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Depression is a worldwide disease causing severe disability, morbidity, and

mortality. Despite abundant studies, the precise mechanisms underlying the

pathophysiology of depression remain elusive. Recently, cumulate research

suggests that a disturbance of microbiota-gut-brain axis may play a vital

role in the etiology of depression while correcting this disturbance could

alleviate depression symptoms. The vagus nerve, linking brain and gut through

its a�erent and e�erent branches, is a critical route in the bidirectional

communication of this axis. Directly or indirectly, the vagus a�erent fibers

can sense and relay gut microbiota signals to the brain and induce brain

disorders including depression. Also, brain changes in response to stress

may result in gut hyperpermeability and inflammation mediating by the vagal

e�erents, which may be detrimental to depression. Notably, vagus nerve

stimulation owns an anti-inflammatory e�ect and was proved for depression

treatment. Nevertheless, depression was accompanied by a low vagal tone,

which may derive from response to stress and contribute to pathogenesis

of depression. In this review, we aim to explore the role of the vagus

nerve in depression from the perspective of the microbiota-gut-brain axis,

highlighting the relationship among the vagal tone, the gut hyperpermeability,

inflammation, and depression.

KEYWORDS
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permeability

Introduction

Depression is a leading mental disorder causing severe disability, morbidity, and
mortality worldwide. Approximately 280 million people in the world have depression
(1), with almost one in five people suffering from one episode at some point in their
lifetime (2). Of the leading causes of Years Lived with Disability, depression was ranked
second, the highest within mental disorders, and 13th among the top 25 leading causes
of Disability Adjusted Life Years in 2019, which had increased from 1990 to 2019 (1, 3).
The prevalence of depression was one of the major underlying reasons of self-harm and
most depressive patients have suicidal thoughts (4). According to data fromWHO, there
are 785,000 suicides annually around the world, with an incidence of 10.6 per 100,000
population in 2016 (5), and up to 60% of them have major depression (6).
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Conventionally, depression is viewed as a mental
disease with physiological dysbiosis such as unbalanced
neurotransmitters and neuronal circuitry, impaired
neurogenesis, declined neuroplasticity, and neuroinflammation
(7–9). Recently, growing studies identified the detrimental
role of disturbed microbiota-gut-brain axis in the etiology of
depression and that strategies targeting to restore the balance of
this axis, namely probiotics, exert a curative effect on depression
(10–12). The gut microbiota (GM), the gut, and the brain
interact with one another reciprocally through various routes
including the vagus nerve (VN) (13, 14). The VN, a mixed nerve
composed of 80% afferent and 20% efferent fibers, is able to
sense and relay GM signals to the brain via its afferents and also,
deliver brain signals to peripheral organs including the gut via
the efferents, modulating gut dysbiosis (14). A disturbed GM led
to depression-like behaviors, which may be mediated by the VN
(15). Inflammation is a crucial contributor to depression (16).
Vagus nerve stimulation (VNS), approved for the treatment
of treatment-resistant depression and refractory epilepsy, can
induce anti-inflammatory cytokines and dampen inflammation
(17, 18). Besides, stimulating the VN also protects against
gut hyperpermeability, which may facilitate GM translocation
and result in gut and system inflammation (19). Meanwhile,
a depressed vagal tone was found in depressive patients (20).
It is hypothesized that through the microbiota-gut-brain axis
(MGBA), a low vagal tone-induced gut barrier deficit and
system inflammation may have a close relation to depression. In
this review, we aim to explore the role of the VN in depression
from the perspective of MGBA, putting an emphasis on
the relationship among vagal tone, gut hyperpermeability,
inflammation, and depression.

Anti-depressive e�ect of VNS

Massive clinic research demonstrated the efficacy and safety
of VNS in treating depression (C et al., 2008) (21, 22). In one
multi-center study, 30 treatment-resistant depression patients
with the median length of the current major depressive episode
being 4.7 years, were recruited and results showed that using a
≥50% reduction in the baseline 28-item Hamilton Depression
Rating Scale total score to define response, a 40% response
rate along with sustained symptomatic responses were achieved
after 10 weeks of VNS (23). Though another randomized,
controlled acute phase trial showed tolerated results that after
10 weeks adjunctive VNS or sham treatment, 24-item Hamilton
Rating Scale for Depression response rates were 15.2% for VNS
group (n = 112) and 10.0% for sham group (n = 110), for
which the relative shorter treatment duration may account as
response rates showed a positive correlation with treatment
duration (24–26). And similar accumulated antidepressant
effects of VNS as mentioned above were found in a later
European open-label study, in which response rates increased

from 37% at 3 months to 53% at 12 months and remission
rates almost doubled from 17% at 3 months to 33% at 12
months (27). Notably, in a recent 5-year, prospective, open-
label, non-randomized, observational registry study, patients
with treatment-resistant depression receiving adjunctive VNS
with treatment as usual showed significantly better clinical
outcomes compared to patients receiving treatment as usual,
including a significantly higher 5-year cumulative response
rate (67.6% compared with 40.9%) and a significantly higher
remission rate (cumulative first-time remitters, 43.3% compared
with 25.7%) (28). Intriguingly, to investigate dose-effect of VNS,
another prospective, randomized, controlled trial conducted
in 2013, in which participants were split into three groups:
low (0.25mA current, 130 µs pulse width), medium (0.5–
1.0mA, 250 µs), or high (1.25–1.5mA, 250 µs), showed
that though improvements of the medium and high-dose
groups were better sustained at the end of the longer-term
phase, the low group also had significant improvement in
depressive symptoms at the end of the acute phase, suggesting
that issues may exist when using low-dose VNS as a sham
treatment because even low-dose VNS provided a substantial
antidepressant effect (29). Besides, VNS treatment also showed
promising therapeutic effects on conditions with comorbid
depression including epilepsy (30), obesity (31), and migraine
(32) and was capable of improving cognitive performance
of treatment-resistant depression patients (33). Despite these
benefits on depression and comorbid disorders, the high
cost and invasiveness of VNS hampered its application and
developments, both from a research and clinical perspective, and
the field of a new, non-invasive VNS technique, transcutaneous
auricular vagus nerve stimulation (taVNS), has drawn growing
attention (34). Though in its infancy, several clinical studies
had been conducted concerning taVNS in treating depression
and all showed that taVNS alleviated depression symptoms with
modest side effects reported (35–39). However, though evidence
from various studies indicates that VNS may partly reverse the
deficiency of monoaminergic neurotransmitters in the brain,
peripheral and central inflammation, dysfunction of the HPA
axis, abnormal neuroplasticity and neurogenesis, and disorder of
functional connectivity which are implicated in depression, the
antidepressant mechanism of VNS remains elusive and further
efforts are warranted (2, 40–43).

Linking of the microbiota-gut-brain
axis: The vagus nerve

Anatomy of the vagus nerve in the
microbiota-gut-brain axis

Composed of 80% afferent and 20% efferent fibers,
the VN transmits information and provides feedback by
innervating different visceral organs including gastrointestinal
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tract, respiratory, and cardiovascular systems (44, 45). The gut
is innervated by the hepatic and celiac branches of the VN with
cell bodies of afferent neurons residing at nodose ganglia and
terminating at the nucleus tractus solitarius (NTS), while the
dorsal motor nucleus of the vagus nerve (DMNV), the origin
of the efferent, is in close contact with the NTS (46, 47). In the
gut, vagal afferents (VA) form three connections which end in
muscle wall, mucosa, and of note, the recently defied neuropod
cells which are a subset of enteroendocrine cells synapsing with
vagal neurons (48). Attributing to their locations and a variety
of receptors including mechanoreceptors and chemoreceptors
expressed on them, VA are capable of detecting and responding
to various sorts of signals including stretch, tension, or intestinal
molecules such as bacterial by-products, gut hormones, or
neurotransmitters (19, 49).

In the brain, the NTS together with the DMNV, form an
autonomic brainstem loop regulating gastrointestinal motility,
acid secretion, food intake, and satiety (50). Through projections
from the NTS to several regions of the central nervous system
(CNS), including the parabrachial nucleus, paraventricular
nucleus of the hypothalamus, locus coeruleus, the amygdala, and
the thalamus, the NTS form an autonomic brainstem loop which
is modulated by the autonomic forebrain loop which comprises
nuclei in the pons, the hypothalamus, the hippocampus, the
amygdala, the anterior cingulate, the insular, and the prefrontal
cortices, synthetically coordinating visceral information that
includes neuroendocrine responses, emotions, cognition, and
behaviors (50). Thus, the brain is in close communication with
the gut through these two loops and the VN and stress, feelings,
and thoughts may play a beneficial or detrimental role in gut
homeostasis and vice versa.

From gut microbiota to brain: Role of
vagus

Though the VN is unable to reach luminal contents, it
can indirectly sense gut information through communication
with enteroendocrine cells (EECs) (51). By releasing mediators
including serotonin, cholecystokinin, glucagon-like peptide-1,
and peptide YY, acting on corresponding receptors expressed
on vagal afferent neurons, the EECs can modulate food intake
and autonomic reflexes controlling gut motility, secretion,
inflammatory responses, and mucosal defense (52). And the
latest identified neuropods have demonstrated that apart from
paracrine and endocrine, the EECs have the capability of
forming synapses with neurons of the vagal nodose to transduce
a sense from gut to brain with glutamate, to our knowledge,
as the neurotransmitter (53). Most pivotally, as the first cell
line facing the gastrointestinal contents, the EECs can detect
signals from GM which may in turn influence the releasing of
chemical stimuli including hormones, neurotransmitters, and

metabolites produced by EECs (54, 55). Indeed, both in vitro

and in vivo studies demonstrated that the EECs expressing toll-
like receptors (TLRs) can sense microbe-associated molecular
patterns (MAMPs) including lipopolysaccharide (LPS) and
flagellin, which are constitutively released by bacteria (56, 57).
In addition to secreted bacterial ligands by microbes, the EECs
can also detect bacterial metabolites (58, 59). For example,
short-chain fatty acids (SCFAs) can bind to G protein-coupled
receptors (GPCRs) carried on EECs, including GPR40, GPR41,
GPR43, GPR119, and GPR120, and in turn, stimulate the
VN, regulating host metabolism and feeding behavior (60, 61).
And in response to indole, the colonic enteroendocrine L-cells
can secrete glucagon-like peptide-1 to stimulate colonic VA
activity (62). Furthermore, certain microbes can directly infect
enteroendocrine cells and upregulate glutamate transporters,
indicating that these affected cells may be neuropods, directly
synapsing with VA (63, 64). Taken together, these findings
suggest that the EECs are a crucial interface for detecting GM
signals and relaying these massages from gut luminal to the CNS
via VA.

Apart from interchanging with EECs, another pathway
transmitting intestinal canal information to the CNS relies on
innervation of the enteric nervous system (ENS) by the VN
(65). The ENS, known as the “second brain of the body,”
is crucial for maintaining stable gut health, which requires
both efforts from enteric neurons and the connections to the
CNS, namely the VN and sympathetic nerves (66). Located in
either the submucosal or myenteric plexus, enteric neurons,
with mechanoreceptors and chemoreceptors, are responsive to
molecular and mechanical aberrations of the gastrointestinal
tract and, in turn, activate vagal afferent neurons (67). For
example, the microbiota affect both developments and function
of the ENS by activating pattern recognition receptors, including
TLRs, especially, TLR2 and TLR4 (68). Indeed, intrinsic primary
afferent neurons were activated by ingestion of Lactobacillus
rhamnosus (JB-1) and in turn stimulated part of the VA (69).
Other microbiota metabolites have also been shown to influence
the ENS activity and regulated gut motility in rodents (70). In
addition, by delivering neurotransmitters and neuropeptides,
intrinsic neurons of the ENS can modulate immune cells and
cytokines produced by immune cells which have a reciprocal
effect on neurons (67).

Directly, the VA also express TLR4 and free fatty acid
receptor 3, sufficiently detecting MAMPs and SCFAs by
themselves (71, 72). TLR4 mRNA and protein was expressed
in the rat nodose ganglion, suggesting that administration
of LPS could activate VA at the level of nodose ganglion
(73). Owing to the gut barrier, it seems unlikely for these
neurons to be directly contacting these MAMPs in physiological
condition. Nevertheless, once the integrity of this barrier is
lesioned under circumstances such as confronting stress, burn
injury, or gastrointestinal disorders, including irritable bowel
syndrome (IBS) and functional constipation, chances for the
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translocation of GM and their metabolites crossing the gut
epithelial wall soar, with upregulation of 5-hydroxytryptophan,
over expression of the corticotropin releasing factor (CRF),
excessive TLR activation, and decreasing level of SCFAs being
the potential contributors for this deleterious process (74–80).
The gut immune system is activated by antigens from intestinal
lumen and consequently, immune active substances including
cytokines are released by immune cells such as T cells, B
cells, innate lymphoid cells, macrophages and dendritic cells
(81, 82). For instance, when activated in response to pathogens
and other injurious stimuli, macrophages, dendritic cells, and
other cells in the mucosa can produce a cytokine named
tumor necrosis factor alpha (TNF-α)(83, 84). When exposed
to cytokines including TNF and interleukin-1 beta (IL-1β),
VA from nodose ganglion expressing cytokine receptors sense
the peripheral inflammation condition and propagate action
potentials to the CNS which then activates anti-inflammation
responses including the cholinergic anti-inflammatory pathway
(85, 86).

Besides, certain species of intestine bacteria have the
capacity to synthesize multiple neurotransmitters including
γ-aminobutyric acid (GABA), noradrenaline, dopamine, and
serotonin which can travel through portal circulation to affect
the afferent pathway of the VN (87, 88). For example, when
the culture pH condition was adjusted to the optimal pH of
glutamate decarboxylase activity, JB-1 could produce GABA
with a supplement of monosodium glutamate and pyridoxal
phosphate and ingestion of Lactobacillus strain induced GABA
receptors alteration in a region-dependent manner in the
brain which were not observed in vagotomized mice (89, 90)
(Figure 1).

Indeed, using an ex vivo intestinal jejunal segment
mesenteric nerve recording preparation, Perez-Burgos et al.
have shown that intra-luminally adding JB-1 could increase
the firing rate of VA and these neurons may partially function
as interneurons for stimulation by JB-1, receiving input from
intrinsic primary afferent neurons, which synapse with VA and
can be also activated by JB-1 (69, 91, 92).

Above all, on the one hand, the VA indirectly perceive
GM signals through mutual communication with EECs,
ENS, and the gut immune system, which interact with
one another, with bioactive substances like neurotransmitters,
neuropeptides, cytokines, and hormones as mediators. On the
other hand, the GM and their metabolites, including SCFAs and
neurotransmitters, may directly activate the VA. Together, these
two pathways constitute the vagal afferent limb transmitting
GM messages to the CNS, which then integrates these viscera
messages and sends feedback to regulate gut homeostasis.

The microbiota-gut-brain axis and
depression

Altered intestine microbiota composition
in depression

In both clinical and animal models, the GM of depressed
patients and animals with depressive behaviors were found
to be significantly different from that of healthy controls. In
depressive patients, both microbiota richness and diversity
were declined in some studies (93, 94). Though there was
no difference of gut microbiota composition in α-diversity
in the majority of the major depressive disorder (MDD)
studies between MDD patients and their healthy counterparts,
a difference did exist in β-diversity (95, 96). In general, at
the phylum level, the richness of Actinobacteria was higher
in MDD while abundance of Bacteroidetes was lower; at
the family level, the relative abundance of Bifidobacteriaceae,
and Lachnospiraceae and Prevotellaceae was higher and lower,
respectively; At the genus level, the abundance of Sutterella

and Faecalibacterium was decreased, while that of Eggerthella,
Olsenella, Collinsella, Lactobacillus, Oscillibacter increased (95).
Even though distinctions of GMwere observed between patients
and controls in these studies, it is still debatable to determine
the specific microbiota taxa which have the capacity to draw a
line between the two groups (97, 98), and this uncertainty may
be due to several factors such as psychiatric medication status,
type of comparison group, medical comorbidities, and detection
methods of fecal microbiota (99). Further research aiming to
seek out the marker bacteria species that precisely discriminate
the depressed patients and healthy individuals, moreover, even
different types or periods of depression, are warranted to take
these factors into account.

Animals with induced depressive behaviors also
presented a loss of microbiota richness and diversity. The
disturbance of GM composition was found in different
animal models including the maternal separation model,
chronic unpredictable stress model, chronic social defeat
model, chronic restraint model, and the bilateral olfactory
bulbectomy model (100–104). However, alterations of GM in
animals with depression-like behaviors were different from
that of depressed patients, with some changes even to be
in the opposite direction, for example, the abundances of
Bacteroidetes were lower in patients while increased in animals
(101, 102).

Though we know that depressed patients are usually
accompanied by disturbed GM, how this altered GM evolves and
its role in depression warrant further investigations.
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FIGURE 1

Vagal a�erents transmit signals from gut microbiota to the central nervous system. 5-HT, serotonin; CCK, cholecystokinin; GLP-1, glucagon-like

peptide-1; PYY, peptide YY; EECs, enteroendocrine cells; SCFAs, short-chain fatty acids; MAMPs, microbe-associated molecular patterns; LPS,

lipopolysaccharide. By Figdraw.

Fecal microbiota transplantation and
depression

Depression, beyond our conventional appreciation of being
a non-infectious neuropsychological disease, is transmissible
through fecal microbiota transplantation (FMT) from depressed
donors, either patients or animals, to recipient. Julie found
that Flinders Resistant Line rats receiving FMT from MDD
patients displayed significantly more depressive-like behaviors
than those receiving FMT from healthy individuals (105).
Moreover, intestine microbiota taxa were also transferred to
recipients with the group receiving FMT from MDD patients
carrying on certain taxa which was similar to their donors. The
same results were found in anothermodel in which recipient rats
were depleted microbiota via an antibiotic cocktail treatment
and presented depression-like symptoms including anhedonia
and anxiety-like behaviors, as well as alterations in tryptophan
metabolism, all of which resembled those of their counterpart
providers (93). Besides, FMT from depressed animals to healthy
recipients also induced depression phenotype, consistent with

that of patients (106, 107). Fascinatingly, a recent study found
that ingestion of FMT from rheumatoid arthritis patients
resulted in the same depression-like phenotypes in antibiotic
cocktail-treated mice (108). This transmissible characteristic of
depression through FMT puts forward the hypothesis that a
disturbed GM may play a causal rather than consequent role in
its relationship with depression. However, more valid evidence
is warranted to confirm this assumption.

Interestingly, in addition to these “depression-related
microbiota,” some research indicated that the FMT of healthy
individuals may possess a therapeutic effect. Kishimoto
found that patients with either IBS, functional diarrhea,
or functional constipation who received FMT of healthy
relatives within the second degree of relationship (≥20
years of age) showed an improvement of depression
and anxiety symptoms regardless of gastrointestinal
symptom change (109). Other studies showed that both
the gastrointestinal symptoms and depressive behaviors were
alleviated after FMT, with this effect persisting over 4 weeks
(110, 111).
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Overall, it is possible for depression to transmit through
fecal microbiota, though this is unlikely to happen in natural
conditions. FMT may be effective adjunctive therapy in
treating gastrointestinal or psychiatric disorders including IBS
and depression, nevertheless, further FMT studies are worth
pursuing to determine its efficacy and security.

Probiotics alleviate depression symptoms

Probiotics are generally defined as “live microorganisms
that, when administered in adequate amounts, confer a health
benefit on the host” (112). Beyond functioning locally in the
gastrointestinal tract and treating gastrointestinal disorders
including inflammatory bowel disease (IBD) (113) and IBS
(114), more studies found that administration of probiotics
can influence brain function and cure mental disorders
(115) including Alzheimer’s disease, Parkinson’s disease, and
depression, and the probiotics possessing beneficial effect on
patients suffering from mental health issues are named psycho-
biotics, first introduced by Dinan et al. (116). Indeed, clinical
and animal studies have shown that probiotics supplementation
could alleviate depression symptoms. In randomized, double-
blind, placebo-controlled studies, probiotics significantly
improved depression symptoms of depressive patients, though
inconsistent results were reported concerning improvement
of anxiety symptoms and serum inflammation markers (117–
119, 193). Animal studies indicated that the anti-depressive
effect of probiotics may attribute to mitigating gut microbial
dysbiosis (120–122, 195), and this effect may not require the
bacteria to be alive (112), suggesting a vital role of bacteria
components in the effect. The most reported probiotics belong
to lactic acid bacteria and Bifidobacterium, including strains
JB-1 (123), Lactobacillus gasseri (124), Bifidobacterium longum
NCC3001 (118) and Bifidobacterium breve CCFM1025 (112)
and recently recognized Akkermansia muciniphila (121).

The vagus nerve plays a vital role
linking gut microbiota to depression:
Insight into the subdiaphragmatic
vagotomy studies

Recent studies identified the essential role of the
subdiaphragmatic VN in the transmission of depression
through FMT. Wang et al. found that ingestion of fecal
microbiota from chronic social defeated stress susceptible mice
induced an anhedonia-like phenotype, higher plasma levels of
interleukin-6, and decreased expression of synaptic proteins in
the prefrontal cortex (PFC) in antibiotic-treated wild type mice
and Ephx2 (coding soluble epoxide hydrolase) knockout (KO)
mice but not in water-treated mice (125, 126). Further research

found that Lactobacillus intestinalis, Lactobacillus reuteri and
Faecalibaculum rodentium may, respectively, account for
the anhedonia-like phenotype in antibiotic-treated wild type
and Ephx2 KO mice after FMT, as merely ingestion of these
microbiota duplicated these results. In another study, FMT
from Chrna7 (coding α7 subtype of the nicotinic acetylcholine
receptor, α7 nAChR) KO mice also resulted in depression-like
phenotypes, systemic inflammation, and downregulation
of synaptic proteins in the PFC in antibiotic cocktail-
treated mice (127). Most importantly, subdiaphragmatic
vagotomy significantly blocked the development of behavioral
abnormalities, systemic inflammation, and downregulation
of synaptic proteins in the PFC after ingestion of the three
strain bacteria or receiving FMT from Chrna7 KO mice
(125–127). These provide evidence supporting the hypothesis
that the disturbance of intestine microbiota may have a causal
effect on depression which is mediated by subdiaphragmatic
VN and selectively deafferenting VN may be a target for
effectively treating depression. Besides, subdiaphragmatic
vagotomy also blocked the depression-like phenotype induced
by intraperitoneal injection of LPS in rats (128). Further,
a recent study found that LPS administration in mice also
caused abnormal composition of gut microbiota, along with
a depression-like phenotype, increasing of spleen weight,
triggering of systemic inflammation and downregulating of
synaptic proteins in the medial PFC in a subdiaphragmatic
VN-dependent way (129). Most interestingly, they found a
significant increase in the relative abundance of Lactobacillus
reuteri after LPS administration which was consistent with the
study of Wang et al. (125), that found positive correlations
between the plasma levels of IL-6 (or TNF-α) and spleen weight
and correlations between spleen weight and the abundance
of the components of the microbiome. These results indicate
that first, in addition to the “down to top” (from the gut to
brain) effect, the subdiaphragmatic VN also mediates the “top
to down” (from the peripheral or brain to gut) effect; second,
the Lactobacillus reuterimay play a vital role in the pathogenesis
of depression; third, as the biggest immune organ, the immune
effect of the spleen in response to LPS from intraperitoneal
administration or possibly leaking from the gut, may account
for system inflammation and depression.

In addition, subdiaphragmatic VN dependent gut-brain
signaling also contributes to the effects of oral selective serotonin
reuptake inhibitors (SSRIs). After chronic or acute ingestion
of sertraline or fluoxetine, two kinds of SSRIs, Karen-Anne
found an increase in vagal fiber activity and the intactness
of vagal signaling was required for this anti-depressive effect
of chronic ingestion SSRI as subdiaphragmatic vagotomy
abolished this effect, determined by the tail suspension
test (130). Additionally, certain probiotics also needed this
intact vagal signaling to play its anti-depressive role (124).
Though, the precise mechanism remains unknown, these
highlight the potential for pharmacologically stimulating VN
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to treat mood disorders even without the agents entering
the circulation.

Vagal tone, gut permeability and
inflammation, and depression

Stress as a risk factor for depression

From an evolutionary aspect, stress is a necessary response to
stimulus that activates the fight-or-flight mechanism in the body
which is essential for the survival of any organism (131). Proper
stress enhances the acquisition and/or expression of immuno-
protective responses such as wound healing, vaccination, anti-
infectious agent, and anti-tumor, while inappropriate chronic
stress is related to some psychiatric and gastrointestinal diseases
including depression and IBD (131–133). Indeed, life stress,
notably early life adversities including emotional maltreatment,
physical abuse, and sexual abuse, was proved to be a risk factor
for the onset of adulthood depression, which may be mediated
by continued stress (134, 135). However, some indicated that
those suffered childhood adversities without an early onset,
seemed to gain benefit from childhood adversities, showing
resilience to depression in high-stress, which suggests that it
may be effective to distinguish between various types of reaction
patterns based on the age at first onset of depression (136). In
animals models, those that had undergone maternal separation
and/or chronic stress such as chronic unpredictable stress,
chronic restraint stress, and chronic mild stress, all developed
depressive behaviors which were improved by administration of
probiotics or prebiotics (137).

Compromised gut barrier function in
depressed patients and stress induced
depressed animals

Cumulative evidence demonstrates that stress can damage
the gut barrier integrity in animals (137, 138). The HPA axis
mediates the response to stress and activation of this axis
results in the releasing of the CRF, which together with its
receptors, mainly CRF1 and CRF2, plays a vital role in the gut
permeability disturbance induced by stress exposure (139–141).
Indeed, plasma zonulin and fatty acid-binding protein-2, the
biomarkers of increased gut permeability, accompanied with
plasma LPS, part of the bacteria wall of gram-negative bacteria,
were found increased in subjects with a depressive disorder or an
anxiety disorder, suggesting the existence of compromised gut
epithelium barrier integrity and GM translocation in depressive
patients (142). The gut hyperpermeability or the so-called
leaky gut, may facilitate the translocation of GM and their
metabolites through the intestinal epithelial barrier, further
into the circulation system, promoting neural, endocrine,

and immune responses (77). The serum immunoglobulin M
and immunoglobulin A against LPS was also elevated in
MDD, indicating an adaptive immune response to a gram-
negative bacteria load and this may partly explain the increased
relative abundance of gram positive cocci in rats that have
undergone chronic early-life stress (143, 144). Further, this
immune response was observed in Bipolar Disorder patients too,
with these aberrations in the gut-brain axis most pronounced
in Bipolar Type 1 and melancholia (145). Interestingly, the
injection of LPS, even with minimal amounts, to human
volunteers may decrease mood and induce anxiety (146).

Chronic inflammation induced by gut
barrier dysfunction

System and neural inflammation play a crucial role in
pathogenesis of depression while how this chronic inflammation
condition forms and persists in depressive patients is unclear.
The immune response to GM translocation induced by leaky
gut may be responsible for the chronic inflammation condition
in depression. The activation of immune cells by LPS binding to
TLR4 activates nuclear factor kappa-B (NF-κB), one intracellular
signaling molecule, which in turn promotes the production of
pro-inflammatory cytokines, including TNF-α and IL-1 and
cyclo-oxygenase-2 (147, 148). The same process also induces
oxidative and nitrosative stress (O&NS) pathways, increasing
expression of inducible nitric oxide and production of reactive
oxygen species (ROS) by further activating nicotinamide
adenine dinucleotide phosphate oxidase (149). The overload of
ROS not only activates NF-κB, but leads to DNA damage and cell
death, both processes aggravating the inflammatory state (150).
Worse yet, cytokines including interferon-α, IL-6, IL-1β and
TNF-α, and O&NS pathways may cause loosening of the tight
junction barrier, forming a pro-inflammatory circle between
intestine hyperpermeability and host immune response (149).
This circle, at least partly, accounts for the chronic low-grade but
sustained inflammation state of depressive patients. Therefore,
adopting strategies targeted to protect or improve intestine
epithelial integrity may exert benefits to diseases associated with
the compromised gut barrier including depression while those,
including stress, infection, poor diet, and antibiotics, undermine
this barrier intactness resulting in deterioration of these diseases.

Gut inflammation and depression

Peripheral inflammation is closely connected to depression.
Inflammation markers including serum IL-6, IL-1β, and C-
reactive protein were elevated in depression patients (151, 152).
Furthermore, administration of proinflammatory cytokines to
humans or animals for treatment, has been found to induce
depressive symptomatology, which was attenuated by treatment
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with antidepressants such as tricyclic antidepressants and
SSRIs (153). Additionally, administration of LPS increased
plasma concentration of cytokines and simultaneously induced
depressive symptoms (146, 154). Most importantly, patients
with gut inflammatory disorders have high co-occurrence of
depressive behaviors. According to a recent Nature review,
despite pronounced heterogeneity, the pooled prevalence of
symptoms of depression in IBD, including Crohn’s disease (CD)
and ulcerative colitis, was reported over 20% (194). In addition,
elevated depressive symptoms over time were associated with
increased odds of active IBD (155). Besides, in studies of
induced colitis in mice, behavior abnormality consistent with
depression was observed, accompanied with an increase in
circulating pro-inflammatory cytokines (156, 157). Interestingly,
the anterior cingulate cortex (ACC), part of the autonomic
forebrain loop, functioning as a relay hub and transmitting
various input signals after evaluating requirements from other
regions to guide adaptive behaviors, is particularly sensitive
to cytokines (158, 159). Notably, both depression and CD are

inflammation-related disorders and dysfunction of the ACC
was reported in depression and CD (160, 161). Further, a
recent study from Xu group found that patients with CD who
were in the active phase exhibited higher amplitude of low
frequency fluctuation (ALFF) in the left ACC and a positive
correlation between mWavelet-ALFF values of the ACC and
Hospital Anxiety and Depression Scale-depression scores in
CD patients (162). These suggest that ACC may serve as an
intersection in the brain, which senses gut inflammation and
responses inappropriately, increasing risk of depression.

Indeed, through the leaky regions of the brain-blood
barrier, the circumventricular organs or the neural routes,
for instance the VN fibers, peripheral cytokines can reach
the brain and stimulate the brain immune cells, mainly
microglia (163, 164). Apart from this, immune cells like
T cells, by upregulating various adhesion molecules and
integrins, are attracted by chemokine to infiltrate the brain
and produce cytokines in meninges or parenchyma (165).
Then, the concentration of cytokines and activated microglia

FIGURE 2

In healthy conditions, normal vagal tone can protect gut barrier and inhibit macrophages releasing pro-cytokine, TNF-α. While in response to

stressors, vagal tone is depressed, promoting gut barrier impairment and releasing of TNF-α. Compromised gut barrier facilitate bacterial

translocation, which activates immune system and induces immune mediators. Through the circulation system, gut and system inflammation

ultimately results in neuroinflammation. TNF-α, tumor necrosis factor alpha. By Figdraw.
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result in neuroinflammation, exerting detrimental effects on
neurogenesis in the hippocampus which plays a direct role
in the pathophysiology of depression (166–168). Also, by
activation of indoleamine 2,3 dioxygenase and tryptophan 2,3
dioxygenase, enzymes catalyzing the conversion of tryptophan
into N-formylkynurenine, pro-cytokines decreased tryptophan
levels and increased production of kynurenine and other
tryptophan-derived metabolites, resulting in less precursors
for serotonin synthesis (169, 170). In addition, cytokines, in
particular IL-1 through activation of p38 mitogen-activated
kinase, inhibited glucocorticoid receptor function, sharing HPA-
activating activity (171, 172).

Anti-inflammatory property and epithelial
barrier protective role of VNS in the gut

The VN owns an anti-inflammatory property and was
first introduced by Tracey (84), called “cholinergic anti-
inflammatory pathway” (CAIP) (173). Through the vago-
sympathetic reflex, VNS activates the splenic sympathetic nerve
which releases norepinephrine binding to the β2 adrenergic
receptor of splenic lymphocytes. And the acetylcholine (ACh)
delivered by splenic lymphocytes in turn binds to α7 nAChRs
of splenic macrophages to finally inhibit the release of TNF-α,
a pro-inflammation cytokine (174). Further, the Janus kinase 2-
Signal transducer and activator of the transcription 3 signaling
pathway is implicated in this anti-inflammatory effect (175).
In the gut, similarly, VNS also possesses an anti-inflammatory
role depending on enteric neurons. When activated by systemic
inflammation or local peripheral inflammation, the VA relay
inflammation signals to the NTS, which through projection to
theDMNV activates vagal efferents, which then stimulate enteric
neurons and, in turn, the enteric neurons activate macrophages
by releasing ACh, binding to α7 nAChRs, and inhibiting TNF-
α releasing (85). The anti-inflammatory property in the gut of
the VN was proved in an animal model of postoperative ileus,
independent of the spleen and T cells (18). This effect was
also observed in a number of studies of rodent colitis, such as
dextran sulfate sodium, oxazolone-, and 2,4,6-trinitrobenzene
sulfonic acid-colitis (176–178). Furthermore, in a recent animal
study, rats were induced a small intestinal inflammation by
indomethacin and VNS reduced the small bowel inflammation
in a spleen-independent mechanism, suggesting a direct anti-
inflammation effect of the VN in the gut (179).

In addition to the anti-inflammatory property, VNS also
displays a direct protective role in intestinal epithelial barrier
integrity. Male mice were subjected to a surface area steam burn
to induce intestinal epithelial barrier breakdown and intestine
inflammation, both of which were attenuated by VNS, either
before or after the burn insult, and this preventive effect of
VNS in intestine dysfunction was also observed in the traumatic

brain injury model (180–182). Latter research identified a role
of α7 nAChR and activation of enteric glia cells in this effect
(183, 184). Several studies also indicated that electroacupuncture
could protect against intestinal hyperpermeability through the
VN, as vagotomy or intraperitoneal administration of an α7
nAChR inhibitor reversed this effect (185, 186). In another
mice model challenged with LPS, VNS decreased expression of
tight junction proteins occludin and zonula occludens through
suppressing translocation of NF-κB p65 and downregulating
myosin light-chain kinase (187). However, there is no publishing
data concerning the effect of VNS on the intestinal epithelial
barrier in depressive patients or animal models. Further studies
are warranted to determine the relation between this effect
and depression.

Linking the depression and gut
inflammation: The vagal tone

Importantly, stress inhibits vagal tone and decreased heart
rate variability, a marker of low vagal tone, was found in
depressed patients, and also in IBD (20, 188, 189). Since
increasing vagal tone by VNS displays an anti-inflammation
effect in the gut mediated by macrophages, impaired vagal tone
including in response to stress, may lead to a pro-inflammatory
state in the gut. Indeed, Ghia and colleagues reported that
impaired vagal function in mice following induced depression
led to gut inflammation while restoration of parasympathetic
function through administration of desmethylimipramine, a
tricyclic antidepressant, protected against gut inflammation
(190). In addition, Ghia et al. found that macrophages isolated
from vagotomized mice showed an increase of proinflammatory
cytokine release including IL-1β and IL-6 (191). Further,
vagotomy reactivated inflammation in mice with chronic colitis.
Additionally, in a nationwide register-based matched cohort
study, Liu et al. found a positive association between vagotomy
and later IBD, particularly CD (192). Together, these findings
suggest that stress-induced depressed vagal tone leads to a
pro-inflammatory state in the gut. Thus, stress, on the one
side, directly wound the gut barrier, promoting gut bacteria
translocation and gut inflammation; on the other side, through
inhibition of vagal tone, prime immune system induces a pro-
inflammatory state and aggravates gut and system inflammation,
eventually leading to depression (142) (Figure 2).

Contribution and limitations

In this review, we discussed the relationship between
MGBA and depression and the role the VN plays in this
relationship, hypothesizing that increasing vagal tone by
stimulating the VN, electrically or chemically, may alleviate
depressive symptoms through improving gut inflammation
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and permeability. This hypothesis links stress (risk factor for
depression), gut hyperpermeability, and inflammation (found
in depressed animals and patients) and the VN, partly
explaining the origin of system and neuroinflammation and
their contribution to depression. However, there are several
limitations. First, to put forward a self-consistent hypothesis, we
selectively put inflammation in the intersection and stressed the
role of the VN in inflammation-mediator-induced depression
models, while in non-inflammatory depression models, the
anti-depressive effect of VNS may rely on other mechanisms
rather than the anti-inflammatory and gut barrier protective
role of the VN. Second, though it is clear that the VN mediates
the contribution of disturbance of MGBA to depression, no
unanimous conclusion that dysbiosis of GM precedes depressed
brain or vice versa can be drawn. In future, more research
is required to probe whether in non-inflammatory depression
models, stimulating VN can still reverse the dysbiosis of GM
to improve depression and to determine a causal relationship
between gut and brain disturbances.

Conclusion

Depression is more than a mental disease but with
substantial physiological and anatomic alterations including
decreased neurogenesis and neuroplasticity, dysfunction of
neural circuits, and unbalanced neurotransmitters. Disturbed
MGBA was reported to be a contributor to depression and
restoration of the disturbance of this axis by administration
probiotics is effective in alleviating depressive symptoms.
The VN is a pivotal route for bidirectional communication
of MGBA, mediating the anti-depressive or pro-depressive
effect of gut microbiota on depression. Nevertheless, further
research is warranted to determine specific bacteria strains
owning an anti-inflammatory role and its molecular basis via
the VN. The VN possesses an anti-inflammatory and gut
barrier protective role which is inhibited in response to stress,

a risk factor of depression. It is likely that the depressed
vagal tone may facilitate the gut bacteria translocation and
system inflammation, promoting the onset and deterioration of
depression. More clinic and pre-clinic studies are needed to test
and improve this hypothesis.
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