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During physiological stress responses such as vigorous exercise, emotional

states of fear and rage, and asphyxia, the nervous system induces a massive

release of systemic catecholamines that prepares the body for survival by

increasing cardiac output and redirecting blood flow from non-essential

organs into the cardiopulmonary circulation. A curious byproduct of this

vital response is a sudden, transient, and redistributive leukocytosis provoked

mostly by the resultant shear forces exerted by rapid blood flow onmarginated

leukocytes. Generalized convulsive seizures, too, result in catecholamine

surges accompanied by similar leukocytoses, the magnitude of which

appears to be rooted in semiological factors such as convulsive duration

and intensity. This manuscript reviews the history, kinetics, physiology, and

clinical significance of post-convulsive leukocyte elevations and discusses

their clinical utility, including a proposed role in the scientific investigation of

sudden unexpected death in epilepsy (SUDEP).
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Introduction

For longer than a century, physicians have been routinely confronted with

leukocytoses found unexpectedly in the bloodwork of patients who suffer one or more

generalized convulsive seizures (GCSs). Aside from instigating infectious workups,

these leukocytoses typically lack significance in patient care, probably because their

physiological origins are incompletely understood. Some investigators have noted that

the magnitude of post-convulsive leukocyte elevations (PoCLEs) bears a relationship

with convulsive duration and severity. Others have noted the opposite. The paragraphs

below present the history and pathophysiological context of PoCLEs and bring to light

their potential role in the identification of patients at risk of sudden unexpected death

in epilepsy (SUDEP), a complication of some epileptic seizures, typically GCSs, in which

victims experience an acute and fatal respiratory collapse (1).
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Historical context

In 1896, Joseph Capps, then a house officer at the

McLean Hospital in Boston, serendipitously noticed a marked

leukocytosis in a patient who had suffered an epileptic

convulsion just before his scheduled blood collection.

Failing to find an infection, Capps correctly hypothesized

that the leukocytosis had “depended” on the convulsion.

To test this, he collected blood from “severely” epileptic

patients as frequently as every four hours hoping that at

least some baseline samples could be randomly collected

just before the onset of a convulsion. When these samples

materialized, he compared their leukocyte counts against

new samples drawn immediately after the convulsions,

and concluded that the observed leukocytoses (1) were

induced by the convulsions, (2) were “. . . as sudden as

[they were] pronounced. . . ,” and (3) that their degree

and duration correlated with the “length and severity

of attacks” (2). Similar observations and conclusions

were reported by others shortly after Capps’ work was

published (3–5).

The physiological explanation for PoCLEs as we understand

them today was already underway during the fall of 1893

when the English physician George Oliver (1841–1915) fed

his own son a glycerin extract made from sheep and calf

adrenal glands, which constricted his radial arteries and

accelerated his pulse. Oliver then enlisted Dr. Edward Shafer

(1850–1935), a prominent physiologist at University College

in London, to study the effects of his extract in animals

(6), which led to a landmark paper that described, for the

first time, the production of a “material” by the adrenal

glands capable of maintaining and increasing vascular tone

(7). By the turn of the twentieth century the Austrian

scientist Otto Von Furth (1867–1938) obtained the extract’s

bioactive compound, “suprarenin,” and within 2 years, Jokichi

Takamine (1854–1922) purified its crystalline form and named

it adrenaline (8). Later, Walter Bradford Canon [1871–

1945] discovered that emotions such as rage and fear led

to a release of adrenaline, which accelerated the heart rate

and redistributed blood flow from most organs toward

the skeletal muscles, the heart, the lungs, and the brain:

the fight or flight response (9). Cannon (9) and other

investigators (10, 11) also reported an augmented release of

adrenaline by asphyxia, which was said to dilate bronchial

smooth muscles in order to allow for “a second wind” (9).

Then, exogenous adrenaline (12), emotions of fear and rage

(13), and physical exercise (14) were found to increase the

peripheral leukocyte count [reviewed by Benschop et al. (15)].

Table 1 shows an approximate timeline of findings related

to PoCLEs.

TABLE 1 Representative publications related to post-convulsive and

other physiologic leukocytoses.

Year Findings References

1893 Muscular activity increases the leukocyte (89)

count

1895 Adrenal gland extracts increase blood (7)

pressure and cause tachycardia

1896 GCSs induce transient leukocytoses (2)

1904 Exogenous adrenaline induces a transient (12)

leukocytosis

1915 Asphyxia, rage and fear release adrenaline, (9)

cause tachycardia and redirect peripheral

blood to the heart, lungs, and brain

1942 Rage and fear increase the peripheral (13)

leukocyte count in humans

1952 Adrenaline releases leukocytes and platelets (25)

marginated in pulmonary blood vessels

1955 Increased alveolar pressure favors (19, 20)

pulmonary margination

1959 ECT-induced convulsions increase plasma (90)

catecholamines in humans

1980 PoCL is frequent in CSE and GCSs, but (52, 54)

rare in non-motor seizures and PNES

1981 Most SUDEP autopsies exhibit NPE (91)

1982 Anaerobic exercise leads to higher (92)

adrenaline elevations than aerobic exercise

1988 Maximal exercise increases leukocyte (35)

(review) counts to a greater extent that submaximal

exercise

1990 At any given time 55 - 60% of leukocytes (21)

crossing the lungs are marginated inside

capillary beds

1992 GCSs increase plasma catecholamines (50, 51)

in humans

1995 Adrenaline expels leukocytes from the (26, 29)

lungs by increasing cardiac output and thus

pulmonary blood flow

2008 Frank PoCL is rare in the EMU but (65, 68)

frequent in the ED

2009 PoCL is associated with death in CSE (74)

patients

2016 Systemic catecholamines also favor (30)

demargination by “softening” the PMN

cytoskeleton

2019 The degree of PoCL correlates with (68)

aberrant peri-ictal respiration

2019 PoCL often coexists with NPE (85)

GCS, generalized convulsive seizure; ECT, electroconvulsive therapy; PoCL, post-

convulsive leukocytosis; CSE, convulsive status epilepticus; PNES, psychogenic

non-epileptic seizures; SUDEP, sudden death in epilepsy; NPE, neurogenic

pulmonary edema; EMU, epilepsy monitoring unit; ED, emergency department;

PMN, polymorphonucleocyte.
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FIGURE 1

Schematic hypothetical representation of pulmonary demargination during two di�erent seizures. The circular red and blue structures shown

represent the collective of all pulmonary alveolar capillaries. The blue and red halves represent the arterial and venous sides, respectively, while

the white center represents alveoli. (A) Normal, non-seizure state characterized by an equilibrium between margination and demargination and

by a normal marginated leukocyte pool. (B) During GTCSs exhibiting mostly preserved ventilation only minor increases in blood flow through

pulmonary alveolar capillaries occur, resulting in minimal leukocyte demargination and minor increases in the peripheral leucocyte count. (C) By

contrast, GTCSs exhibiting severe respiratory compromise or apnea drive major increases in blood flow through the pulmonary capillaries,

causing major leukocyte demargination and major increases in the peripheral leukocyte count. The arrows above each figure represent the

direction of pulmonary blood flow, from arterial to venous. The larger size of the arrows in (B,C) represents increased blood flow through the

alveolar capillaries during a seizure. GTCS, generalized tonic clonic seizure.

Pulmonary margination and
physiological leukocytosis

In a parallel line of research, scientists pondered the

physiological significance of a large leukocyte pool found

inside the pulmonary vasculature which exceeded that of all

other organs (16). The origin of this puzzling leukocyte pool

turned out to be “margination,” a process characterized by

leukocyte crawling onto the vascular endothelial surface before

slowing to a halt and remaining out of circulation for up to

several minutes at a time (16). While a small fraction of the

leukocytes crossing the lungs at any given timemarginates inside

arterioles and venules, elegant intravital microscopy studies

have shown that most pulmonary leukocytes marginate inside

alveolar capillaries whose small luminal diameters demand

their cytoplasmic transformation from spheres into ellipsoids

in order to squeeze through [reviewed by (16–18)]. This

sluggish leukocyte transit is further influenced by respiratory

mechanics, as, aside from altering the alveolar volume, lung

inflations and deflations also alter adjacent capillary diameters.

For instance, inhalation attempts against a closed airway (i.e.,

the Mueller maneuver) decrease intra-alveolar volume, increase

alveolar capillary diameter, and promote demargination (i.e.,

the return of marginated leukocytes into circulation). In turn,

these conditions lead to small but detectable elevations in the

peripheral arterial leukocyte count. By contrast, exhalations

against a closed airway (i.e., the Valsalva maneuver) produce the

opposite effects (19, 20). Subtle but similar peripheral leukocyte

count elevations and drops can also be observed in the arterial

circulation following prolonged exhalations and inhalations,

respectively, suggesting the existence of what one scientist in

the field called an “ebb and flow of leukocytes” through the

cardiopulmonary circulation which is mirrored in the peripheral

blood (19). Thus, the so called pulmonary marginated pool (16)

arises from a size mismatch between leukocytes and alveolar

capillary lumina which delays leukocyte traffic through the lungs

(17) (Figure 1). It has been estimated that at any given time

55−60% of all leukocytes crossing the lungs are marginated

inside capillary beds (21). Conversely, the more malleable

erythrocytes travel through the lungs approximately 60–100

times faster than leukocytes (22), despite also having to alter

their shapes while passing through the alveolar capillaries, in

single file, exchanging O2 and CO2 [reviewed by Hogg and

Doerschuk (23)].

The polymorphonucleocyte (PMN; also known as

granulocyte due to its prominent cytoplasmic granules),

the largest and most abundant leukocyte type in the peripheral

circulation, which includes neutrophils, mast cells, eosinophils

and basophils, is particularly affected by this anatomical

peculiarity, and accordingly, its marginated pulmonary

pool exceeds its peripheral circulating pool (16). Additional

marginated leukocyte pools can be seen inside the spleen,

liver, and bone marrow, but their roles in catecholamine- and

exercise-induced leukocytoses are less clear. For instance, while

some studies suggest that exercise leukocytosis requires the

spleen, others show it is unchanged by splenectomy [for review

of this literature see (15)]. Marginated leukocyte pools inside

the lymphatic system, liver, and bone marrow do not appear to

play a significant role in catecholamine-induced leukocytoses

(15, 24), although delayed leukocyte elevations associated with

long bouts of strenuous exercise stem, at least partially, from

cortisol’s effects on the bone marrow (see below).
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Leukocyte demargination is principally regulated by the

speed of blood flow, as shear force alone is sufficient to

sweep leukocytes out of the alveolar capillaries (16, 21, 25–29).

Consequently, systemic catecholamines, whether endogenous

or exogenous, promote demargination primarily by increasing

heart rate, which expands blood volume and accelerates

blood flow through the pulmonary vasculature (26, 29). In

addition, systemic catecholamines further facilitate leukocyte

demargination by “softening” the leukocyte cytoskeleton

(30) and by hindering leukocyte adhesion to the alveolar

capillary endothelium (31). A physiological effect of systemic

catecholamines on the blood leukocyte count is illustrated by

studies in healthy humans [see Garrey and Bryan (32) for

a review of this literature] which demonstrated that mere

physical activity elevates the leukocyte count to a degree

that depends on exertion (32) and heart rate (33). Maximal

intensity exercise increases both systemic catecholamines

[reviewed by Zouhal et al. (34)] and blood leukocyte

counts more efficiently than submaximal exercise [reviewed

by McCarthy and Dale (35)]. Additional evidence of a

direct relationship between systemic catecholamines and

the peripheral leukocyte count can be found in myriad

reports of conditions in which either increased heart rate

or frank tachycardia occur, including transient hypoglycemia

(36), acute trauma (27), symptomatic pheochromocytoma

(37), amphetamine use (38), atrial fibrillation (39), acute

burns (40), obstructive sleep apnea (41), acute stroke (42),

myocardial infarction (43), thyroid storm (44), and others

(45, 46). It should be emphasized that, while physiological

leukocytoses have hypothetical immunological consequences

(15), investigations that automatically ascribe proinflammatory

roles to sudden, unexpected, and transient elevations in

the peripheral leukocyte count without contemplating the

effects of catecholamines and heart rate should be interpreted

with caution.

Post-convulsive leukocyte elevations

Even though PoCLEs are considered physiologic (47,

48), their underlying mechanisms remain mostly unexplored.

Animal and human studies have documented an intense

activation of the sympathetic nervous system [e.g., (49)] and a

release of systemic catecholamines immediately after GCS (50,

51), but these studies have not investigated their direct effects on

the peripheral leukocyte count. Instead, most of what is known

about PoCLEs comes from small observational and retrospective

clinical investigations. For instance, an epilepsy monitoring unit

(EMU) study of 340 epileptic seizures in 89 patients showed

PoCLEs in 36% of GCS, 7% of complex partial seizures and

0% of non-convulsive or psychogenic non-epileptic seizures

(PNES; formerly known as pseudoseizures) (52). PoCLEs

exceeding the upper range of the normal leukocyte count

have been frequently observed in convulsive status epilepticus

(CSE) patients [e.g., 41.6% (53), 62.5% (54)], suggesting that

convulsive intensity and duration influences the degree of

these elevations. This notion, which is as old as Joseph Capps’

first description of PoCLEs (2), has been both embraced and

refuted throughout the last century. Just 20 years after Capps

claim that the degree of PoCLEs correlates with the “length

and severity of attacks”, a Philadelphia researcher wrote in

The Lancet: “. . . the degree of increase in the leukocytes [does

not] bear any relationship to the severity of the convulsive

paroxysm” (55). A more recent emergency department (ED)

study of 203 pediatric febrile seizures also failed to find an

association between convulsive duration and leukocyte counts

(56). However, that study omitted the longest and most severe

GCSs from statistical analyses, as the authors excluded GCSs

that met their definition of CSE (i.e., continuous seizures

or repeated convulsions without recovery of consciousness

lasting 30min or longer) (56). By contrast, an EMU study

in which the time elapsed between convulsions and blood

collections was controlled for, found a significant correlation

between the duration of convulsions and the degree of PoCLEs

(52). Consequently, whether convulsive intensity and duration

directly affect the post-convulsive leukocyte count remains an

open question.

Role of cortisol

Administration of exogenous catecholamines induces an

immediate lymphocyte peak (within 30min) followed by a

delayed PMN peak (within 2–4 h) (15). By contrast the

administration of exogenous steroids induces a gradual increase

of PMNs over several hours (57) by accelerating their release

from the bone marrow, increasing their circulating half-life,

and reducing their egress from the intravascular compartment

[reviewed by Parillo and Fauci (58)]. This slow steroid

response is consistent with its intracellular mechanism of

action, which involves a multi-step process that in some cases

includes gene transcription (35). Cortisol’s effect on PoCLEs

has not been directly investigated, but studies show that

following GCSs cortisol is released slowly, marginally and

inconsistently (59, 60). At least one study suggests that cortisol’s

effects on the post-convulsive leukocyte count follow those

of catecholamines, as its release peaked 30min after GCSs

and returned to baseline within 120min (61). In addition,

early animal work demonstrated a leukocyte peak with a left

shift (i.e., the presence of bone marrow-derived, immature

PMNs) 4 h after convulsions in 6-OHDA and reserpine

treated animals (62), suggesting it was instigated by a non-

catecholaminergic stimulus such as cortisol on the bonemarrow.

Thus, if or when cortisol is released after GCSs, it is likely to

augment the initial effects of catecholamines on the peripheral

leukocyte count.
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Kinetics and cellular composition

The essence of what is known about PoCLE kinetics

was written by Joseph Capps in his original publication at

the end of the 19th century (2), namely that GCSs induce

leukocyte elevations which start during or immediately after

convulsions and resolve within approximately 24 h. Burrows,

in 1899, observed that some PoCLEs involved a gradual

increase in PMNs for several hours after convulsions. For

instance, 40min after a GCS one of his patients’ leukocyte

counts was 13,000 cells/mm3 out of which 70% were PMNs,

but 4 h later his leukocyte count was 16,500 cells/mm3 out

of which 91% were PMNs (3). Decades later, studies of

electroconvulsive therapy demonstrated an early increase in

lymphocytes within 3min of convulsions which returned to

baseline within 15min. During this lymphocytic increase, PMNs

exhibited “violent fluctuations,” increasing in some patients

and decreasing in others (63). In rabbits, cardizol-induced

GCSs showed an immediate and fleeting lymphocytic peak

followed by a steady rise in PMNs which lasted several hours

(64). A more recent EMU investigation in which the average

time between convulsions and blood collections was 10 ±

6.0min, demonstrated significant leukocyte elevations within

the normal range. These elevations consisted of relative increases

in both lymphocytes [natural killer (NK)-like T cells] and PMNs

(neutrophils), which returned to baseline within 24 h (65). Of

fifty infection-free CSE patients who demonstrated abnormally

increased leukocyte counts at the time of hospital admission

(range 12,700–28,800 cells/mm3) 34 and 22% showed significant

increases in PMNs and lymphocytes, respectively, while the

rest showed normal differential counts (54). In the aggregate,

PoCLEs appear to involve rapid and short-lived lymphocyte

increases followed by slow and steady PMN increases that return

to baseline within∼24 h.

Role in clinical practice

Physicians and other clinicians typically encounter PoCLEs

in patients who present to EDs with GCSs and abnormally

elevated leukocyte counts. As these patients’ medical histories

and workups lack common leukocytosis triggers such as

therapeutic corticosteroids, infection, or lymphoproliferative

disease, the physiological nature of these leukocytoses only

becomes apparent in retrospect, after subsequent blood draws

reveal their spontaneous normalization. Moreover, extensive

early investigations negated the existence of a correlation

between baseline leukocyte counts and epilepsy per se (66,

67) and therefore it is not surprising that post-convulsive

leukocytoses are often perceived as mere seizure epiphenomena

of little clinical value whose apparently random appearance

forces treating clinicians to embark on fruitless searches for

infectious sources (53, 56). In addition, PoCLEs are often

misunderstood as occurring strictly above the normal leukocyte

range, even though most GCSs, especially those which do not

require urgent transport to the ED, probably induce PoCLEs

within the normal leukocyte range. For instance, in patients

admitted electively to an EMU, average PoCLEs occurred

entirely within the normal leukocyte range (from 5,900 to

8,330 cells/mm3; normal range 4,000–11,000 cells/mm3) (65).

Recently we estimated that 89.5% of 105 patients hospitalized

with GCSs experienced PoCLEs either within or above the

normal leukocyte range (68). Therefore, paraphrasing from

an early publication (55), it is likely that GCSs in otherwise

healthy patients invariably cause temporary elevations of

the leukocyte count. Yet, despite their frequent presence in

emergency settings, the clinical significance of PoCLEs remains

obscure. Animal studies have shown a breakdown of the blood

brain barrier following status epilepticus [reviewed by Swissa

et al. (69)] and a lymphocytic infiltration of neocortex and

hippocampus following maximal electrically induced seizures

(70). The relationship between these findings and PoCLEs

has not been explored. It is possible, however, that some

of the leukocytes released during PoCL could infiltrate the

brain, but the consequences of such infiltration are unclear.

Some investigators have proposed that leukocytosis and other

concomitant effects of CSE such as fever, acidosis, and

hypoxemia (54, 71) could help differentiate generalized CSE

from intractable PNESs in emergency settings (72), a notion

supported by the negligible effect of PNESs’ on the peripheral

leukocyte count (52). A small retrospective investigation

suggested that bloodwork collected within 9 h of GCSs can be

used to differentiate epileptic seizures from PNESs through the

following equation: [(1.5 × anion gap) + (leukocyte count)].

While this method has not been validated prospectively, the

authors indicated that a result ≥24.8 or ≤15.5 confers a ≥90

or ≤10% probability, respectively, that the seizure in question

is epileptic (73).

In a different line of investigation, Tiamkao and

Sawanyawisuth studied predictors of death in 32 cases of

generalized CSE treated with sodium valproate and concluded

that, when found at presentation, post-convulsive leukocytosis

was associated with death (74). Recently, one of these authors

(JLV) and colleagues, found a significant correlation between

the degree of PoCLEs and the presence of periconvulsive

signs of respiratory distress (68). As that study also revealed

a statistically significant correlation between post-convulsive

leukocyte counts and ED triage heart rates, it was hypothesized

that aside from inducing PoCLEs catecholamines might play a

role in producing, or in exacerbating, periconvulsive respiratory

symptoms. The latter could result from various degrees of

transient neurogenic pulmonary edema (NPE) (75–77) a

frequent and sometimes recurrent (78–81) periconvulsive

finding thought to be at least partially driven by catecholamine-

mediated increases in pulmonary blood flow and vascular

tone [reviewed by (82–84)]. This proposed mechanism is
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consistent with a recent report that NPE and leukocytosis

often coexist (85). Considering the close relationship between

pulmonary marginated leukocytes and cardiopulmonary

circulation dynamics, these data suggest that oxygen deficits

generated by periconvulsive respiratory aberrations such

as central apnea, inefficient respiratory mechanics, airway

obstruction, or laryngospasm [reviewed by Stewart et al. (86)],

which at times result in death (i.e., SUDEP) (1), could at

least partially contribute to different degrees of NPE heralded

by the post-convulsive leukocyte count. Viewed through

this lens, the unpredictable relationship between PoCLEs,

convulsive duration and convulsive intensity, so frequently

highlighted during the last century, could be explained by

shifting cardiopulmonary blood flow dynamics occurring in the

context of oxygen-conserving reflexes, such as the mammalian

diving response, whose sympathetic arm shunts a significant

portion of the total blood volume toward the cardiopulmonary

vasculature [reviewed in (87)]. Thus, understanding the

relationship between periconvulsive respiratory anomalies,

periconvulsive cardiopulmonary circulation dynamics, and

PoCLEs not only has the potential to reveal important clues

about SUDEP pathophysiology, but also about SUDEP risk and

SUDEP diagnosis. For instance, an in-depth understanding

of periconvulsive leukocyte kinetics could provide the

post-convulsive leukocyte count a new role as a marker of

underlying respiratory pathology. Parallel efforts to elucidate

whether PoCLEs, or drops, depending on whether convulsive

semiology favor margination or demargination, demonstrate

patient-specific patterns (e.g., amount of time elapsed between

convulsions and leukocyte changes, degree of leukocyte change,

change in the differential leukocyte count, etc.) could be

used to stratify SUDEP risk. In a different investigative vein,

timed histological analyses of marginated leukocyte pools

from SUDEP victims could bring us closer to a tissue based

postmortem SUDEP diagnosis. Therefore, in certain patients,

PoCL has the potential to serve as a biomarker for SUDEP

and SUDEP risk. Unfortunately, little is known about the

post-convulsive leukocyte counts of SUDEP victims, or even of

near-SUDEP patients (i.e., SUDEP victims who are resuscitated

and survive for 1 h or longer) as their leukocyte counts are

seldom reported. In a rare exception, Christy et al., described

the near-SUDEP experience of an 11-year-old patient with

Lesch Nyhan syndrome who developed respiratory failure and

required emergent intubation following a first-of-life GCS. His

post-convulsive leukocyte count was 32,000 cells/mm3 and his

workup failed to demonstrate an infection (88).

Conclusion

One hundred and twenty-six years after their discovery,

PoCLEs remain a physiological enigma. While the available

literature confirms Joseph Capps’ original conclusions that

they are transient, non-infectious, redistributive increases in

the peripheral leukocyte count provoked suddenly by epileptic

convulsions, it also shows a pervasive tendency to assume

that PoCLEs are driven by the same mechanisms underlying

catecholamine and exercise induced leukocytoses. Yet, unlike

other physiological leukocytoses, PoCLEs are triggered during

unpredictable combinations of involuntary muscle contractions

and aberrant respiratorymechanics which can result in impaired

ventilation, impaired gas exchange, or both. Given the intimate

relationship between the pulmonary marginated leukocyte

pool and the cardiopulmonary circulation, elucidating the

mechanisms by which individual seizures instigate PoCLEs

could prove essential in our quest to understand, prevent, and

diagnose SUDEP.
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