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perceived fatigue during dietary
intervention trial in
relapsing-remitting multiple
sclerosis: A secondary analysis of
the WAVES trial
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Farnoosh Shemirani1, Patrick Ten Eyck3, Linda M. Rubenstein2,

Linda G. Snetselaar2 and Terry L. Wahls1*

1Department of Internal Medicine, University of Iowa, Iowa City, IA, United States, 2Department of

Epidemiology, University of Iowa, Iowa City, IA, United States, 3Institute for Clinical and Translational Science,

University of Iowa, Iowa City, IA, United States

Background: Preliminary dietary intervention trials with the low-saturated fat (Swank)

and modified Paleolithic elimination (Wahls) diets have shown favorable e�ects

on fatigue among people with multiple sclerosis (MS); however, their impact on

metabolic health is unknown.

Objective: To evaluate the impact of the Swank and Wahls diets on markers of

metabolic health and to determine the association and mediation e�ect between

changes in metabolic health and perceived fatigue among people with relapsing-

remitting MS (RRMS).

Methods: As part of a randomized parallel-arm trial, vital signs, blood metabolic

biomarkers, and the fatigue scale for motor and cognitive functions (FSMC) were

collected from participants with relapsing-remitting MS (n = 77) at four study visits

spaced 12 weeks apart: (1) run-in, (2) baseline, (3) 12-weeks, and (4) 24-weeks.

Participants followed their usual diet at run-in, then were randomized at baseline to

either the Swank or Wahls diets and followed for 24 weeks.

Results: Both groups had significant reductions in weight, body mass index (BMI),

total cholesterol, and low-density lipoprotein (LDL) at 12- and 24-weeks compared

to respective baseline values (p ≤ 0.04 for all). The Swank group also had a significant

reduction in high-density lipoprotein (HDL) at 12- and 24-weeks (p = 0.0001 and

p = 0.02, respectively), while the Wahls group had significant reductions in diastolic

blood pressure (DBP). In addition, both groups had significant reductions in FSMC total

perceived fatigue and the motor and cognitive fatigue subscales at 12- and 24-weeks

(p ≤ 0.01 for all); however, change in the cognitive subscale was not significant at

12-weeks in the Swank group (p = 0.06). Furthermore, the favorable e�ects, of both

diets, on markers of metabolic health were not associated with and did not mediate

the e�ect of the diets on perceived fatigue (p > 0.05 for all).
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Conclusion: Both diets lead to significant reductions in perceived fatigue, weight,

BMI, total cholesterol, and LDL, but the significant reductions in perceived fatigue

were independent of changes in markers of metabolic health.

KEYWORDS

multiple sclerosis, fatigue, low-saturated fat diet, modified Paleolithic elimination diet,

cholesterol, weight, insulin

1. Introduction

Multiple sclerosis (MS) is a chronic, immune-mediated,

demyelinating disease of the central nervous system that is increasing

in prevalence in the United States (1). Disease progression leads to

increased perceived fatigue (2), which is among the most common

and disabling symptoms of MS (3). As such, many people seek

non-pharmacologic approaches like dietary changes to relieve

MS-related symptoms (4).

FIGURE 1

CONSORT diagram of study recruitment and participant flow. *Reasons for ineligibility or exclusion may not add up to the total of ineligible or excluded

because some participants were found ineligible or were excluded for multiple reasons. Adapted from Wahls et al. (8).

Studies have shown that people with MS have great interest in

alternative approaches, including diet, to manage symptoms and

improve wellness (5). Two popular diets in the MS community are

the low-saturated fat diet developed by Dr. Roy Swank and the

modified Paleolithic diet developed by Dr. Terry Wahls (6, 7). Both

the Swank andWahls diets were shown to significantly reduce fatigue

and improve quality of life in people with relapsing-remitting MS

(RRMS) (8). Similarly, a recent systematic review and network meta-

analysis found that several food-based diets including the Paleolithic,
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TABLE 1 Baseline characteristics of participants with RRMS who completed

the primary study endpoint at 12-weeks.

Characteristics Swank Wahls p-valuea

N 38 39

Age (years) 46.9± 1.7 46.4± 1.5 0.84

Gender (female) 35 (92.1) 32 (82.1) 0.31

MS duration (years) 12.1± 1.6 9.3± 1.0 0.14

Disease modifying drug use 0.83

None 13 10

Oral 11 11

Injectable 10 12

Infused 4 6

Race (Caucasian) 36 (94.7) 38 (97.4) 0.99

Education 0.32

High school 0 (0.0) 3 (7.7)

Some college 12 (31.6) 10 (25.6)

4-year degree 11 (28.9) 8 (20.5)

Advanced degree 15 (39.5) 18 (46.2)

Smoking status 0.13

Never 29 (76.3) 23 (59.0)

Former 3 (7.9) 2 (5.1)

Current 6 (15.8) 14 (35.9)

Alcohol drinks per monthb 0.99

None 6 (15.8) 7 (17.9)

Within recommendations 29 (76.3) 29 (74.4)

Above recommendations 3 (7.9) 3 (7.7)

FSMC total fatiguec 45.2± 2.24 47.4± 2.17 0.47

Cognitive fatigue 20.4± 1.24 22.7± 1.23 0.19

Motor fatigue 24.7± 1.39 24.7± 1.18 0.98

All values are mean± SEM or N (%). Adapted fromWahls et al. (8).
aSignificance determined by Fisher’s exact test or generalized linear models.
bAlcohol recommendations were defined as ≤1 or ≤2 standard drinks for females and

males respectively.
cParticipants were randomized based on baseline fatigue scores to ensure balance

between groups.

Mediterranean, and low-fat (Swank and McDougall) diets, which are

high in fruits and vegetables and low in ultra-processed foods, reduce

perceived fatigue and improve physical and mental quality of life

among people with MS (9). However, due to the small sample sizes,

high risk of bias, and methodological issues among the preliminary

studies, evidence is insufficient to support any specific therapeutic

diet for MS (9–11), and the mechanism by which dietary changes lead

to these improvements remains elusive (12).

One possible mechanism by which diet may lead to favorable

outcomes is by improving metabolic health. Studies have shown

that metabolic risk factors, such as obesity, hyperlipidemia, and

hypertension, are common among people with MS (13). These

metabolic risk factors are dependent on diet (14) and are associated

with increased relapses, lesion burden, and lower brain volumes

(15, 16). Obesity among people with MS is associated with greater

fatigue, increased relapses, higher disability, and lower quality of life

(17, 18). Furthermore, people with MS have an increased risk of

ambulatory disability and lower brain volume if they have one or

more vascular comorbidities such as hyperlipidemia or hypertension

(19, 20).

Furthering the understanding of the impact of dietary

modifications on metabolic health may elucidate the mechanisms

by which diet improves MS-related fatigue and lead to new adjunct

treatment options. Previous studies investigating the modified

Paleolithic diet have shown improvements in lipid profiles but not

in glucose or insulin (21, 22). Both the Swank and Wahls diets are

associated with clinically significant reductions in perceived fatigue

and quality of life in people with RRMS (8); however, their impact

on metabolic health is unclear. The goal of this secondary analysis

is to evaluate the effects of these diets on biomarkers of metabolic

health [weight, BMI, blood pressure, glucose, insulin, cholesterol,

high-density lipoprotein (HDL), low-density lipoprotein (LDL),

triglycerides, and hemoglobin A1c] and determine the relationship

between diet-induced changes in metabolic risk factors and perceived

fatigue among individuals with RRMS.

2. Methods

2.1. Participants and study design

This is a secondary analysis of a 36-week, randomized, parallel-

group, single-blinded trial conducted at the University of Iowa

Prevention Intervention Center that showed that both the Swank

and Wahls diets cause significant improvements in quality of life and

reductions in fatigue (8). The University of Iowa Institutional Review

Board approved the trial and followed the Consolidated Standards of

Reporting Trials (CONSORT) reporting guidelines (23). Written and

informed consent was obtained from all study participants.

Adult participants between 18 and 70 years of age were

recruited from Iowa City, Iowa, and the surrounding 500-mile area.

Participants were eligible for enrollment in the study if they: (1) had

neurologist-confirmed RRMS consistent with the 2010 McDonald

Criteria (24), (2) had moderate to severe fatigue, (3) possessed the

ability to walk 25 feet with unilateral support, (4) were not pregnant

nor planning to become pregnant, and (5) were willing to comply

with all study procedures. Major exclusion criteria included: (1) MS-

relapse or change in disease-modifying drug therapy within the 12

weeks prior to the start of the study; (2) any change in medication for

management of MS-related symptoms within 12 weeks prior to the

start of the study; (3) BMI <19 kg/m2; (4) severe mental impairment

(i.e., schizophrenia); (5) self-reported adverse reactions to gluten-

containing foods; (6) diagnosed with comorbidities including celiac

disease, severe psychiatric disorders, eating disorders, kidney stones,

heart failure, angina, or cirrhosis; (7) taking insulin or warfarin; and

(8) undergoing radiation or chemotherapy. Complete inclusion and

exclusion criteria are listed in the trial protocol (25).

2.2. Study procedures

Following a 12-week observational run-in phase, participants

were randomized 1:1 at baseline to either the low-saturated fat

(Swank) diet or the modified Paleolithic elimination (Wahls) diet.
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TABLE 2 Metabolic risk factor values among participants with RRMS assigned to the Swank or Wahls dietary interventions.

Biomarker Study visit

Run-in Baseline 12 weeks 24 weeks

Swank

Systolic BP (mmHg) 114± 2.36 115± 2.43 113± 2.65 115± 1.87

Diastolic BP (mmHg) 74.0± 1.64 73.4± 1.67 72.7± 1.68 72.2± 1.84

Weight (kg) 77.1± 2.92 77.3± 2.92 75.4± 3.11 75.3± 3.35∗

BMI (kg/m2) 27.6± 0.92 27.6± 0.92 26.8± 0.94∗∗∗ 26.7± 1.03∗∗∗

Glucose (mg/dl) 92.4± 1.23 92.2± 1.55 90.5± 1.51 91.6± 1.41

A1c (%) 5.31± 0.06 5.27± 0.06 5.29± 0.07 5.21± 0.06

Insulin (µIU/ml) 6.17± 0.76 6.52± 0.83 6.10± 0.98 6.12± 1.03

Cholesterol (mg/dl) 190± 5.62 189± 5.70 170± 4.35∗∗∗,† 174± 5.23∗∗∗

HDL (mg/dl) 65.5± 2.77 63.0± 2.28 57.3± 2.05∗∗∗ 59.6± 2.25∗

LDL (mg/dl) 122± 5.09 123± 5.25 108± 4.39∗∗∗ 109± 4.92∗∗∗

Triglycerides (mg/dl) 91.2± 7.35 92.7± 8.65 85.3± 7.05 82.4± 6.44

Wahls

Systolic BP (mmHg) 116± 1.87 117± 2.38 115± 2.11 116± 2.45

Diastolic BP (mmHg) 76.5± 1.53 77.3± 1.72 73.2± 1.53∗∗ 73.4± 1.86∗∗

Weight (kg) 85.0± 3.28 85.3± 3.30 80.3± 3.04∗∗∗ 78.0± 2.74∗∗

BMI (kg/m2) 30.1± 1.24 30.2± 1.25 28.4± 1.18∗∗∗ 28.4± 1.32∗∗∗

Glucose (mg/dl) 101± 5.27 98.9± 3.94 97.0± 3.36 98.5± 4.43

A1c (%) 5.56± 0.21 5.47± 0.16 5.34± 0.11 5.38± 0.12

Insulin (µIU/ml) 7.12± 1.13 8.84± 1.56 4.84± 0.47∗∗ 5.05± 0.63∗

Cholesterol (mg/dl) 198± 6.84 198± 7.28 184± 6.04∗∗,† 187± 6.32∗

HDL (mg/dl) 65.4± 2.74 65.5± 2.71 63.7± 2.84 65.9± 3.00

LDL (mg/dl) 127± 5.93 127± 6.24 114± 5.06∗∗ 114± 5.91∗∗∗

Triglycerides (mg/dl) 111± 8.59 105± 8.02 86.6± 7.68∗∗ 79.9± 5.97∗∗∗

All values are mean± SEM.

Within-group statistical significance compared to baseline values indicated by ∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

Between-group statistically significant differences indicated by †p ≤ 0.05.

Study diet education was provided by intervention registered

dietitians (RDs) at baseline. The RDs provided active diet support

consisting of in-person and telephone-based nutrition counseling

sessions for the first 12 weeks of the intervention. During the

second half of the intervention period, the active RD support was

discontinued, but participants could still contact the RDs anytime

for support or assistance. Biospecimen and data collection occurred

during four study visits, each spaced 12 weeks apart: (1) run-in, (2)

baseline, (3) 12-weeks, and (4) 24-weeks.

2.3. Study diets

Participants in both the Swank and Wahls diet groups were

instructed to follow their assigned diet ad libitum for the 24-week

intervention period after randomization. The composition of both

diets has been reviewed in detail elsewhere (7). Briefly, the Swank

diet limits saturated fat to ≤15 g per day and provides 20–50 g of

unsaturated fat, four servings of grains, and four servings of fruits and

vegetables (FV) per day. The Wahls diet recommends 6–9 servings

of FV and 6–12 ounces of meat per day, depending on gender.

All grains, legumes, eggs, and dairy (except clarified butter and

ghee) are excluded from the Wahls diet. Nightshade vegetables were

also excluded in this group between the baseline and the 12-week

timepoint; then, participants were guided to reintroduce nightshades

between the 12-week and 24-week time points. Additionally, all

study participants followed the same daily supplement regimen

(25). Participants were emailed personalized feedback on their diet

checklists every 4 weeks to encourage study diet adherence, which

was previously reported as 80% for the Wahls group and 87% for the

Swank group based on analysis of 3-day weighed food records at 12

weeks (8).

2.4. Outcomes

The primary outcomes, dietary characteristics, and qualitative

interviews from this trial have been published previously (8, 26, 27).
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FIGURE 2

Mean change from baseline for (A) weight, (B) BMI, (C) systolic blood pressure, and (D) diastolic blood pressure at 12- and 24-weeks for the Swank (black

bars) and Wahls (gray bars) groups. Statistical significance was determined by generalized linear mixed models and represented by *p ≤ 0.05, **p ≤ 0.01,

and ***p ≤ 0.001.

For this secondary analysis, perceived fatigue was evaluated with the

Fatigue Scale for Motor and Cognitive Functions (FSMC). The FSMC

is a reliable and validated 20-item questionnaire that assesses total as

well as the motor and cognitive domains of fatigue in people with MS

(28). For the total fatigue FSMC score, values range from 20 to 100,

where higher scores indicate more severe fatigue. Clinical outcomes,

including height, weight, and blood pressure, were collected using

standardized procedures by trained staff. Blood biospecimens were

collected by phlebotomists and sent to the Iowa City Veteran’s Affairs

Department of Pathology for analysis of metabolic biomarkers,

including glucose, hemoglobin A1c, insulin, total cholesterol, low-

density lipoprotein (LDL), and high-density lipoprotein (HDL).

Clinically important differences were defined for this study as follows:

5% change for weight and BMI; 10% change for total cholesterol,

LDL, HDL, glucose, and insulin; 5mm Hg change for systolic and

diastolic blood pressure; 30% change for triglycerides; 0.5% change

for hemoglobin A1c (29); and half the difference between severe and

moderate fatigue cutoffs (i.e. 5 points for total fatigue and 2.5 points

for the motor and cognitive fatigue subscales) (28).

2.5. Statistical analysis

Descriptive statistics were calculated for every variable at

enrollment using frequencies, means ± standard error of the mean

(SEM), and medians (interquartile range). Outliers were checked for

accuracy and possible data entry errors. Distributions of continuous

variables were evaluated for normality by graphical observation. Data

from all participants completing 12- and 24-week assessments were

included in intention-to-treat analyses.

Generalized linear mixed models (30) were used to test the

interacting effects of diet and time on outcome measures while

accounting for repeated measures for each participant. The identity

link function was used for normally distributed outcomes, while the

log link function was used for right-skewed continuous (gamma

distribution) and count (Poisson distribution) measures. Other

potentially important variables (age, sex, BMI, smoking status,

alcohol consumption, walking assistance, years since MS diagnosis,

disease-modifying drug therapy, baseline vitamin D, baseline 6-min

walk distance) were considered for inclusion in each model to assess

their relationship with the outcome and whether they modified the

estimates for the diet and time interaction. For each outcome, the

model with the smallest Akaike information criterion (AIC) (31)

was deemed to have the optimal predictor set. Point estimates,

95% confidence intervals, and p-values of the within- and between-

group mean changes in outcome measures over study visits were

generated for each optimal model. In addition, a secondary per-

protocol analysis was conducted excluding participants who did not

adhere to their assigned diet as defined by≤0.2 g gluten for theWahls

group (20%) and ≤18 g saturated fat for the Swank group (13%) (8).

To evaluate the association of 12-week changes in metabolic risk

factors and fatigue, linear mixed models controlling for diet and

baseline values were conducted. Slope estimates, 95% confidence

intervals, and p-values for the association with fatigue were generated

for eachmetabolic risk factor. Causal mediation analyses were used to
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FIGURE 3

Mean change from baseline for (A) LDL, (B) HDL, (C) total cholesterol, and (D) triglycerides at 12- and 24-weeks for the Swank (black bars) and Wahls

(gray bars) groups. Statistical significance was determined by generalized linear mixed models and represented by *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.

determine the mediation effect for the interaction between metabolic

risk factor values and time on fatigue from baseline to 12 weeks

controlling for diet assignment. All analyses were conducted as

two-sided tests (α = 0.05) using SAS software (version 9.4, SAS

Institute, Inc.).

3. Results

This secondary analysis included 77 participants (39 Wahls and

38 Swank) who completed the primary study endpoint at 12-weeks

and 72 participants (35 Wahls and 37 Swank) completed follow-

up to 24 weeks (Figure 1). At baseline, there were no significant

between-group differences (Table 1), and baseline metabolic risk

factor values were consistent with pre-randomization run-in values

(Table 2). Participants in the Swank group reduced their intake of

energy by 201 ± 86.0 kcals (p = 0.02) and the Wahls group reduced

their intake of energy by 447 ± 84.8 kcals (p < 0.001) compared to

their respective baseline intake (p= 0.003 between groups).

Clinically and statistically significant mean (±SEM) reductions

in weight were observed at both 12- (−5.02 ± 0.86 kg, p <

0.0001) and 24-weeks (−7.31 ± 2.25 kg, p = 0.002) in the Wahls

group, while in the Swank group statistically significant weight loss

occurred only at 24 weeks (−1.92 ± 0.91 kg, p = 0.04; Figure 2A).

Similarly, statistically significant mean (±SEM) reductions in BMI

were observed at 12- and 24-weeks for both the Wahls (−1.75 ±

0.30 kg/m2 and −1.82 ± 0.52 kg/m2, respectively; p < 0.001 for

both) and the Swank (−0.86 ± 0.16 and −0.95 ± 0.24 kg/m2,

respectively; p < 0.0001 for both) groups (Figure 2B) although only

the Wahls group experienced clinically significant reductions in

BMI. The Wahls group had lost significantly more weight than the

Swank group at both 12 weeks (−3.14 ± 1.32 kg, p = 0.02) and

24 weeks (−5.38 ± 2.42 kg, p = 0.03). Similarly, the Wahls group

had a significantly greater decrease in BMI compared to the Swank

diet at 12 weeks (−0.89 ± 0.34 kg/m2, p = 0.009). There were no

significant changes in systolic blood pressure (SBP) within or between

groups (Figure 2C). Statistically significant mean (±SEM) reductions

of−4.08± 1.36 (p= 0.003) and−3.87± 1.36 (p= 0.005) in diastolic

blood pressure (DBP) were observed in the Wahls group at 12-

and 24-weeks, respectively (Figure 2D), while the Swank group did

not change from baseline values. There were no differences between

groups in DBP.

Both groups had clinically and statistically significant reductions

in LDL cholesterol at 12 and 24-weeks compared to baseline

(Figure 3A). The Swank group had mean (±SEM) reductions of

−14.85 ± 3.14 and −13.24 ± 3.45 (p < 0.0001 and p = 0.0001)

mg/dl at 12 and 24-weeks and the Wahls group had mean (±SEM)

reductions of −13.15 ± 4.20 and −13.18 ± 3.74 (p = 0.002 and p =

0.0004) mg/dl at 12 and 24 weeks, respectively. The Swank group had

statistically significant mean (±SEM) reductions in HDL cholesterol

at 12- and 24-weeks from baseline values with mean differences of

−5.68 ± 1.48 (p = 0.0001) and −3.47 ± 1.45 (p = 0.02) mg/dl,

respectively, while the Wahls group did not change (Figure 3B). Both

groups had statistically significant within-group reductions in total

cholesterol compared to baseline values. The Swank group had mean

(±SEM) reductions of −19.24 ± 3.36 and −14.80 ± 3.26 mg/dl
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FIGURE 4

Mean change from baseline for (A) insulin, (B) glucose, and (C)

hemoglobin A1c at 12- and 24-weeks for the Swank (black bars) and

Wahls (gray bars) groups. Statistical significance was determined by

generalized linear mixed models and represented by *p ≤ 0.05 and

**p ≤ 0.01.

at 12- and 24-weeks, respectively (p < 0.0001 for both), and the

Wahls group had mean (±SEM) reductions of −14.20 ± 4.80 (p =

0.003) and −11.06 ± 4.43 (p = 0.02) mg/dl at 12- and 24-weeks,

respectively (Figure 3C). TheWahls group had statistically significant

mean (±SEM) reductions in triglycerides at the 12- and 24-weeks

with mean (±SEM) differences from baseline of −18.01 ± 6.30 (p =

0.004) and −24.71 ± 6.98 (p = 0.0004) mg/dl, respectively, whereas

the Swank group did not change from baseline values (Figure 3D).

There were no significant between-group differences inmean changes

from baseline for triglycerides, total, LDL, or HDL cholesterol.

The Wahls group had clinically and statistically significant mean

(±SEM) reductions in insulin at 12- and 24-weeks with mean

differences from baseline of −4.00 ± 1.46 (p = 0.006) and −3.79

± 1.48 (p = 0.02) µIU/mL, respectively, whereas insulin values

among the Swank group did not change from baseline values

(Figure 4A). The Wahls group had significantly greater reductions

in insulin compared to the Swank group at 12- and 24-weeks (p <

FIGURE 5

Mean change from baseline for (A) total fatigue, (B) cognitive fatigue,

and (C) motor fatigue as determined by the fatigue scale for motor

and cognitive functions (FSMC) at 12- and 24-weeks for the Swank

(black bars) and Wahls (gray bars) groups. Statistical significance was

determined by generalized linear mixed models and represented by

*p ≤ 0.05 and ***p ≤ 0.001.

0.05 for both). There were no significant within- or between-group

differences observed for glucose or hemoglobin A1c (Figures 4B, C).

All significant changes in metabolic risk factors were maintained or

strengthened in the per-protocol analysis excluding participants who

were not adherent to their respective diet assignments at 12-weeks

(Supplementary Table 1).

Clinically and statistically significant mean (±SEM) reductions

from baseline were observed in total perceived fatigue (FSMC) at both

12 and 24 weeks for the Swank (−5.69 ± 1.73 and −9.00 ± 2.37,

respectively; p≤ 0.001 for both) andWahls (−9.33± 1.96 and−14.9

± 2.48, respectively; p≤ 0.0001 for both) groups (Figure 5A). Similar

clinically and statistically significant mean (±SEM) reductions were

observed in the FSMC motor and cognitive subscales among both

groups at 12 and 24 weeks (p ≤ 0.01 for all; Figures 5B, C); however,
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TABLE 3 Association and mediation e�ect of 12-week metabolic risk factor changes on perceived fatigue changes among participants with RRMS enrolled in

a dietary intervention study.

Risk factor (unit) FSMC total

β-coe�cient (95% CI) p Percentage mediated (95% CI) p

Systolic BP (mmHg) −0.17 (−0.42, 0.09) 0.20 −5.78 (−21.4, 9.82) 0.47

Diastolic BP (mmHg) −0.31 (−0.69, 0.06) 0.10 −10.5 (−29.0, 7.92) 0.26

Weight (kg) 0.33 (−0.31, 0.98) 0.31 2.63 (−7.14, 12.4) 0.60

BMI (kg/m2) 0.91 (−0.93, 2.75) 0.33 0.92 (−8.81, 10.7) 0.85

Glucose (10 mg/dl) 0.78 (−2.59, 4.15) 0.65 −0.97 (−6.39, 4.45) 0.73

A1c (%) −1.25 (−13.5, 11.0) 0.84 −1.54 (−9.71, 6.64) 0.71

Insulin (µIU/ml) −0.30 (−1.01, 0.41) 0.41 6.06 (−14.9, 27.0) 0.57

Cholesterol (10 mg/dl) −0.43 (−1.69, 0.84) 0.50 8.86 (−14.9, 32.6) 0.46

HDL (10 mg/dl) −0.57 (−3.40, 2.25) 0.69 −1.01 (−11.0, 9.02) 0.84

LDL (10 mg/dl) −0.13 (−1.56, 1.30) 0.86 11.8 (−12.5, 36.0) 0.34

Triglycerides (10 mg/dl) −0.50 (−1.35, 0.34) 0.24 −2.29 (−14.9, 10.3) 0.72

All values shown as β-coefficient or percentages and 95% confidence intervals.

among the Swank group, the change in the cognitive subscale was

not significant at 12 weeks (p = 0.06). All significant within-group

changes in fatigue were maintained or strengthened in the per-

protocol analysis excluding participants who were not adherent to

their respective diet assignment at 12-weeks; however, the Wahls

group had significantly greater reductions in total and cognitive

fatigue compared to the Swank group at 24-weeks in the sensitivity

analysis (Supplementary Figure 1). The decreases in FSMC scores

were not associated with or mediated by changes in metabolic risk

factors (Table 3).

4. Discussion

In this secondary analysis of the WAVES trial, both the Swank

andWahls diets were shown to significantly reduce weight, BMI, total

cholesterol, and LDL; however, these improvements in metabolic risk

factors were not associated with and did not mediate the significant

reductions in perceived fatigue among adults with RRMS.

Both diets significantly improved total cholesterol and LDL levels,

and the Wahls diet was also associated with improved triglyceride

levels. Prior evidence suggests that lipid profiles are inversely

associated with fatigue in people with MS (21, 32, 33); however, the

present study did not observe a relationship between lipid biomarkers

and fatigue. In addition, poor lipid profiles, including high total

cholesterol, LDL, and triglyceride levels, have also been linked with

worse EDSS, increased disability, greater brain atrophy, and increased

presence of contrast-enhancing lesions on brain MRI scans (33).

Interestingly, HDL levels remained stable in the Wahls group, while

the Swank group experienced statistically significant reductions in

HDL levels over the duration of this study. Given the direct link

between dietary saturated fat and HDL levels (34), it is not surprising

that HDL was lowered in the Swank group; however, it is concerning

as prior research has observed an association between higher HDL

levels and lower contrast-enhancing lesion volume in people with

MS (33).

Both the Swank andWahls diets promoted significant weight loss

and reduced BMI, which is unsurprising as both ad libitum dietary

interventions lead to decreased intake of energy and recommend a

high intake of fruits, vegetables, and unsaturated fats and limit intake

of ultra-processed foods (7). Prior research has shown that people

with MS, who are also overweight or obese, are more likely to have

additional comorbidities, which in turn are associated with increased

odds of disability and MS relapse (18). In addition, evidence suggests

that hypertension is associated with more advanced white matter

and whole brain atrophy, greater physical disability, and slower

walking speeds among people with MS (35, 36). Diastolic blood

pressure in the Swank group remained stable over the duration of the

study, in contrast to the Wahls group, which experienced statistically

significant reductions in DBP. No significant changes in SBP were

observed in this study, nor were changes in SBP or DBP associated

with changes in perceived fatigue.

Neither group had significant changes in glucose or hemoglobin

A1c levels, though the Wahls diet did have clinically and statistically

lower insulin levels at 12 and 24 weeks; however, changes in

insulin, glucose, and hemoglobin A1c levels were not associated

with changes in perceived fatigue. These results are consistent

with prior research, which showed that a Paleolithic diet leads to

significantly lower plasma insulin and improves insulin sensitivity

among obese individuals without MS (37). In addition, the present

findings confirm those from a preliminary study among people with

MS that observed small reductions in fasting insulin levels that were

not significant, due, in part, to small sample size, after a 12-week

intervention with a modified Paleolithic diet (22). The reduction

in insulin levels observed among the Wahls group in this study

may be due to the recommendation for lower intake of energy or

carbohydrate-containing foods compared to the Swank diet (7).

The strengths of this study include robust analytical methods,

large sample size, and objectivemeasures of themetabolic risk factors.

Additionally, there was high diet adherence (≥80%) among both

groups as evidenced by analysis of weighed food records, and the

present secondary fatigue outcomes are consistent with the primary

outcomes previously reported (8). This study is limited by the lack
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of diversity of study participants, lack of the usual diet comparison

group, short intervention duration, lack of evaluation of disease

activity, and the wide range of exclusion criteria which limits the

generalizability of the findings to fatigued people with RRMS. In

addition, it should be noted that while no statistically significant

differences existed between the groups at baseline, the Wahls group

had higher baseline values for all metabolic risk factors measured

and had a significantly lower ad libitum intake of energy. Therefore,

although there were statistically significant differences between the

Swank and Wahls groups in terms of the magnitude of change in

weight, BMI, and insulin levels, these differences between the two

groups make it difficult to interpret the between group findings.

People with MS frequently report making dietary changes (4).

The results from this study suggest that diet-induced improvement

in perceived fatigue among people with RRMS is independent of

improvements in metabolic health. Despite the limitations of the

present study, this secondary analysis provides compelling rationale

for future randomized controlled trials with longer duration, larger

sample size, and brain MRI-evaluated disease activity to explore the

intersection between dietary interventions and theMS disease course.
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SUPPLEMENTARY FIGURE 1

Mean change from baseline for (A) total fatigue, (B) cognitive fatigue, and (C)

motor fatigue as determined by the fatigue scale for motor and cognitive

functions (FSMC) at 12- and 24-weeks for the Swank (black bars) and Wahls

(gray bars) groups excluding participants who did not adhere to their assigned

diet (n = 5 Swank, n = 8 Wahls) at 12-weeks. Statistical significance was

determined by generalized linear mixed models and represented by ∗p ≤ 0.05,
∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

SUPPLEMENTARY TABLE 1

Metabolic risk factor values among participants with RRMS assigned to the

Swank or Wahls dietary interventions excluding participants who were not

adherent to their assigned diet.
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