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Identification of mRNA
expression biomarkers
associated with epilepsy and
response to valproate with
co-expression analysis

Jun Min, Qinglan Chen*, Wenyue Wu, Jing Zhao and

Xinming Luo

Department of Neurology, The Second A�liated Hospital of Nanchang University, Nanchang, China

Purpose: Valproate (VPA) resistance was reported to be an important predictor

of intractable epilepsy. We conducted this study to identify candidate

biomarkers in peripheral blood correlated with VPA resistance.

Methods: The microarray dataset (GSE143272) was downloaded from

the Gene Expression Omnibus database. Weighted gene co-expression

network analysis (WGCNA) was performed to construct co-expression

modules and obtain the most prominent module associated with VPA

resistance. Di�erentially expressed genes (DEGs) between VPA-responsive and

VPA-resistant patients were obtained using the “Limma” package in R. The

intersections between the most prominent module and DEGs were identified

as target genes. Metascape was performed to discover the possible involved

pathways of the target genes. GeneCards database was used to know the

function of each target gene.

Results: All genes in the GSE143272 were divided into 24 di�erent modules.

Among these modules, the darkred module showed a pivotal correlation with

VPA resistance. A total of 70 DEGs between VPA-responsive and VPA-resistant

patients were identified. After taking the intersection, 25 target genes were

obtained. The 25 target genes were significantly enriched in T cell receptor

recognition, T cell receptor signaling pathway, regulation of T cell activation,

cytokine–cytokine receptor interaction, and in utero embryonic development.

Half of the target genes (CD3D, CD3G, CXCR3, CXCR6, GATA3, GZMK, IL7R,

LIME1, SIRPG, THEMIS, TRAT1, and ZNF683) were directly involved in the T cell

development, migration, and activation signaling pathway.

Conclusion: We identified 25 target genes prominently associated with

VPA resistance, which could be potential candidate biomarkers for epilepsy

resistance in peripheral blood. The peripheral blood T cells may play a crucial

role in VPA resistance. Those genes and pathways might become therapeutic

targets with clinical usefulness in the future.
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Introduction

Epilepsy is characterized as a predisposition of the brain

to generate epileptic seizures accompanied by neurobiological,

cognitive, and psychosocial consequences (1). About 65 million

people around the world suffer from epilepsy (2). One-

third of patients with epilepsy fail to achieve sustained

seizure freedom in spite of appropriately choosing and taking

antiepileptic drugs (3). Pharmacoresistant epilepsy is associated

with increased cognitive and psychiatric disorders, decreased

quality of life, and even high risk of premature death (4, 5).

The mechanisms of drug resistance in epilepsy remain elusive.

Searching hematological diagnostic markers of drug resistance

in epilepsy contributes to early diagnosis and treatment of

refractory epilepsy.

Valproate (VPA) is the most commonly prescribed

antiepileptic drug which is suitable for various epilepsy types

including partial and generalized epilepsy (6). VPA can prevent

seizures in 66% of patients with convulsive status epilepticus

(7). However, almost one-third of patients are resistant to VPA

treatment (7). Gesche et al. (8) revealed that VPA resistance

is an important predictor of refractory idiopathic generalized

epilepsy. The specificity and predictive value of VPA resistance

in determining patients with epilepsy resistance is 100%,

which is strongly associated with adverse social outcome

and high seizure burden (8). Exploring the biomarker and

mechanisms of VPA resistance is of great value for the study of

epilepsy resistance.

Expression microarrays and high-throughput sequencing

play an important role in promoting the research on drug

resistance, identifying novel therapeutic targets, and accelerating

drug discovery, and have been widely used in the study

on drug resistance to chemotherapy and antibiotics (9–11).

Previously, Wang et al. detected the differentially expressed

genes (DEGs) in the peripheral blood of VPA-responsive and

non-responsive pediatric patients with epilepsy and showed

that specific cytokines and chemokines might participate in

processes associated with VPA resistance (12). Compared with

traditional expression profile analysis focusing on several DEGs,

weighted gene co-expression network analysis (WGCNA)

divides thousands of genes into dozens of gene modules

with similar expression patterns and obtains the significant

relationships between gene modules and specific phenotypes

(13). WGCNA has been successfully applied to identify

candidate biomarkers or therapeutic targets in various diseases

and biological contexts (14–16).

In this study, we performed WGCNA analysis in peripheral

blood expression profiles of patients with VPA-sensitive and

Abbreviations: VPA, valproate; WGCNA, weighted gene co-expression

network analysis; DEGs, di�erentially expressed genes; BBB, blood brain

barrier; TLE, temporal lobe epilepsy.

VPA-resistant epilepsy and identified the mRNA expression

biomarkers of VPA resistance. Our results revealed that the

activation of peripheral blood T cells might have important

pathophysiological significance in VPA resistance.

Materials and methods

Data collection

The microarray dataset (GSE143272) was downloaded

from the Gene Expression Omnibus database (http://www.

ncbi.nlm.nih.gov/geo/). This dataset consisted of 34 drug-naïve

patients with epilepsy, 57 patients with different responses

to antiepileptic drug monotherapy (phenytoin, VPA, and

carbamazepine) during a follow-up, and 50 healthy control

subjects. The peripheral blood samples were obtained and

detected using an expression profiles array. In this article,

only data from patients responsive and resistant to VPA were

collected for further co-expression network analysis. In the

GSE143272 dataset, patients on VPA therapy were followed-

up over a period of 1 year for drug, dose, and serum drug

concentrations and response to treatment after enrolment (17).

During the course, patients who remained seizure-free were

categorized as “VPA responsive” and who experienced at least

3 seizures were categorized as “VPA resistant” (17).

Weighted gene co-expression network
analysis

Before co-expression network construction, all samples were

clustered to observe whether there were outliers. Two outlier

samples (GSM4255896 and GSM4255845) were deleted. The

WGCNA R package was used to construct a gene co-expression

network. The expression matrix of all the genes was converted

into an adjacency matrix, which was then converted into a

topological dissimilarity matrix. To ensure that the weighted

co-expression network conformed to the scale-free network in

this process, a soft threshold of 7 was chosen. Then, a dynamic

tree-cutting algorithm was used to cluster gene modules on

the basis of topological matrix. The module-trait relationship

was obtained by estimating the correlation between the module

eigengene and the phenotype (gender, age, and VPA resistance).

The module highly related to VPA resistance was selected. For

each expression profile, gene significance was calculated as the

absolute value of the correlation between expression profile and

each trait; module membership was defined as the correlation of

expression profile and each module eigengene. The significant

module genes were denoted as genes with a p-value of gene

significance in VPA resistance less than 0.05 and were used for

subsequent analysis.
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Identification of DEGs

The “Limma” package in R was conducted to obtain DEGs

between VPA-responsive and VPA-resistant patients, drug-naïve

patients with epilepsy and healthy controls, and drug-naïve

patients with epilepsy and patients taking VPA. If multiple

probes matched the same gene, the mean signal intensity was

computed. Genes with a p-value of < 0.05 and the |log2 FC| of

> 0.5 were considered robust DEGs.

Bio-function analysis

The Venn diagram was used to intersect the significant

genes in the darkred module and the DEGs of VPA resistance

obtained by Limma to identify target genes. The intersected

genes were uploaded to Metascape (http://metascape.org/gp/

index.html) to perform functional annotation analysis (18).

GeneCards database (https://www.genecards.org/) was used to

know the function of each target gene (19).

Specificity verification of the target genes

To determine whether the target genes were related to

VPA resistance rather than VPA or epilepsy, we intersected

the target genes with the DEGs between drug-naïve patients

with epilepsy and patients taking VPA. The same method

was used to obtain the intersection of the target genes

with DEGs between drug-naïve patients with epilepsy and

healthy controls.

Results

Construction of weighted co-expression
network and modules

The workflow of this article is shown in Figure 1. A

total of 9 VPA-resistant and 16 VPA-responsive samples

were included for co-expression network analysis. Two outlier

samples (GSM4255896 and GSM4255845) were deleted after

sample cluster analysis (Figure 2A). To conform to the scale-

free network, the soft-thresholding power of 7 was selected to

attain the balanced scale independence (Figure 2B) and mean

connectivity (Figure 2C). All genes were hierarchically clustered

using the dynamic hybrid tree cut method and the highly similar

modules were merged. All genes were finally divided into 24

different modules according to the connectivity, as shown in

Figure 3. The genes that could not be included in any modules

were classified into the gray module, which was removed in the

subsequent analysis.

FIGURE 1

The workflow of this article.

Correlation between modules and
identification of key modules

Among the 24 different modules, the interaction association

(Figure 4A) and eigengene adjacency (Figure 4B) were analyzed

and plotted. The results showed that modules were independent

of each other, which indicated a high-degree independence of

gene expression in different modules. Furthermore, we obtained

modules related to VPA resistance, age, and gender through

the module-traits correlation analysis. The results are shown

in Figure 5A. The darkred, lightpink4, purple, darkorange,

and floralwhite modules revealed a high correlation with

disease type (responsive or resistant to VPA) compared with

other modules (Figure 5A). None of the 24 modules showed

a significant correlation with age and gender. The darkred

module was the most significant module related to the VPA

resistance. The gene significance and module membership in

the darkred module were calculated, as shown in Figure 5B

and Supplementary Table S1. In the darkred module, genes with

a p-value of gene significance in VPA resistance less than

0.05 were recognized as significant module genes, and 562

genes were screened out accordingly for subsequent analysis

(Supplementary Table S1).

Identification of DEGs

A total of 70 genes were found to be differentially

expressed between VPA-responsive and VPA-resistant patients

(Supplementary Table S2). Among these DEGs, 47 were

downregulated and 23 were upregulated. There were 26 genes

identified to be differentially expressed between patients with
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FIGURE 2

Clustering of samples and identification of soft-thresholding power. (A) The microarray dataset GSE143272 contained 9 VPA-resistant and 16

VPA-responsive samples. After clustering and removing two outliers, the remaining 23 samples were analyzed. The di�erent color below

denoted di�erent disease status (VPA resistance, gender, and age). (B) The scale-independence and (C) mean connectivity for di�erent soft

threshold powers were calculated, and 7 was selected as the most fit power value to construct scale-free networks (VPA, valproate).

FIGURE 3

Cluster dendrogram of all genes and construction of

co-expression modules by WGCNA in GSE143272. Each branch

represented one gene, and every color bar below corresponded

to one co-expression module. All genes were finally divided into

24 di�erent modules after merging modules with high similarity

(WGCNA, weighted gene co-expression network analysis).

naïve epilepsy and healthy control samples. Among these

DEGs, 15 were downregulated and 11 were upregulated

(Supplementary Table S3). A total of 74 genes were differentially

expressed between patients with naive epilepsy and patients

taking VPA. Among these DEGs, 28 were downregulated and

46 were upregulated (Supplementary Table S4).

Identification of target gene and
bio-function analysis

We used the Venn diagram to intersect the 562 significant

genes in the darkred module with the 70 DEGs between

VPA-responsive and VPA-resistant patients, and a total of 25

genes (ATP23, C17orf97, CBS, CD3D, CD3G, CDR2, CRYZ,

CXCR3, CXCR6, GATA3, GZMK, IL7R, IMPA1, LIME1, RBBP6,

RPS26, RPS26P11, SF1, SIRPG, SNORA28, STMN3, THEMIS,

TRAT1, ZNF683, and ZNF816) were obtained (Figure 6A,

Supplementary Table S5). Among the 25 target genes, 23 genes
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FIGURE 4

Association analysis of modules. (A) Di�erent colored bars represented di�erent modules. The depth of color represented the tightness of the

connection among di�erent modules. Significant dissimilarity in the connectivity existed among di�erent modules. (B) Heat map to display the

eigengene adjacencies in some representative modules.

FIGURE 5

Representative heat map of modules-traits relationship and analysis of gene significance and module membership in the darkred module. (A)

The heat map showed the relationship between di�erent modules and each trait (VPA resistance, sex, or age). The number in each bar denoted

the correlation coe�cient and p-value. The darkred module is most related to VPA resistance. (B) Scatter diagram to show the gene significance

in VPA resistance and module membership in the darkred module (VPA, valproate).
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FIGURE 6

Identification of target genes in the key module and bio-function analysis. (A) Common genes of DEGs in VPA resistance (the blue circle) and

the significant genes in the darkred module (the yellow circle). The DEGs in VPA resistance were obtained using the “Limma” algorithm

by |Log2 FC| > 0.5 and p-value < 0.05. The darkred module was most related to VPA resistance through WGCNA analysis and the significant

module genes were those with p-value of gene significance in VPA resistance less than 0.05. By comparing the genes, a total of 25 target genes

were obtained. (B) The function of the 25 target genes was analyzed by Metascape and top 5 clustered terms were displayed. (C) Common

genes of target genes and VPA taken DEGs (the blue circle). (D) Common genes of target genes and epilepsy DEGs (the blue circle) [“Log10(P)” is

the p-value in log base 10. DEG, di�erentially expressed gene; VPA, valproate; WGCNA, weighted gene co-expression network analysis].

were upregulated in VPA-resistant patients except for RBBP6

and SNORA28.Then, we analyzed the function of 25 target genes

by Metascape. The enriched top 5 biological processes were

T cell receptor recognition, T cell receptor signaling pathway,

regulation of T cell activation, cytokine–cytokine receptor

interaction, and in utero embryonic development (Figure 6B).

Further functional analysis using the GeneCards human gene

database showed that CD3D, CD3G, CXCR3, CXCR6, GATA3,

GZMK, IL7R, LIME1, SIRPG, THEMIS, TRAT1, and ZNF683

were directly involved in the T cell development, migration, and

activation signaling pathway.

Gene specificity verification

To test whether the 25 target genes associated with VPA

resistance were affected by epilepsy or sodium VPA, we

compared these 25 genes with the DEGs associated with

taking VPA or the DEGs related to epilepsy. The results of

the comparisons are presented in Figure 6C. From the Venn

diagram, there was no intersection gene between the 25 target

genes andDEGs associated with taking VPA.We also intersected

these 25 target genes with the 26 DEGs associated with epilepsy

and only one gene was common to both groups (Figure 6D).

Discussion

Pharmacoresistance is an important unsolved problem in

the field of epilepsy. Searching for hematological markers for

epilepsy resistance is helpful to predict the drug response in

patients with epilepsy, improve prognosis, and explore the

potential mechanisms of drug-resistant epilepsy (20). WGCNA

is a widely used bioinformatics analysis method that focuses on

the gene modules involved in the common biological pathway

and obtains the relationship between modules and traits in

interest instead of several DEGs (13). In this article, we used

WGCNA to obtain the gene module that most significantly

correlated with VPA resistance; furthermore, we found the

DEGs in this module closely participated in the T cell selection

and activation pathway. Specifically, the DEGs in the significant

module are associated with VPA resistance regardless of the

presence or absence of seizure or VPA. As there was a close

correlation between VPA resistance and epilepsy resistance (8),

we proposed that the molecule expression of the T cell activation

pathway in peripheral blood could be a good biomarker of

epilepsy resistance.

Previous studies have also laid the foundation for T cell

activation to be a biomarker of epilepsy resistance. Ouédraogo

et al. identified that CD4+ T cells along with pro-inflammatory
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cytokines (e.g., interleukin-17A and tumor necrosis factor)

expressed by CD4+ T cells were elevated in the peripheral

blood of patients with drug-resistant epilepsy compared with

that in patients with well-controlled epilepsy (21). T cells were

upregulated not only in the peripheral blood of patients with

intractable epilepsy but also in brain tissue. Tröscher et al.

found that CD3+ as well as CD8+ T cell numbers were

significantly elevated in the resected hippocampi of patients with

temporal lobe epilepsy (TLE) compared with that in the healthy

controls, although the numbers varied significantly among TLE

subgroups (22). Animal models of intractable epilepsy also

showed that T cells were increased in the epileptic hippocampus

(23). Together, our study combined with the results of previous

studies showed that the upregulation and activation of T cells

in peripheral blood could be a good biomarker for drug-

resistant epilepsy.

T cells could also participate in the physiological mechanism

of epilepsy resistance. In TLE mice, 60–75% of T cells present

in the hippocampus were cytotoxic CD8+ T cells, suggesting

a potential role in the damage of hippocampal neurons that

was regarded as an important pathophysiological basis for

epileptogenesis of TLE (23). A further analysis of TLE showed

that the number of T cells in the epileptic hippocampi was

significantly correlated with the degree of neuronal loss, but not

with seizure frequency or disease duration (22). Importantly,

the attack of CD8+ T cells on hippocampal neurons was found

to induce hippocampal sclerosis and TLE in limbic encephalitis

(24). Pro-inflammatory CD4+ T cells could also cause neuronal

damage in vivo (25) and directly lead to intractable seizure in an

animal model of epilepsy partly through secreting interleukin-

17A and granulocyte-macrophage colony-stimulating factor

(26). The role of T cells in blood–brain barrier (BBB) injury

has also attracted increasing attention (27). Multiple studies in

neurological diseases such as Alzheimer’s disease and multiple

sclerosis suggested that T lymphocytes were closely related to

BBB destruction (28, 29). Before entering the brain parenchyma,

pro-inflammatory CD17+T cells were interacted closely with

vascular endothelial cells by promoting the downregulation of

tight junction protein and adhesion protein, stimulating the

expression of pro-inflammatory cytokines, and promoting the

transmigration of CD4+ T cells (27, 28). The infiltrated CD8+

T cells also showed to be involved in BBB destruction through

a perforin-dependent process (30). Removing T lymphocytes in

peripheral blood by Fingomod could reduce BBB injury and

P-glycoprotein expression (31). This evidence supported that

peripheral blood-derived T cells might play an important role

in BBB injury.

This study has some limitations. First, the sample size in our

study is limited. Therefore, expanding the sample validation can

improve the reliability of the research results. Second, further

experimental verification of target gene expression in patients

with epilepsy is necessary, and the undifferentiated T cell types

need to be further explored in future studies. In addition, as a

potential candidate biomarker, the sensitivity and specificity of T

cell target gene expression in peripheral blood to predict epilepsy

resistance need to be further validated in population data.

In summary, using WGCNA, our study has identified

that peripheral blood T lymphocyte activation could be a

good biomarker for VPA treatment response. Furthermore, our

findings also have guiding significance for further revealing the

pathophysiological mechanism of drug-resistant epilepsy.
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