definition threshold (P < 0.01) was

used to identify a set of suprathreshold connections containing

any connection components. Subsequently, adjusted P-values

for each component were calculated using a non-parametric

permutation test (5,000 permutations), and the significance

threshold was set at P <0.05. Likewise, age, sex, and mean FD

were regressed out as covariates.

Relationships between network measures and
clinical variables

Spearman’s correlation analyses between network

indicators and clinical variables were conducted for the

indicators with significant group differences (i.e., onset

age and duration of illness) within the WD patients. A

significance value of 0.05 was used for multiple comparisons in

correlation analyses.

Results

Demographic and clinical characteristics

Demographic and clinical data are presented in

Table 1. Briefly, the two groups did not differ in age

(Wilcoxon rank-sum test, Z = −1.631, P = 0.103) or

gender (Fisher’s exact probability method, P = 1.000).

The mean FD also did not differ significantly between

WD patients and healthy controls (Wilcoxon rank-sum

test, Z = −0.923, P = 0.356). Anxiety and depression

were used as additional exclusion criteria for participants,

and there was no significant difference between HAMA

and HAMD.

Global topological organization of the
motor execution network

The global indicators of the binary graphs of the motor

execution network in WD patients and healthy controls are

shown in Figure 2A. Compared with the random network, the

motion execution networks of the WD and healthy controls

have high agglomeration coefficients (i.e., Gamma >1), but

almost the same characteristic path lengths (i.e., Lambda

≈1), indicating that both groups exhibit typical small-world

topological properties. Nevertheless, there were no significant
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TABLE 1 Demographic and clinical characteristics.

Characteristics Wilson’s disease patients Healthy controls Statistics P-value

Number of subjects 23 15

Age (years) 22.30± 5.49 24.67± 5.21 Z =−1.631 0.103a

Gender (female/male) 11/12 7/8 1.000b

meanFD 0.093± 0.043 0.104± 0.048 Z =−0.923 0.356a

Onset age (years) 13.48± 4.57 -

Duration of illness (years) 8.83± 5.10 -

UWDRS-IB 6.87± 2.34 -

HAMA 1.96± 0.93 1.86± 0.99 Z = 0.381 0.703a

HAMD 2.43± 1.20 2.13± 1.06 Z = 0.742 0.458a

The data are shown as the mean ± SD. WD, Wilson’s disease patients; HC, healthy controls; FD, frame-wise displacement; UWDRS-IB, Uniform Wilson’s disease rating scale part I, B

content; HAMA, hamilton rating scale for anxiety; HAMD, hamilton rating scale for depression.
aThe P-value was obtained by Wilcoxon rank sum test.
bThe P-value was obtained by Fisher’s exact probability method.

intergroup differences in Cp, Lp, gamma, lambda, Sigma, Eg or

Eloc (P > 0.05).

The global indices of the weighted graphs of the two

groups of motion execution networks are shown in Figure 2B.

Compared with the random network, the motor execution

networks of the WD and healthy controls have high

agglomeration coefficients (i.e., Gamma >1), but almost

the same characteristic path lengths (i.e., Lambda ≈1),

indicating that both groups have typical small-world topological

properties. No significant differences in Cp, Lp, gamma,

lambda, sigma, Eg or Eloc were identified between the two

groups (P > 0.05).

Nodal topological organization of the
motor execution network

For the binary graphs, the WD patients exhibited an

increased nodal degree in the left DN (T = −2.284, P = 0.029)

compared to the healthy controls (P < 0.05, FDR corrected,

Figure 3A). For the weighted graphs, the WD patients also

exhibited an increased nodal degree in the left DN (T = −2.101,

P = 0.043) compared to the healthy controls (P < 0.05, FDR

corrected, Figure 3B).

Disrupted functional connectivity
strength in WD patients

Using the non-parametric NBS method, we found that

individual connectivity components showed changes in

functional connectivity strength in WD patients (P = 0.01,

corrected, Figure 4). The component consisted of 10 edges and

11 nodes. Among them, the functional connectivity between

left DN and left Th (T = −2.428, P = 0.024) increased in WD

patients. In addition, WD patients had decreased functional

connectivity strength in connections between the left SPL and

right BG (T = 2.334, P = 0.030), left SMA and left M1 (T =

2.749, P= 0.012), left Th and left M1 (T = 2.312, P= 0.031), left

SCb and right M1 (T = 2.344, P = 0.029), right SCb and right

M1 (T = 2.345, P = 0.029), left SMA and right M1 (T = 2.299,

P = 0.032), left SMA and left PMd (T = 3.004, P = 0.007), right

SMA and left PMd (T = 2.240, P = 0.036) and right SMA and

left SCb (T = 2.278, P = 0.033).

Correlation analyses

There was no correlation between the network metrics and

the clinical variables in the WD patients (i.e., onset age and

duration of illness) were found.

Discussion

Based on resting-state fMRI data and graph theoretical

approaches, this study investigated the topological organization

of the motor execution network in WD. Our main findings

were as follows: (1) at the global level, there were no significant

intergroup differences in the global topological organization of

the motor execution network between the two groups; (2) at the

node level, the nodal degree was higher in WD patients in the

cerebellum; and (3) at the edge level, a cerebello-thalamo-striato-

cortical circuit with altered functional connectivity strength

in WD patients was observed. Specifically, the functional

connectivity strength between the cerebellum and thalamus

was increased, which may be a compensatory mechanism for

WD dyskinesia, whereas the cortico-thalamic, cortico-striatal

and cortico-cerebellar connections showed decreased functional

connectivity strength, thus suggesting possible damage between

the various levels of the nuclei that control movement.
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FIGURE 2

The global metrics of the binary graphs (A) and weighted graphs (B) of the motor execution network in Wilson’s disease patients and healthy

controls. Error bars represent standard errors. Cp, clustering coe�cient; Lp, characteristic path length; Gamma, normalized clustering

coe�cient; Lambda, normalized characteristic path length; Sigma, small-worldness; Eloc, local e�ciency; Eg, global e�ciency; HC, healthy

controls; WD, Wilson’s disease patients.

According to these findings, motor execution network topology

may be disrupted in patients withWD, which may lead to motor

dysfunction in these patients.

Based on graph theory, the human brain is considered

a small-world network with high capabilities for localization

and global integration (19, 52). In the current study, via the

small-world model and efficiency measures, WD patients as

well as healthy controls executed motor commands efficiently

using small-world topologies. As far as small-world and

efficiency metrics were concerned, the two groups did not

differ significantly. A shift of this nature has been observed

in several graph-theoretical studies of other neuropsychiatric

diseases, including pediatric posttraumatic stress disorder (53,

54), attention-deficit/hyperactivity disorder (55), concussion

(56), schizophrenia (43) and temporal lobe epilepsy (57). These

studies are inconsistent with our findings. Different imaging

modalities (fMRI vs. EEG), states (rest vs. task), and network

scales (whole-brain network vs. motor execution network) may

explain the inconsistent results. In addition, to ensure that the

MRI procedure could be performed and to reduce the artifact

generated by head movements as much as possible, we selected

WD patients with less obvious head movements.

In addition to the global topologies, the motor execution

network nodal attributes were further studied. Within the motor

execution network, nodes play a central role in information

transport and integration (58), and a greater number of nodes
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FIGURE 3

The nodes with increased nodal degree in Wilson’s disease patients for the binary graphs (A) and weighted graphs (B) of the motor execution

network. Node sizes represent T values. DN, dentate nucleus; L, left; R, right.

FIGURE 4

The connected component with altered functional connectivity strength in Wilson’s disease patients. Edge colors represent increased (red) and

decreased (blue) functional connectivity strength in the patients. Edge sizes represent T values. BG, basal ganglia; DN, dentate nucleus; L, left;

M1, primary motor cortex; PMd, dorsolateral premotor cortex; R, right; SCb, superior cerebellum; SMA, supplementary motor area; SPL, superior

parietal lobule; Th, thalamus.

were found in the cerebellum of WD patients. Previous MRI

studies of WD have found that abnormal striatum on magnetic

resonance images is associated with parkinsonian symptoms,

abnormal dentate thalamic tract is associated with cerebellar

symptoms, and abnormal pontine cerebellar tract is associated

with parkinsonian symptoms (59). A study combining VBM

and ROI analyses found that the volumes of the caudate

nucleus, putamen, globus pallidus, thalamus, brainstem and

cerebellum of WD patients with the nervous system were lower

than those of patients with hepatic presentations (60). This

change in brain volume could be seen as evidence of brain

shrinkage, but unfortunately, they didn’t do a longitudinal study.

However, Smolinski et al.’s long-term longitudinal study on

WD patients (3) made up for the deficiency in this aspect.
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They found that the incidence of cerebral atrophy in WD

patients with neurological symptoms was significantly higher

than that in patients without neurological symptoms, and the

rate of cerebral atrophy was related to the degree of neurological

function damage in patients. Moreover, a study using advanced

techniques of diffusion tensor imaging (DTI) to assess damage to

the cerebellar-thalamo-cortical network found that lesions in the

basal ganglia, thalamus, and cerebellum may compromise the

basal ganglia-thalamic-cortical circuit or the dentate nucleus-

red. Disruption of nucleo-thalamic (DRT) tract connections and

eventual disruption of the cerebellar-thalamo-cortical network,

which may cause clinical extrapyramidal symptoms (61). Given

these previous findings, it is easy to speculate that the increased

cerebellar nodal degree of the motor executive network may

be a compensatory effect to overcome WD-related structural

damage, which may also be a compensatory effect on motor

dysfunction in WD. It cannot be ruled out, however, that

WD-related motor deficits may result from a more highly

connected cerebellum.

In terms of edge abnormalities, we found altered cerebellar-

thalamo-striatal-cortical circuit functional connectivity

strengths inWD patients. Specifically, the functional connection

strength between the left DN and left Th was increased in WD

patients, thus indicating that the functional connection

strength between the cerebellum and thalamus was increased.

The cerebellum maintains the balance of the body and the

synergistic movement of the limbs. For example, the ancient

cerebellum is responsible for maintaining body balance and

coordinating eye movements; the old cerebellum is responsible

for controlling muscle tension and coordinating muscle

movements; the new cerebellum is responsible for controlling

the planning and coordination of fine motor movements of

the limbs; the thalamus anterior ventral nucleus and ventral

lateral nucleus mainly receive afferent fibers from the dentate

nucleus of the cerebellum, globus pallidus and substantia nigra;

and after relaying from these areas, fibers are projected to

the somatomotor center to regulate somatic movement. The

increased functional connection strength between the two

areas may be a compensatory mechanism for WD dyskinesia.

In WD patients, the left SPL and right BG, left SMA and left

M1, left Th and left M1, left SCb and right M1, right SCb

and right M1, left SMA and right M1, left SMA and left PMd,

right SMA and left PMd and right SMA and left SCb exhibited

decreased functional connectivity strengths, thus indicating

that cortico-thalamic, cortico-striatal and cortical-cerebellar

connections showed decreased outgoing functional connection

strength. Due to the disorder of copper ion metabolism in WD

patients, excessive copper is deposited in the extrapyramidal

system and cortex, which damages the corresponding nuclei.

The striatum is an important part of an extrapyramidal system

and a key part of motion control. When the striatum is injured,

it can produce two different symptoms: increased muscle tone

associated with too little movement, and decreased muscle

tone associated with too much movement. The cerebral cortex

is the highest level of the central nervous system and the

highest level of control of bodily movement. The functional

connectivity between the cortex-thalamus, cortex-striatum and

cortex-cerebellum was reduced in this study, thus indicating

that there may be damage between the various levels of nuclei

that control movement. Previous resting-state fMRI studies

have revealed decreased or increased functional connectivity

of various networks in WD. For example, Han et al. reported

that compared with healthy people, the default, attention and

functional connectivity strength of the basal ganglia network

were reduced in patients with WD (62). Moreover, Jing et al.

showed that WD patients altered large-scale functional brain

networks compared with healthy controls (63). Another study

found that the decrease in functional connectivity strength

in WD patients occurred primarily in the basal ganglia and

thalamus, whereas the increase in functional connectivity

strength occurred primarily in the prefrontal cortex (64).

In contrast, our study revealed the coexistence of increased

and decreased functional connectivity in the motor executive

network, not only supporting previous findings but also

providing unique insights into the neuropathology of WD.

There were still some limitations to this study. First, we did

not assess the motor function of the participants. Due to the lack

of relevant information, we were unable to further investigate its

relationship with network indicators. Second, we only focused

on the internal network connectivity of the motor network,

but the internetwork connectivity between the motor network

and other networks (such as the default mode network, salience

network and executive control network) may also be associated

with WD-related motor impairment, so it is worthy of further

investigation. Third, to ensure that WD patients can undergo

magnetic resonance examinations and to minimize the artifacts

caused by head movements as much as possible, we selected

patients with decreased head shaking, whichmay have an impact

on our results. Lastly, due to the relatively small sample size, our

findings are preliminary and need to be confirmed. As a result,

future studies should include a larger sample size.

Of course, this study still has some limitations. First, the

sample size is relatively small. Wilson’s disease is a rare disease.

It is difficult for patients to focus on systematic scale testing

for a long time. Even if patients are asked to keep their heads

still during MRI scanning, some patients still have difficulty

in doing so. In the future, we will recruit more subjects to

improve the data and use a larger sample size to verify the

validity of these findings. Second, we only focused on the

internal network connectivity of the motor network, while the

internetwork connectivity between themotor network and other

networks (such as the default mode network, salience network

and attention network) may also be associated with WD-related

motor impairment, so it is worthy of further investigation.

Third, to ensure that WD patients can undergo magnetic

resonance examinations and to minimize the artifacts caused
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by head movements as much as possible, we selected patients

with decreased head shaking, which may have an impact on our

results. Finally, the functional areas of the brain are generally

irregular.We defined the nodes of themotion execution network

by drawing balls (coordinates as the center, creating spheres

with a certain radius), which may not necessarily include all the

functional brain areas. This may have a certain impact on our

results. In the future, we will extract various brain regions of the

motor execution network by anatomical segmentation (65, 66)

to verify our results.

Overall, we used resting-state fMRI to study WD motor

execution network configurations. We found that WD patients

have topologically dysfunctional motor executive networks,

increased node degrees in the cerebellum and altered functional

connectivity strengths of the cerebellum-thalamo-striatal-

cortical circuit. It may be possible to develop biomarkers for

early diagnosis of WD, therapeutic targets and biomarkers to

help predict the pathophysiology of motor impairments in WD

from these findings.
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