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The recurrent and unpredictable nature of seizures can lead to unintentional

injuries and even death. The rapid development of electroencephalogram

(EEG) and Artificial Intelligence (AI) technologies has made it possible to

predict seizures in real-time through brain-machine interfaces (BCI), allowing

advanced intervention. To date, there is still much room for improvement

in predictive seizure models constructed by EEG using machine learning

(ML) and deep learning (DL). But, the most critical issue is how to improve

the performance and generalization of the model, which involves some

confusing conceptual and methodological issues. This review focuses on

analyzing several factors a�ecting the performance of seizure prediction

models, focusing on the aspects of post-processing, seizure occurrence

period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore,

this study presents some new directions and suggestions for building high-

performance prediction models in the future. We aimed to clarify the concept

for future research in related fields and improve the performance of prediction

models to provide a theoretical basis for future applications of wearable seizure

detection devices.
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Introduction

Epilepsy is one of the most common chronic diseases of the nervous system,

affecting approximately 70 million people worldwide with a prevalence rate of

4.0–7.0‰ (1). Notably, about 30–40% of epilepsy patients exhibit treatment resistance

to drug therapy (2) and suffer from complex epilepsy symptoms, called drug-

refractory epilepsy (DRE). Even epilepsy patients who show a positive response

to antiepileptic drugs initially may face the risk of recurring episodes of epileptic

seizures at any time, causing excessive stress, anxiety, and deviation from their normal

lifestyle (3). In clinics, as well as in scientific investigations, electroencephalogram

(EEG) is an important tool for the diagnosis of epilepsy. Since the first EEG-based

publications by Iasemidis and Sackellares group in the 1980’s and 1990’s, that

provided evidence of seizures being non-random events and hence predictable
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(4–17), the first prospective seizure prediction algorithm

running real-time on continuous EEG data was developed by

Iasemidis et al. (18). Non-linear features of the EEG, such as

the largest Lyapunov exponent and phase changes in the state

space, were extracted over time to identify dynamical spatial

entrainment changes in the preictal period between critical brain

sites. The algorithm across patients reached average values of

sensitivity of 84%, false prediction rate of 0.12/h, and prediction

time prior to seizures (early warning time) of 74.4min. This first

seizure prediction algorithm was automated and adaptive, the

precursor of the current so-called event-based models, needed

to detect the occurrence of the first seizure for initialization of

its parameters per patient and did not need any predetermined

(i.e., arbitrary chosen) preictal (and hence neither SOP nor

SPH) period. Seizure prediction became a whole new field in

brain research thereafter, and a hot topic due to its many

potential applications in the diagnosis, prognosis and treatment

of epilepsy and potentially of other brain dynamical disorders

(3, 19–21). With the development and application of Artificial

Intelligence (AI) technology for clinical and diagnostic purposes,

the use of Machine Learning (ML) and Deep Learning (DL)

in constructing models for seizure prediction based on EEG

features has become a popular method in epilepsy management

(Figure 1) (16–18, 22, 23).

Remarkable progress has been made in the field of seizure

detection by EEG using AI techniques, and at least three

instruments that have been clinically tested received well

acceptance (24, 25). However, there are still some difficulties

in predicting seizures precisely. By reviewing the related

literature and the depth of research, we found that one of

the reasons is the existing gap between the research outcomes

and their clinical application since most researchers develop

FIGURE 1

Flowchart for based-on-EEG seizure prediction.

high-performance prediction models without considering the

real-life parameters. For example, some models do not use post-

processing techniques, leading to the possibility that multiple

warning messages will be appearing before a single seizure

which, if applied in practice, would seriously disrupt patients’

lives. Seizure Occurrence Period (SOP) and Seizure Prediction

Horizon (SPH) settings are not often considered in this practical

sense, which can lead to excessive anxiety and seriously affect

the patient’s daily activities. Moreover, as presented in previous

studies, evaluation metrics of “event-based” and “segment-

based” model performance may sometimes seem confusing.

Kuhlmann et al. (26) provided a detailed overview of the

field of seizure prediction, indicating its future directions. Others

have outlined particular areas from previous studies, such as

features, methods (21, 27–29), model selection, and Brain-

Computer Interfaces (BCI) (3, 20, 30, 31), etc. However, there

are barely any review studies specifically focusing on the AI-

guided construction of “event-based” models for predicting

seizures from EEG findings, and the importance of post-

processing techniques, SOP and SPH. This study aimed to

clearly demonstrate the relationship between “segment-based”

and “event-based” prediction models, and summarize the

underlying factors that affect these predictionmodels. Moreover,

we highlight the importance of post-processing techniques and

their impact on future BCI applications.

Segment-based and event-based
models for predicting seizures

The EEG recordings of epilepsy patients can be divided

into four distinct periods (Figure 2): the ictal period that spans
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FIGURE 2

Example of perictal EEG and the respective periods. Interictal

period: away from seizures; Preictal period: immediate before a

seizure; Ictal period: spans the seizure itself; Postictal period:

immediate after a seizure.

the duration of a seizure; the preictal period, that is, the to

be detected (but in seizure prediction models it is specified)

period immediate prior to a seizure’s onset where signs of the

upcoming seizuremay exist; the postictal period, that is, the to be

detected (but in seizure prediction models it is specified) period

immediate after seizure’s end and up to the interictal period; and

the interictal period, that is, the seizure-free (baseline) period

between seizures, that excludes the preictal and postictal periods,

and in which epilepsy patients remain most of the time. Thus,

the essence of seizure prediction is to identify the beginning of

the preictal period as early as possible (minutes to hours) before

a seizure’s occurrence and issue warnings for the impending

seizure. (In the cases that the preictal period is found to last days,

its detection is more a subject of the field of seizure susceptibility

than of seizure prediction).

By dividing interictal and preictal EEG data into windows

of the same size, a classification model, called the “segment-

based” prediction model, can be constructed to detect the

predetermined preictal EEG period (= SOP + SPH) prior to

seizures (same length of preictal period is typically assumed

before all seizures) (32, 33). This model is designed to accurately

distinguish between predetermined preictal and interictal EEG

segments, and if themodel becomesmore accurate in identifying

the number of preictal segments, it demonstrates that it could

in practice identify preictal changes with high performance

(necessary condition). It is not sufficient to construct a

classification model that identifies preictal segments; it is

meaningless to alert in practice with a real-time warning every

time a segment is identified as preictal. Also, there will inevitably

be errors in the classification of preictal windows, which will

most likely result in too frequent warnings and a large number of

false alarms. Thus, the results of the segment-based model need

to be post-processed in order to be able to realistically apply its

predictions in the clinic.

When the occurrence of a seizure event is predicted and

a warning sign is issued as soon as the model identifies the

first preictal window, or after the post-processing of the results

on the windows from the preceding segment-based analysis by

techniques known as output regularization (33–36), it is called

“event-based” seizure prediction model (33, 34, 37). Hence, this

model can also be used for seizure detection, where a seizure is

expected to occur after the pre-determined preictal period of the

model (38–40).

The performance of the event-based and segment-based

prediction models is a decisive factor in deciding whether

to use them in clinical practice, as only high-performance

prediction models could accurately predict seizures without a

significantly large number of false alarms affecting patients’

psychological status.

Metrics and parameters of seizure
prediction models’ performance

Evaluation metrics of performance

Some of the common metrics used to evaluate the

performance of a seizure prediction model include sensitivity

(Sen), specificity (Spe), accuracy (Acc), false prediction rates

per hour (FPR/h), warning time, warning time ratio (41,

42). The performance evaluation metrics of “segment-based”

and “event-based” prediction models are different in their

meaning as the models themselves are based on different

assumptions. Table 1 describes the relationship and conceptual

issues regarding evaluation metrics between the “segment-

based” and “event-based” prediction models (68–70). Table 2

highlights the evaluation metrics of the performance of the

“event-based” prediction models. In most of the “event-based”

predictionmodels, the performance is evaluated primarily by the

sensitivity and FPR/h metrics (22, 42, 68). Table 3 highlights the

evaluation metrics of the performance of the “segment-based”

prediction models.

Different ML and DL algorithms can influence the

performance of the constructed epilepsy prediction models,

with some generally applicable algorithms resulting in more

stable performances. In a study (43) of a seizure prediction

model combining a Long Short-TermMemory (LSTM) network

with convolutional neural networks (CNN), authors used a

public dataset of scalp EEG (sEEG) recordings from 23 patients

with 185 seizures. The sensitivity of the model in “event-

based” prediction was up to 100%, with FPR = 0.02/h and a

predetermined preictal window (period) of 2 h. However, the

authors also therein state that their approach does not allow

to evaluate the prediction time, that is, the duration from the

first preictal segment identification to the actual seizure onset.

Another study (33) used Long-term Recurrent Convolutional

Network (LRCN) to construct a seizure prediction model from

EEG data of 15 epilepsy patients and achieved 100% sensitivity

and FPR of 0.04/h in the “event-based” model. Zhao et al.
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TABLE 1 Evaluation metrics for “segment-based” and “event-based” models for predicting seizures.

“segment-based” models

(Classification model)

(22, 33, 34, 40, 43–52)

TP (True Positive): The number of preictal windows correctly identified by the classifier as preictal.

FP (False Positive): The number of interictal windows incorrectly identified as preictal by the classifier.

TN (True Negative): The number of interictal windows correctly identified as interictal by the classifier.

FN (False Negative): The number of preictal windows incorrectly identified by the classifier as interictal.

Sensitivity, SEN

Also known as recall

Meaning: Ability of the preictal window to be correctly identified by the classifier.

SEN= TP/(TP+ FN)

Significance: It measures the ability of the classification model to identify the preictal period and is proportionally related to the

model performance.

Specificity, Spe Meaning: the ability of the interictal window to be correctly identified by the classifier.

Spe= TN/(TN+ FP)

Significance: It measures the ability of the classification model to identify the interictal period, and the higher it is, the better the

model performance is.

Accuracy, Acc Meaning: the ability of the classifier to correctly identify interictal and preictal periods.

Acc= (TP+ TN)/(TP+ TN+ FN+ FP)

Significance: The ability of the classification model to identify the interictal and preictal periods is measured, with higher levels

demonstrating better model performance.

False prediction rate, FPR Meaning: The proportion of interictal periods incorrectly identified by the classifier as preictal.

FPR= FP/(TN+ FP)

Significance: It measures the false recognition layer of the classification model for the interictal period, and the lower it is, the

better the model performance is.

“event-based” models

(prediction model) (18, 22, 23, 33,

40–44, 46, 47, 50, 53–67)

Sensitivity, Sen

Also known as recall

Meaning: The proportion of the number of seizures correctly predicted by the prediction model to the total number of seizures

in the test set.

Significance: It measures the prediction performance of the prediction model, and is the most important indicator of the

performance of the prediction model; the greater the sensitivity, the better.

Average false prediction Rate per

hour, FPR/h

Meaning: The average number of false alerts per hour.

Significance: It measures the prediction performance of the forecasting model, and is an important indicator of the

performance of the forecasting model, the lower it is, the better the performance of the forecasting model.

Early warning time Meaning: The distance between the time when the prediction model gives a warning and the time of seizure in the test set.

Significance: It is an important indication of the performance of the prediction model, the longer the time, the better.

(71) reportedly achieved a sensitivity of 99.81% and FPR of

0.05/h in a CNN-based prediction model constructed using

sEEG recordings from 10 epilepsy patients in a public dataset.

Although models constructed using these conventional

algorithms have shown satisfactory results, it is still difficult

to apply them to clinical practice, largely because DL-

guided models can easily cause overfitting, resulting in weak

generalization when their assumptions (e.g. the predetermined

values of their parameters) are not realized. Additionally,

there is a need to minimize the computational load (time

and power consumption) while maintaining a high level of

performance, especially in implantable and wearable devices

where such a load may be critical (71). The introduction of new

concepts through innovative algorithms and models to enable

prospective real-time clinical applications while maintaining

the their retrospective high performance levels is the current

mainstream approach to developing high-end AI-guided seizure

prediction models.

The performance of models constructed by new algorithms

and technologies is generally lower than that of models

constructed based on matured algorithms, which may be

related to the fact that the new algorithms are not yet

perfectly optimized for the desired tasks. Bomela et al. (81)

exploited “Inferring The Connectivity Of Networks (ICON)”,

a new technique for analyzing the connectivity features of

functional brain networks, and the final prediction model

obtained a sensitivity of 93.62% and FPR of 0.16/h in the

public dataset of sEEG data from 17 patients. Recently, another

author proposed the Consistency-based Semisupervised Seizure

Prediction Model (CSSPM) for epileptic seizure prediction (68),

which obtained a mean sensitivity of 78.5% and the FPR of

0.44/h in sEEG recordings from 11 patients in a public dataset. It

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.1016224
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ren et al. 10.3389/fneur.2022.1016224

TABLE 2 Previous studies of event-based models for predicting seizures.

Classifier EEG datasets Predeter mined preictal

and window lengths

Predeter mined

SOP and SPH

Evaluation

indicators

CSSPM (68) CHB-MIT

11 patients

Preictal= 30min

Window= 30 s

SPH= 5min

SOP= 30 min

Sen: 78.5%

FPR: 0.44/h

CNN (71) CHB-MIT

10 patients

Preictal= 30min

Window= 5 s

SPH= 5min

SOP= 30 min

Sen: 99.81%

FPR: 0.005/h

STS-HGCN-AL (55) CHB-MIT

19 patients

Preictal= 15min

Window= 5 Sec

SPH= 1min

SOP= 15 min

Sen: 95.5%

FPR: 0.109/h

SDCN (23) CHB-MIT

22 patients

AES

5 dogs, 2 patients

Melbourne

15 patients

Preictal= 60min

Window= 30 Sec

Preictal= 66min

Window= 30 Sec

Preictal= 60min

Window= 30 Sec

SPH= 5min

SOP= 60 min

Sen: 98.9%

FPR:0.06/h

Sen: 88.45%

FPR: NA

Sen: 89.52%

FPR: NA

FRCNN (72) Freiburg

20 patients

CHB-MIT

16 patients

Preictal= 30min

Window= 1 Sec

SPH= NA

SOP= 30 min

Sen: 91%

FPR: 0.06/h

Sen: 85%

FPR: 0.14/h

DNN

CNN

LSTM (40)

CHB-MIT

15 patients

Preictal= 3min

Window= 1 Sec

SPH= NA

SOP= 40 min

Sen: 76.6%

FPR: 0.71/h

Sen: 90.66%

FPR: 0.204/h

Sen: 90.72%

FPR: 0.241/h

EA (59) Freiburg

19 patients

Preictal= 40min

Window= 5 Sec

Preictal= 50min

Window= 5 Sec

Preictal= 60min

Window= 5 Sec

SPH= 10min

SOP= 40.46 min

Sen: 38%

FPR:1.03/h

Sen: 36%

FPR:0.76/h

Sen: 37%

FPR: 0.58/h

Gradient boosting classifier

(73)

Freiburg

20 patients

Preictal= 30min

Window= 4 Sec

SPH= 2min

SOP= 30min

SPH= 2min

SOP= 50 min

Sen: 90.42%

FPR: 0.12/h

Sen: 91.67%

FPR: 0.10/h

CSP and CNN (42) CHB-MIT

23 patients

Preictal= 30min

Window= 5 Sec

SPH= 0min

SOP= 30 min

Sen: 92.2%

FPR: 0.12/h

MLP (53) CHB-MIT

10 patients

Preictal= 30min

Window= 16 Sec

SPH= 0min

SOP= 120 min

Sen: 89.81%

FPR: 0.081/h

CNN and DTF (74) Freiburg

19 patients

Preictal= 30min

Window= 10 Sec

SPH= 5min

SOP= 30 min

Sen: 90.80%

FPR: 0.08/h

FDMR (75) CHB-MIT

21 patients

Preictal= 60min

Window= 10 Sec

SPH= 0min

SOP= 60 min

Sen: 100%

FPR: 0.07/h

DCAE+ Bi-LSTM (69) CHB-MIT

8 patients

Preictal= 60min

Window= 5 Sec

SPH= 0min

SOP= 60 min

Sen: 99.72%

FPR: 0.004/h

3D CNN (54) CHB-MIT

16 patients

Preictal= 30min

Window= 5 Sec

SPH= 1min

SOP= 30 min

Sen: 85.7%

FPR: 0.096/h

(Continued)
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TABLE 2 (Continued)

Classifier EEG datasets Predeter mined preictal

and window lengths

Predeter mined

SOP and SPH

Evaluation

indicators

DTF (60) Freiburg

21 patients

Preictal= 10min

Window= 5 Sec

SPH= 10min

SOP= 50 min

Sen: 79.76%

FPR: 0.33/h

LRCN (33) sEEG

15 patients

Preictal= 30min

Window= 10 Sec

SPH= 5min

SOP= 30 min

Sen: 100%

FPR: 0.04/h

BLDA (41) Freiburg

21 patients

Preictal= 60min

Window= 4 Sec

SPH= 10 Sec

SOP= 30min

SPH= 10 Sec

SOP= 50 min

Sen: 85.11%

FPR: 0.08/h

Sen: 93.62%

FPR: 0.08/h

CNN (57) Freiburg

13 patients

CHB-MIT

13 patients

AES

5 dogs, 2 patients

Preictal= 60min

Window= 30 Sec

SPH= 5min

SOP= 30 min

Sen: 81.4%

FPR: 0.06/h

Sen: 81.2%

FPR: 0.16/h

Sen: 75%

FPR: 0.21/h

CNN (56) MSSM

28 patients

CHB-MIT

22 patients

Preictal= 10min

Window= 1 Sec

SPH= 0min

SOP= 10 min

Sen: 87.8%

FPR: 0.142/h

LSTM CNN (43) CHB-MIT

22 patients

Preictal= 120min

Window= 5 Sec

SPH= 0min

SOP= 120 min

Sen: 100%

FPR: 0.02/h

SVM (22) the European Epilepsy

Database

216 patients

Preictal= 10–40min

Window= 5 Sec

SPH= 10 Sec

SOP= 28 min

Sen: 38.24%

FPR: 0.2/h

SI (61) 5 patients

iEEG

sEEG

Preictal= 10–30min

Window= 30 Sec

SPH= 0 Sec

SOP= 10 min

Sen: 84%

FPR: 0.79/h

Sen: 72%

FPR: 1.01/h

Non-linear index (76) Freiburg

10 patients

Preictal= 50min

Window= 10 Sec

SPH= 10 Sec

SOP= 30min

SPH= 10 Sec

SOP= 50 min

Sen: 86.7%

FPR: 0.126/h

Sen:92.9%

FPR: 0.096/h

LS-SVM (58) Freiburg

21 patients

Preictal= 5min

Window= 10 Sec

NA Sen: 91.95%

FPR: 2.14/per

Linear SVM (77) Freiburg

18 patients

CHB-MIT

17 patients

Preictal= 60min

Window= 4 Sec

NA Sen: 100%

FPR: 0.0324/h

Sen: 98.68%

FPR: 0.0465/h

MLP (78) CHB-MIT

23 patients

Preictal= 60min

Window= 30 Sec

NA Sen: 97.27%

FPR: 0.00215/h

SVM (79) The European Epilepsy

Database

sEEG

16 patients

iEEG

8 patients

Preictal= 10–40min

Window= 5 Sec

SPH= NA

SOP= 10–40 min

Sen: 73.98%

FPR: 0.06/h

Sen: 78.36%

FPR: 0.15/h

SVM (80) Freiburg

18 patients

Preictal= 30min

Window= 20 Sec

SPH= NA

SOP= 30 min

Sen: 92.5%

FPR: 0.2/h

(Continued)
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TABLE 2 (Continued)

Classifier EEG datasets Predeter mined preictal

and window lengths

Predeter mined

SOP and SPH

Evaluation

indicators

ASPA (18) iEEG

5 patients

Preictal= 180min

Window= 10.24 Sec

NA Sen:84%

FPR: 0.12/h

CSSPM, consistency-based semi-supervised seizure prediction model; STS-HGCN-AL, spatio-temporal-spectral hierarchical GCN with an active preictal interval learning scheme; SDCN,

semi-dilated convolutional network; FRCNN, Fourier ratio convolutional neural network; DNN, deep neural network; CNN, convolutional neural network; LSTM, long short-term

memory; EA, evolutionary algorithm; CSP, common spatial pattern; MLP, multilayer perceptron; DTF, directed transfer function; DCAE, deep convolutional autoencoder; Bi-LSTM,

bidirectional long short-term memory recurrent neural network; FDMR, frequency-domain model ratio; LRCN, long-term recurrent convolutional network. BLDA, bayesian linear

discriminant analysis; SI, similarity index; SVM, support-vector machine; LS-SVM, least square-support vector machine; AES dataset Kaggle, the American epilepsy society seizure

prediction challenge dataset; MSSM dataset, the mount sinai epilepsy center at the mount Sinai Hospital; ASPA, adaptive seizure prediction algorithm.

has been argued that a FPR value above 0.15/h is not acceptable

(82) because even though the sensitivity is high, a high FPR

would lead to too frequent false alarms. In another study,

authors reported a sensitivity of 89.81% and FPR of 0.08/h

in sEEG recordings of 10 patients using the Hilbert Vibration

Decomposition (HVD)method to extract features and construct

a CNN-based seizure prediction model (53).

Parameters of performance: Seizure
occurrence period (SOP) and seizure
prediction horizon (SPH)

In the event-based seizure prediction models, the preictal

period (PP), SOP and SPH are predetermined, PP = SOP +

SPH, and SOP and SPH are optimized for the model to achieve

high sensitivity and low FPR (i.e., high specificity). There should

be less uncertainty about the occurrence of the seizure after

the end of SPH (i.e., ideally SOP = 0), and SPH should be

long enough (83) so that measures can be taken by the patient

and/or healthcare provider to prepare for or intervene and avert

an upcoming seizure. The SPH refers to the period from the

issue of the warning of an upcoming seizure to the beginning

of SOP, within which no seizures occur; if seizures do occur

within SPH, the model is considered to be underperforming.

The preictal period (PP) is sometimes called the preictal interval

length (PIL), the SPH the prediction period, and the SOP the

prediction horizon (Figure 3) (71, 84, 85).

It has been suggested that the optimal SOP and SPH ranges

to accurately predict seizures with high sensitivity and specificity

should be distinct for each individual, that is, there should be

no uniform, standardized SOP and SPH values across patients

(86). In a conducted study, the best performance of a prediction

model could be achieved when the SPH was <2min (87), which

is a low value and might be related to the algorithm used to

construct the respective model as well as the quality of the raw

data. SOP is defined as 30min in the majority of the relevant

literature, arguing that a 30min SOP is appropriate as it is

short enough so that it does not cause much anxiety to the

patient then waiting for a seizure to occur after the end of

SPH (33, 41, 42, 68, 71, 73, 88, 89). Zhang et al. (42) defined

SOP as the 30min and SPH as 0min windows in practice and

evaluated EEG records of 23 patients from a public dataset. The

sensitivity of the shallow CNN model created to predict sEEG

seizures was 92.2%, with the FPR of 0.12/h. Another study (73)

reported the utilization of intracranial EEG (iEEG) data from

20 patients in a generalized dataset for the construction of a

threshold-based model for predicting seizures. Here, the authors

defined SOP as 30min and 50min and the SPH as 2min. The

final model achieved a mean sensitivity of 90.42 and 91.67%,

and the FPR of 0.12 and 0.10/h, respectively. Another study that

defined SOP as 30 and 50min, respectively, used the Bayesian

Linear Discriminant Analysis (BLDA) to construct models with

sensitivities of 85.11 and 93.62%, and an average FPR of 0.08/h

(41). The goal in constructing a good prediction model is to

minimize SOP and maximize SPH, a combination that achieves

the lowest possible FPR and the highest possible sensitivity.

The shortcomings of current
high-performance models

Although many of the predictive models reviewed in the

current study have achieved excellent performance indices,

there is still a great deal of uncertainty as to whether they

can be used in the clinical setting. Firstly, most studies use

the same public dataset, such as the CHB-MIT dataset or

the Freiburg dataset, but there is a lack of validation of the

constructed models in other datasets, which makes it difficult

to guarantee that the same model will work well in different

datasets. In addition the lack of available continuous datasets,

which have to include multiple interictal, preictal, ictal, postictal

EEG recordings, makes it difficult to obtain adequate validation

of the constructed models. There are few eligible datasets,

and only a few competitions have been conducted on the

same datasets, the first one in 2002 at the First International

Workshop on Seizure Prediction in Bonn, Germany (44). Not

all datasets used in subsequent competitions were continuous

over time. Again, the advanced algorithms that emerged from
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TABLE 3 Previous studies of segment-based models for predicting seizures.

Classifier EEG datasets Predeter mined preictal and window lengths Evaluation indicators

SVM+ CNN+ LSTM (45) CHB-MIT

22 patients

AES

5 dogs, 2 patients

Preictal= 60min

Window= 30 Sec

Sen: 96.28%

Spe: 95.65%

Sen: 94.20%

Spe: 95.81%

CNN+Waxman graph (34) 19 patients

iEEG+sEEG

Preictal= 10min

Window= 1 Sec

Acc: 98.2%

RDANet (46) CHB-MIT

13 patients

Preictal= 30min

Window= 5 Sec

Sen: 89.33%

Spe: 93.02%

Acc: 92.07%

AUC: 91.26%

TASM-ResNet (47) AES

5 dogs, 2 patients

Preictal= 10min

Window= 30 Sec

Sen: 76.1%

Spe: 81%

Acc: 80.5%

AUC: 89.8%

CNN (48) SEEG Preictal= 23.6min

Window= 5 Sec

Acc: 94.1%

Sen: 91.8%

Spe: 90.5%

ANN (44) CHB-MIT

22 patients

Preictal= 1000 Sec

Window= 500 Sec

Sen: 91.82%

Spe: 99.11%

Acc: 98.66%

AUC: 84%

SST-based CNN (49) IKCU

16 patients

CHB-MIT

22 patients

Preictal= 5min

Window= 5 Sec

Acc: 99.06%

Sen: 99.18%

Acc: 99.63%

Sen: 99.52%

DNN Sen: 51.83%

Spe: 75.29%

Acc: 64.55%

CNN CHB-MIT

15 patients

Preictal= 3min

Window= 5 Sec

Sen: 88.22%

Spe: 90.47%

Acc: 89.21%

LSTM (40) Sen: 91.46%

Spe: 91.58%

Acc: 90.94%

CNN (50) 9 patients

iEEG

Preictal= 5min

Window= 30 Sec

Acc: 99.69%

SVM (51) Freiburg

5 patients

Preictal= 5min

Window= 10 Sec

Sen: 95.2%

Spe: 99.4%

Acc: 97.42%

LRCN (33) 15 patients

sEEG

Preictal= 30min

Window= 10 Sec

Sen: 91.88%

Spe: 86.13%

Acc: 93.4%

LSTM+CNN (43) CHB-MIT

22 patients

Preictal= 120min

Window= 5 Sec

Sen: 99.84%

Spe: 99.86%

SVM (22) The European Epilepsy

Database

216 patients

Preictal= 10–40min

Window= 5 Sec

Sen: 35.34%

Spe: 76.53%

Acc: 63.62%

Decision tree (52) Bonn

5 patients

Preictal= 23.6 Sec

Window= 23.6 Sec

Sen: 99%

Spe: 99.5%

Acc: 95.67%

RDANet, a dual self-attention residual network, TASM-ResNet, time attention-based simulation module—residual network; ANN, artificial neural network; SST, Fourier-based

synchro-squeezing transform; IKCU dataset, recorded at Izmir Katip Celebi University School of Medicine, Department of Neurology.
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FIGURE 3

Diagramatic representation of SPH and SOP for seizure

prediction.

these competitions have rarely been validated on other datasets.

In addition, most studies balance the interictal and preictal

segments in order to obtain a high-performance model, but this

is not true from a practical standpoint, since interictal periods

are much longer than the preictal periods. For this reason, future

studies should be validated on multiple continuous datasets

without artificially balancing the number of segments over time

or assuming constant preictal periods, SPH and SOP across

seizures, even within the same patient. Adaptive individualized

seizure prediction algorithms, such as the first one published

one by Iasemidis et al. (18), should be capable of dealing with

these shortcomings.

Post-processing techniques in
seizure prediction models

Filter length, step size, and alarm
threshold

The post-processing techniques play important roles in

the construction of the seizure prediction model as the

interface between the “segment-based” model and the “event-

based” prediction model. The post-processing methods help

obtain the window segment outputs from the segment-based

(classification) model (80). The most commonly used methods

are filters, such as Kalman and Bayesian filters (35, 42, 54, 75, 77).

Choosing the right filter length and alert threshold can improve

the performance of the model to some extent. Determining the

length of themoving filter is the first step in post-processing. The

use of a filter can facilitate the elimination ofmost random errors

from the classification model and reduce a large number of false

predictions that may occur in the short term (Figure 4A). A

study published in 2019 (55) used a causal moving average filter

of 1min in length to smooth and filter the classification results

of 30 window segments, and the used 3DCNN (3DCNN)model

obtained a sensitivity of 85.7%, and FPR of 0.096/h, and 10.5%

of warning time ratio, as well. Another study (56) set the length

of moving average filter to a range of 0–15min, with a step size

of 0.5min, and found by comparison that the best performance

of the prediction model was achieved with a moving average

filter of 1min in length, which is consistent with the findings of

Ozcan et al. (55). Setting a very long filter length can enhance the

smoothing of warnings resulting in delayed alerts or evenmissed

seizures (low sensitivity), while too short a filter length can lead

to opposite effects (high FPR and hence low specificity).

The alarm is the second step in the post-processing

technique and it is ON when the detection rate of preictal

segments within the pre-specified duration of the used filter

reaches a set threshold (Figure 4B). Khan et al. (74) defined

the probabilities of a segment in the classification model to be

interictal, preictal or ictal as p0, p1 and p2, respectively, and

assuming that p0+ p1+ p3= 1. For monitoring and predicting

seizures, the value of “1 – p0” was taken as the index of the

model that would characterize a segment as preictal or ictal

using a predetermined threshold of 0.6. When the probability

exceeded 0.6, the model was programmed to issue an alert

predicting an upcoming seizure. This setting was later verified

by another group (56), using a threshold range of 0.1–0.9 in

steps of 0.05. This study showed that the best performance of the

predictionmodel could be achieved with a threshold value of 0.6,

a sensitivity of 95.5% and FPR as low as 0.109/h. It was found

that (57) the classification model constructed by combining

CNN and features from a Directed Transfer Function (DTF)

analysis was post-processed by a 20 point moving average filter

reached sensitivity of 90.8% and FPR of 0.08/h. Theoretically,

the predictive performance of the model can also be improved

by estimating and not by having the threshold predetermined.

For example, In the case of an artificial neural network (ANN)-

based predictionmodel (80) constructed using a single nonlinear

feature, the model generated alerts in the test dataset when the

average eigenvalue in these periods was higher than or equal

to those in the windows in the ictal period of the training

dataset. The model achieved an average FPR of 0.014/h, with

an average seizure prediction time of 26.73min in advance

of a seizure. These studies emphasize the importance of the

employed thresholds since a very low threshold would end up

sending too many false alarms, while an unnecessarily high

threshold could lead to missing emergencies.

Although most false alarms can be eliminated in the post-

processing stage, the ones that survive and repeatedly predict

the same seizure will send out multiple warnings causing panic

to patients (53). Hence, an “absolute refractory period (ARP)”,

i.e., a period between two consecutive warning messages, should

be set to prevent frequent warnings for the same seizure. The

sensitivity and FPR of the model were 89.8% and 0.081/h,

respectively, when the ARP was set to 20min. In other studies,

this ARP was equated to the SOP (55, 73), which improved

the performance of the final model. Furthermore, the “absolute

refractory period” setting can be useful in effectively removing

incorrect warnings which escape the post-processing filtering

stage. Ideally, only one correct warning before a seizure is

sufficient for the necessary precautionary measures to be taken.
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FIGURE 4

(A) Working diagram of EEG windows and the moving filter length and step size. (B) The repeated invalid early warning information is greatly

reduced by filtering technology.

Classification of EEG segments

The “k-of-n” approach means that if “≥k” of the consecutive

“n” time window segments output from the classification

(segment-based) model are determined “preictal”, then all “n”

segments are considered preictal (Figure 5) (33, 36, 68). When

the same post-processing method was applied to construct

a CNN-based classification model for interictal and preictal

periods, including only one layer of output regularization, the

“8-of-10” was used to give an early warning. The proposed

method exhibited better performance in all three datasets

(Freiburg dataset, CHB-MIT dataset, American Epilepsy Society

Seizure Prediction Challenge dataset) with sensitivities of 81.4,

81.2, and 75%, respectively (58). Parvez et al. (90) used an

iEEG dataset of 27 patients to construct a binary classification

model by Least-Squares Support-VectorMachine (LS-SVM) and

defined the output of the classification model as “1” for the

preictal window segments and “0” for the interictal window
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segments. Here, the authors compared different window lengths

and numbers to derive the best combination. When 3 out of

5 consecutive 10-sec windows were identified as preictal, then

all 50 sec were considered as preictal. If 2 out of 6 consecutive

50-sec windows were identified as preictal, then all 50 sec were

considered as preictal. In case 2 out of 6 consecutive 50-sec

windows were thus characterized preictal, an early warning

would be issued. This prediction model was 91.95% accurate

with an average of 2.14% prediction errors per patient. A

subsequent study (36) used the same two levels of “k-of-n”

(“3-of-5” and “2-of-6”), and the prediction model achieved the

same excellent performance. The multi-level “k-of-n” method is

superior to the single-level method.

Considering the uniqueness of EEG data from each epilepsy

patient, studies suggested the importance of individualized

seizure prediction models for precision medicine. So, the

classification model has also been constructed without cross-

validation from different patient datasets, thus ensuring a

specific prediction model for each patient (91). In the post-

processing steps, 3 levels of layer (window lengths of 5 sec,

2 and 6min) of the “k-of-n” method were used for filtering.

Each 2min window that exceeded a certain percentage of 5 sec

preictal or interictal windows was classified accordingly. When

the characterized preictal 2min windows within a 6min window

exceeded a different threshold, a warning of an impending

seizure was issued. The average sensitivity of this optimized

model was 94%, and the FPR was 0.111/h. These findings

revealed that the “k-of-n” method was a simple and easy to

implement post-processing technique. But the ideal “k” and “n”

and the number of layers that optimized prediction were not

estimated. The major drawback was that larger values of “k“ and

“n“ would render the model less sensitive (delayed warnings or

even missed alarms). Smaller values of “k” and “n” would impact

the specificity of the model.

Adaptive post-processing and firing
power

In addition to the commonly used filter techniques and

the “k-of-n” approach in post-processing, some studies have

invoked novel post-processing techniques to further improve

the performance of the epileptic seizure prediction model. A

study (92) on real-time seizure prediction over a long period

(169–364 days) used a new adaptive post-processing approach

by updating the alarm threshold the alarm threshold every 7

days based on the prediction results of the previous week. The

authors, considering the large number and overlapping outputs

of the classification model, distinguished between preictal

and interictal periods by comparing the mean and standard

deviation of the Support Vector Machine (SVM) model outputs,

which yielded a final model with a prediction sensitivity of 84%.

Although SVM is one of the most commonly used traditional

ML methods, a DL method can automatically extract features.

But, if DL is to be used in seizure prediction models, the new

methods need to be optimized and validated in the distinction

of preictal and interictal periods. Direito et al. (22) emphasized

the concept of Firing Power (93), first classifying windows from

the test dataset into different periods through a classification

model, then using this information to calculate the firing power

parameters through a sliding window, and once the threshold

threshold for Firing Power exceeded 0.5, the system generated

an alarm of an upcoming seizure. So, new post-processing

techniques are used today in the field of seizure prediction, but

there is a lack of systematic validation of these algorithms on

existing and new datasets.

E�ect of EEG data type and the
employed AI method on the seizure
prediction model’s performance

EEG data types and the model
performance

In an “event-based” seizure prediction model, post-

processing techniques and the length of SOPs and SPHs

are important for the model performance. Also, we found

that models built from invasive EEG (iEEG) recordings

were generally superior to ones from scalp EEG (sEEG)

recordings. Because iEEG has the advantages of less artifact

and power interference, recording from brain sites closer to the

epileptogenic focus, and without any attenuation from the skull,

generates high quality of data with fewer confounding factors.

A significant decrease in features important for the epileptic

seizure detection and prediction algorithms was observed within

3 months after iEEG electrodes implantation. This may be due

to trauma and tissue inflammation from the implantation. Also,

the mean power of the high gamma band was found to decrease

in many patients, which could inevitably affect the performance

of the model (71). The sEEG is simple to perform, is non-

invasive, standardized, and has fewer side effects, making it

popular among epilepsy patients (72). Since sEEG is a non-

invasive recording modality, it has significant disadvantages

in terms of signal quality, signal artifacts, and lower spatial

resolution of electrical brain activity. Peng et al. (94) used

the same DL algorithm to construct seizure prediction models

from sEEG and iEEG datasets. They showed the sensitivity

of the prediction model constructed from the iEEG dataset

exceeded that from the sEEG dataset by 5.8%, and the FPR

was 0.08/h (lower than that of the sEEG model). The datasets

used in most studies are mostly public, open-source datasets,

such as the CHB-MIT dataset (physionet.org/content/chbmit)

(95) (the most commonly used dataset for non-invasive EEG),

and the Freiburg dataset for invasive EEG (which is now
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FIGURE 5

Schematic diagram of EEG window segment and post-processing hierarchy. Without using the “k-of-n” method, there will be 7 warning

messages in the range of 0–16 sec. And after passing the two-layer “k-of-n” method, the model will send warning messages only at the 8th sec.

The results show that the “k-of-n” method can greatly reduce invalid and overlapping warning messages.

subject to a fee, and integrated into the European Epilepsy

Dataset, www. fdm. uni-freiburg.de/EpilepsyData) (81); the

American Epilepsy Society Seizure Prediction Challenge dataset,

www.kaggle.com, and others (96, 97). These datasets have

public and easily accessible characteristics, which facilitate the

comparison of models’ performance on the same EEG datasets,

as well as support algorithms’ optimization. The European

Epilepsy Dataset (98) is the most enriched dataset available

to date (www.epilepsiae.eu), including sEEG data from 225

patients and iEEG data from 50 patients to date. Moreover, it

is essentially a combination of datasets from different recording

sites, including Coimbra, Freiburg, Paris, and Treviso. However,

since some of these integrated datasets are non-open access,

it is difficult for most researchers to run their algorithms on

these data. Importantly, most existing public datasets have a

low number of cases and insufficient or discontinuous data. In

the future, we should emphasize developing a large open-source

platform to validate models and improve their performance

while maintaining a good generalization capability.

The sampling frequency of the EEG may also affect the

performance of seizure prediction models. For example, some

studies have found high-frequency (80–500Hz) oscillations

(HFOs) to be a reliable biomarker for predicting seizures (82,

99). Since many commonly used public datasets contain EEG

sampled at 256Hz, HFOs cannot be detected. In addition,

EEG recorded in long term [e.g., over days in the epilepsy

monitoring unit (EMU)] is influenced by the patient’s daily

routine, the dose of anti-seizure medication etc. The above,

in addition to the actual preictal period being very different

and changing over time from one assumed by a model,

constitute barriers for the use of predictive seizure models

in practice.

AI methods and the model performance

ML has been widely used to build seizure predictive models

(100), where common algorithms such as SVM (101), random

forests (102), and cluster analysis (32) are used. The principle

of constructing predictive seizure models involves the pre-

processing of interictal and preictal EEG datasets, followed

by computational extraction of commonly used features, and

then constructing classification models by ML. In a “segment-

based” epileptic seizure prediction model (70), the sensitivity

reached was 95.8% using SVM. DL is derived from ML, and

the biggest difference between DL and ML is the ability of DL

to better mine data features (29). Automatic feature extraction

means less human error, and the underlying mathematical

logic of DL algorithms is more rigorous and suitable for

processing and handling big datasets. The performance of the

classification model constructed by the algorithm determines, to

some extent, the performance of the epilepsy prediction model

processed by post-processing techniques. In general, models

constructed by DL outperform ML, and ML often outperforms

DL in terms of its ability to perform on brand new data

(generalization capability/robustness).

The influence of features on
prediction of seizures

Seizure prediction systems focus more on the patterns

(features) of EEG changes over short cycles, hours or minutes.

Some recent studies have reported that circadian rhythms may

affect cyclical seizure occurrences over days or months, which

is likely to be related to the patient’s hormone levels and
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psychological factors (103). For example, in clinical practice,

there are cases of women of childbearing age who experience

regular menstrual seizures, and patients undergoing seizures

when they are stressed, emotionally distraught or tired (104).

Public EEG datasets over short periods of time do not capture

these physiological factors. Preictal critical slowing down as

a feature in the EEG over hours to days is hypothesized to

also have predictive value of seizures occurrence (105). In a

study on predicting drug responsiveness in epilepsy patients

(106), an SVMmodel constructed by extracting features of brain

network connectivity obtained a sensitivity of 94%. The feature

of effective connectivity in the frequency domain has constituted

the basis for development of novel biomarkers for epileptogenic

focus localization from interictal periods (107, 108) as well as

for evaluation of the risk to status epilepticus (SE) and sudden

unexpected death in epilepsy (SUDEP) (109, 110). Availability of

more biomarkers to predict seizures should provide theoretical

and technical support for more accurate seizure prediction.

Previous AI studies have ignored such physiological factors as

well as the use of newly discovered features, which may explain

the difficulty of successfully applying high-performance models

in the clinical setting.

An EEG-based model for predicting
and detecting seizures

Seizure prediction’s goal is to detect the preictal period

while seizure detection’s goal is to detect the seizure’s onset.

Seizure detection could be considered as a subset of the seizure

prediction problem (e.g. when SOP is zero with a specified SPH)

(3, 70, 111, 112). In a detection model constructed using the

cross bispectrum features of EEG signals to identify preictal

windows (70), 75 of 78 seizures were eventually successfully

detected. However, predicting seizures is more advantageous

than detecting seizures and is more relevant to the needs of

epilepsy patients (113). Predicting seizures can alert patients

in advance so that they can take or inject medication or

stop current risky activities to avoid seizures or mitigate

seizure hazards.

Recent research developments

It has been for a while since researchers sought to

promote the practical application of high-performance models

for predicting seizures including individualized and adaptive

models per patient (18, 20, 114, 115). Along similar lines of

considering the variability across patients, Yang et al. (116)

have recently proposed a Self-Supervised Learning ML system

for predicting seizures, training a prediction model based on

changes in EEG characteristics unique to each patient before

a seizure resulting to a more robust performance of this

adaptive model. In addition, some researchers have focused

on other than EEG physiological changes in patients, such

as hormonal levels, mood changes, circadian rhythms, as well

as on different types of epilepsy, which could lead to more

accurate seizure prediction (62). NeuroVista (45, 63) implanted

epilepsy monitoring systems in 15 epilepsy patients, allowing

for the first time long-term (over months) monitoring and

recording (segmental and only from 3 patients with 2 years

follow-up) of their EEG. Such databases are important to have

for the development and validation for epilepsy prediction

models (46). The closed-loop responsive neural stimulation

(RNS) system developed by NeuroPace has been implanted to

patients to provide stimulation when abnormal EEG patterns

changes are detected (47). Again, a question here is how

much of the recorded EEG from such devices is stored in a

database for future applications. A study that followed patients

for 45 months after implantation of the RNS system reported

improvement of seizure control over time (years). It also noted

that implantation of the device was demanding on the physician

and the equipment, and that there was a risk of infection and

brain injury to the patient (48). In this sense, sEEG seizure

prediction systems, together with non-invasive electrical or

magnetic stimulation devices, may be more applicable to clinical

practice in the future but are currently less well-studied.

Future perspective

Because of the “random” (probabilistic view of the)

or “chaotic” (deterministic view of the) nature of seizure

occurrences, there is an urgent need for new technologies

that could precisely predict seizures in advance, which could

then ideally drive timely intervention schemes prior to

seizure occurrences. Along this line, the construction of high-

performance seizure prediction models using advanced

computer technology and AI has received increasing

international attention. However, the field of predicting

seizures still faces several difficulties and shortcomings that

affect the performance of the current seizure prediction models

and constitute the most critical obstacles for their translational

route to clinical practice.

EEG data

a. Importance of large open-source databases and

exchangeable platforms: Currently, there are no big open-

source datasets available to validate prediction algorithms, while

both ML and DL rely on the support of big data. Although

many current models have achieved high performances with

pre-determined parameter values and assumptions on particular

datasets, they would perform poorly in clinical practice when

these assumptions and values are not valid. It is expected that
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good communication would allow validation of internationally

advanced ideas as well as techniques and inspiration from the

GitHub platform in computing.

b. Refinement of clinical characteristics of the data: It is

well known that differences in age, gender, medication status,

seizure type, and other patient characteristics and demographics,

which leads to a high number of confounding factors in the raw

data, thereby affecting the performance of models to varying

degrees and hindering their real-life application. The current

EEG datasets still lack the necessary inclusion and exclusion

criteria to compensate for the above, probably due to less

integration of action between clinicians and model developers.

c. Addressing the shortcomings of the low signal-to-noise

ratio of sEEG data: Noninvasive BCI technology using sEEG

has unique advantages. sEEG is safe, simple, convenient, and

universal, which makes it easier to record from more patients

under different conditions. Importantly, collaboration between

engineers and computer scientists has led to development of

pre-processing techniques for sEEG that eliminate interference

artifacts with high fidelity.

Algorithms and models

a. Disclosure and availability of algorithms: The vast

majority of research studies are currently focusing on the

innovation, upgrade and validation of new algorithms, and

comparison of old and new seizure prediction models on the

same dataset. Establishing an open-source platform that allows

validation and modification of models using different datasets

would improve the generalization (robustness) of models and

help address key issues of model-to-clinic transition.

b. The choice between ML and DL: ML requires manual

feature extraction, which is prone to feature mismatch. While

DL needs no manual feedback for feature extraction, there

is a problem of over-extraction of features, which leads to

weak generalization of the resulting model. It is believed

that ML should be combined with DL, that is, to extract

EEG features by DL and build classification models using

traditional ML methods, thus obtaining generalizable and high-

performance models.

Post-processing of results

Post-processing techniques play an important role in

bridging the (segment-based) classification and the (event-

based) prediction models with a significant impact on their

performance in seizure prediction. Currently, researchers in

the field of EEG-based seizure prediction has not paid enough

attention to post-processing techniques. Although multiple

methods and techniques have emerged, there is no metric to

evaluate the advantages and disadvantages of these techniques.

In the future, relevant evaluation metrics should be developed to

evaluate post-processing techniques.

Metrics of performance

a. Sensitivity and false prediction rate: Sen and FPR are

important metrics of performance of prediction models in

clinical practice.

b. SOP and SPH: The SOP and SPH are pre-determined

parameters that affect Sen and FPR of any prediction model. The

longer the SPH and shorter the SOP, a better seizure prediction

model is constructed. In today’s precision medicine paradigm,

the values of SOP and SPH could be optimized to get the best

Sen and FPR for an individual or class of individuals.

Prospective studies

Many high-performance algorithms have been developed

and tested on collected data retrospectively. It is thus difficult

to determine whether they generalize well. A small number of

epilepsy patients have been recruited for prospective analysis

by companies and teams, but overall progress remains limited.

Future validation on multiple datasets, which could later be

replicated in a number of competitions, is highly recommended.

The application of models to clinical practice should also

consider certain practical issues, such as running in real time,

low power consumption for implantation in the brain or

embodiment in wearable devices, user-friendliness of inputs and

outputs to and from the models.

Conclusion

Classification empowered by ML and DL constitutes a basic

component of seizure prediction models. Nevertheless, without

post-processing techniques and proper (a priori) determination

of SOP and SPH, there exists no high-performance model

that predicts seizures. Hormone levels, psychological factors,

medication and blood levels of antiepileptic drugs can all

influence the accuracy of predictive seizure models. In the

future, more consideration needs to be given to these factors that

are characteristic per epilepsy patient as their combination with

the EEG features could facilitate the development of better and

applicable to clinical practice seizure prediction models.
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