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Department, Lanzhou University Second Hospital, Lanzhou, China

Background: The incidence, prevalence, and mortality of ischemic stroke (IS)

continue to rise, resulting in a serious global disease burden. The prediction

models have a great value in the early prediction and diagnosis of IS.

Methods: The R software was used to screen the di�erentially expressed

genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294,

and GSE37587 and analyze DEGs for enrichment analysis. The feature genes

of IS were obtained by several machine learning algorithms, including the

least absolute shrinkage and selector operation (LASSO) logistic regression,

the support vector machine-recursive feature elimination (SVM-RFE), and the

Random Forest (RF). The IS diagnostic models were constructed based on

transcriptomics by machine learning and artificial neural network (ANN).

Results: A total of 69 DEGs, mainly involved in immune and inflammatory

responses, were identified. The pathways enriched in the IS group were

complement and coagulation cascades, lysosome, PPAR signaling pathway,

regulation of autophagy, and toll-like receptor signaling pathway. The feature

genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively.

The area under the curve (AUC) of the LASSO model in the training dataset,

GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the

SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the

RF model was 0.947, 0.935, and 1.000, respectively. The models have good

sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-

RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively,

in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN,

and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the

GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was

0.740 and 0.630, respectively, in the GSE195442 dataset. In the training

dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model

were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model

were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were

0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity

was very satisfactory; however, the specificity and accuracy were not good.
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Conclusion: The LASSO, SVM-RFE, and RF models have good prediction

abilities. However, the ANN model is e�cient at classifying positive samples

and is unsuitable at classifying negative samples.

KEYWORDS

ischemic stroke, machine learning, artificial neural network, diagnostic model,

transcriptomics

Introduction

The Global Burden of Diseases, Injuries, and Risk Factors

Study (GBD) showed that there were 12.2 million incident cases

of stroke, 101 million prevalent cases of stroke, and 6.55 million

deaths from stroke in 2019 (1). Globally, the incidence and

mortality of stroke are on the rise, and stroke remains the second

leading cause of death (2). Especially in China, cerebrovascular

disease is the first cause of death, and the lifetime risk of stroke

in the Chinese population ranks first in the world (3). In 2019,

there were 3.94 million new stroke cases, 2.19 million deaths

from stroke, and 28.76million prevalent cases of stroke, of which

ischemic stroke (IS) accounted for 84.1% in China (4).

The etiology and pathogenesis of IS are not fully understood.

According to epidemiological investigations, IS may be

associated with hypertension, high BMI, hyperglycemia,

environmental particulate matter pollution, and smoking (1, 5).

As modern medicine tends to be individualized, prevention and

treatment strategies based on patient genetic information have

always been ideal treatment methods for medical practitioners.

Studies (6) have found that genetic factors also play a very

important role in the occurrence of IS. At present, more and

more studies believe that the occurrence and poor prognosis of

IS are related to the abnormal expression of genes (7). However,

multiple genes are often involved in the occurrence of IS. This

inspired us to explore diagnostic and prognostic methods for IS

by using multiple disease-specific genes.

At present, there are some limitations to the IS diagnostic

techniques commonly used in clinical practice. The diagnosis

of IS mainly relies on typical clinical symptoms and brain

imaging (8), while approximately 50% of early IS diagnoses

lack specificity in imaging (9). In addition, most patients are

irreversible by the time the diagnosis is confirmed, resulting

in a poor prognosis. Although scholars have done a great deal

Abbreviations: IS, ischemic stroke; GEO, Gene Expression Omnibus;

DEGs, di�erentially expressed genes; LASSO, least absolute shrinkage

and selection operator; SVM-RFE, support vector machine-recursive

feature elimination; RF, Random Forest; ANN, artificial neural network;

GO, Gene Ontology; BP, biological processes; CC, cellular components;

MF, molecular functions; GSEA, gene set enrichment analysis; AUC, area

under the curve; ROC, receiver operating characteristic.

of work in finding biomarkers for IS diagnosis or prognosis,

few biomarkers are available in clinical practice (10). Existing

predictive models are mostly based on demographic data and

clinical parameters, whichmay have a high risk of bias and fail to

make reliable clinical decisions (11). Machine learning research

is developing rapidly and has become one of the important

topics in the field of artificial intelligence. At present, machine

learning has become a research hotspot in the field of medical

and health data mining (12). Machine learning algorithms such

as the least absolute shrinkage and selector operation (LASSO),

support vector machine-recursive feature elimination (SVM-

RFE), Random Forest (RF), and the neural network have been

proven to be of great value in diagnosing stroke (13–15).

In this study, we screened differentially expressed genes

(DEGs) between IS and control samples in the Gene Expression

Omnibus (GEO) database; used LASSO, SVM-RFE, and RF to

screen out IS feature genes; and constructed a disease diagnosis

model of IS to evaluate the performance of different models on

predicting IS.

Methods

Microarray data and processing

The expression profile data and corresponding platform

annotation information of microarray datasets, such as

GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442,

were downloaded from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). GSE16561, GSE58294, and GSE37587 were

integrated as training datasets, and GSE22255 and GSE195442

were used as test datasets, as shown in Table 1. The R software

(version 4.1.0) was used to transform the probe names of

GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442

matrix data into gene names. After the integration of the

GSE16561, GSE58294, and GSE37587 datasets, the data were

normalized by log2 transformation for data with large values

and averaging for repeated probes. The “sva” package was used

to calibrate batch effects. The principal component analysis

(PCA) diagram before and after calibration was drawn using

the ggplot2 package. Since there are 47 control samples and

176 IS samples in the integrated training dataset, there is a class
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TABLE 1 Ischemic stroke datasets from the GEO database.

Group Dataset Reference Data type Platform Stroke Control

Training dataset GSE16561 Barr (17) Microarray GPL6883 39 24

Training dataset GSE58294 Stamova (18) Microarray GPL570 69 23

Training dataset GSE37587 Barr (19) Microarray GPL6883 68 0

Test dataset GSE22255 Krug (20) Microarray GPL570 20 20

Test dataset GSE195442 Yang (21) Microarray GPL31275 10 10

imbalance. We used the SMOTE algorithm (16) to adjust for

class imbalance. The R software “UBL” package was used.

Screening for di�erentially expressed
genes (DEGs)

The “limma” package was used to screen DEGs of the

integrative data of GSE16561, GSE58294, and GSE37587.

The screening criteria were set as |log2FC| > 0.6 and the

adjusted P-value was <0.05. The heatmap and volcano plot

of DEGs were drawn using the “pheatmap” and “ggplot2”

packages, respectively.

Enrichment analysis

To understand the functions of DEGs, we used the R

software “clusterProfiler” package to conduct a Gene Ontology

(GO) enrichment analysis and a Gene Set Enrichment Analysis

(GSEA) on DEGs. An adjusted P-value of <0.05 was considered

statistically significant. GO enrichment analysis includes a

biological process (BP), a cellular component (CC), and a

molecular function (MF).

Feature selection and model evaluation

To screen out the feature genes of IS, the R was used to

perform machine learning analysis on DEGs. The “glmnet”

package was used to construct the LASSO model with penalty

parameter tuning conducted by ten-fold cross-validation. The

response type was set as binomial, and the alpha was set as 1.

We selected the feature genes with the minimum error. Besides,

the “e1071” package was used to establish the SVM-RFE model

to screen out the genes with the minimum cross-validation

error. k = 10 was the setting for the k-fold cross-validation,

and the parameter of halving above was identified as 50. The

“randomForest” package was used to establish the RF model.

The RFmodel was established to find out the number of random

forest trees with the minimum error. We selected 272 trees

as the parameter of the random forest model. The “pROC”

software package was used to draw the receiver operating

characteristic (ROC) curve to validate the accuracy of the model.

The dimensionality importance value of the RF model was

obtained using the decreasing accuracy method (Gini coefficient

method). The performance of prediction models generated by

machine learning classifiers was assessed using classification

sensitivity, specificity, and the area under the curve (AUC).

Construction and validation of the ANN
model

To build and evaluate the performance of the artificial neural

network (ANN) model, we performed gene scoring for feature

genes, and the scoring rule was set as follows: if the expression

of upregulated genes was greater than the median value, the

score was 1; otherwise, the score was 0. If the expression of

downregulated genes was greater than the median value, the

score was 0; otherwise, the score was 1. The R software package

“neuralnet” was used to construct the ANN model of feature

genes according to the gene score. We set the hidden layer

of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models

as 1. The number of neurons in the hidden layers of the

LASSO+ANN, SVM-RFE+ANN, and RF+ANNmodels was set

as 8, 5, and 6, respectively. The activation function “logistic” was

used. The IS disease classification model was constructed using

the obtained gene weight information.

Results

Batch calibration and SMOTE algorithm

The GSE16561, GSE58294, and GSE37587 datasets were

integrated. To reduce the differences between batches, batch

calibration was performed on the two datasets, and PCA was

used to verify the effect of data calibration (Figures 1A,B). The

class distribution in the integrated dataset is not equal, which is

prone to class imbalance. Training classification algorithms with

imbalanced data provide inefficient prediction models, which

may perform poor classification on a smaller number of samples.

Hence, we used SMOTE to fix class imbalance (Figures 1C,D).
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FIGURE 1

PCA diagram. (A) PCA diagram of GSE16561, GSE58294, and GSE37587 datasets before calibration. (B) PCA diagram of GSE16561, GSE58294,

and GSE37587 datasets after calibration. (C) PCA diagram of class distribution before SMOTE. (D) PCA diagram of class distribution after SMOTE.

Di�erential gene analysis

To identify the DEGs from IS and control

samples, we conducted a Bayesian test on the training

dataset and obtained a total of 69 DEGs, of which

46 were upregulated and 23 were downregulated

(Figures 2A,B).

Function and pathway enrichment
analysis

The R software was used to perform enrichment analysis

on 69 DEGs, as shown in Figure 3. DEGs were mainly enriched

in the immune response and the inflammatory response.

The biological process involved immune response-regulating

signaling, negative regulation of cytokine production, and

negative regulation of immune response. The cellular

component mainly focused on some granule lumens and

granule membranes. The molecular function analysis showed

that most of the genes were involved in immune receptor

activity, serine-type peptidase activity, serine hydrolase activity,

pattern recognition receptor activity, and cytokine receptor

activity (Figure 3A).

The GSEA analysis indicated that the most enriched

pathways in the control group were allograft rejection, antigen

processing and presentation, primary immunodeficiency,

ribosome, and spliceosome (Figure 3B). In contrast,

complement and coagulation cascades, lysosome, PPAR

signaling pathway, regulation of autophagy, and toll-like

receptor (TLR) signaling pathway were enriched in the IS group

(Figure 3C).
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FIGURE 2

The DEGs between ischemic stroke and control group in the GSE16561, GSE58294, and GSE37587 datasets. (A) Heatmap of DEGs. The red and

blue represent the significantly upregulated and downregulated DEGs. (B) Volcano plot of DEGs. These genes consist of 46 upregulated genes

and 23 downregulated genes. The screening criteria were set as |log2FC|> 0.6 and adjusted P- value of < 0.05.

FIGURE 3

Function enrichment analysis. (A) GO enrichment analysis of DEGs. The size of the circle indicates the number of genes. The screening criterion

was set as adjusted P < 0.05. (B,C) Enrichment plots from GSEA analysis in the control group and IS group.
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FIGURE 4

Screening for feature genes. (A) Identification of the optimal penalization coe�cient lambda (λ) in the LASSO model. (B) Cross-validation for

tuning parameter selection in the LASSO model. (C,D) A plot of genes selection via SVM-RFE algorithm. (E) The influence of the number of

decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. (F) Results of the Gini

coe�cient method in RF model. The x-axis indicates the genetic variable, and the y-axis represents the importance index.

TABLE 2 Feature genes screened by machine learning algorithms.

Algorithms Genes

LASSO CPD, CLEC4D, CD163, CD19, ANKRD22, CD79B,

HIST1H4D, HIST1H4H, TIMM8A, CLIC3, HTRA1,

MAOA, LY96, PRSS33, FCGR3B, METTL7B, FOLR3

SVM-RFE CLEC4D, ZNF439, PGLYRP1, HECW2, FAIM3,

ANKRD22, CD79A, EVL, LY96, CD72

RF ID3, EVL, FLT3LG, CPD, CD163, S100A12, SRPK1,

KCNJ15, SLC22A4, ARG1, HECW2, CD19

Screening for feature genes via machine
learning

We used R software to performmachine learning analysis on

69 DEGs. The feature genes selected by LASSO (Figures 4A,B)

and SVM-RFE (Figures 4C,D) were 17 and 10, respectively. The

number of random forest trees with the minimum error of the

RFmodel was 272 (Figure 4E). The 12 genes with an importance

value >3 were selected as disease-specific genes (Figure 4F). The

feature genes screened by the algorithms are shown in Table 2.

E�ectiveness of machine learning models

To evaluate the prediction performance of the machine

learning model, we first constructed the model by LASSO,

SVM-RFE, and RF. In the training dataset and GSE22255 and

GSE195442 test datasets, the AUC of the LASSO model was

0.969, 0.890, and 1.000, respectively (Figures 5A–C); the AUC

of the SVM-RFE model was 0.957, 0.805, 1.000 (Figures 5D–F),

respectively, and the AUC of the RF model was 0.947, 0.935,

1.000 (Figures 5G–I), respectively. In addition, the models have

good sensitivity and specificity (Table 3).

To further evaluate the prediction performance of the

combination of machine learning algorithms, we constructed

and validated the LASSO+SVM-RFE and SVM-RFE+RF

models. The AUC, sensitivity, and specificity of the

LASSO+SVM-RFE and SVM-RFE+RF models were also

satisfactory, as shown in Table 3.

Construction and validation of the ANN
model

To evaluate the prediction performance of the ANN

model, we constructed and validated ANN models for feature
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FIGURE 5

Model accuracy evaluation. (A–C) The ROC curves for using LASSO to estimate accuracy in training, GSE22255, and GSE195442 datasets. (D–F)

The ROC curves for using SVM-RFE to estimate accuracy in training, GSE22255, and GSE195442 datasets. (G–I) The ROC curves for using RF to

estimate accuracy in training, GSE22255, and GSE195442 datasets.

genes screened by LASSO, SVM-RFE, and RF, respectively.

The visualization of the LASSO+ANN, SVM-RFE+ANN, and
RF+ANN models is shown in Figures 6A,E,H. The AUC of
LASSO+ANN, SVM-RFE+ANN, and RF+ANN models in

the training dataset was 1.000, 0.995, and 0.997, respectively
(Figures 6B,F,I). The AUC of LASSO+ANN, SVM-RFE+ANN,

and RF+ANN in the GSE22255 dataset was 0.688, 0.605, and

0.619, respectively (Figures 6C,G,J). The AUC of LASSO+ANN

and RF+ANN in the GSE195442 dataset was 0.740 and 0.630,

respectively (Figures 6D,K).

In the training dataset, the sensitivity, specificity, and

accuracy of the LASSO+ANN model were 1.000, 1.000, and

1.000, respectively; of the SVM-RFE+ANN model were 0.946,

0.982, and 0.964, respectively; and of the RF+ANN model were

0.964, 1.000, and 0.982, respectively. In the test datasets, the

sensitivity (true positive rate) was very satisfactory; however,

the specificity (true negative rate) and accuracy were not good.

This shows that the ANN model is very efficient at classifying

positive samples and is unsuitable at classifying negative samples

(Table 3).

Discussion

In this study, the 69 DEGs identified weremainly involved in

the immune response and inflammatory response. Inflammation

is one of the initial responses of the immune system to a

stimulus. Studies have shown that the immune system plays

a very important role in the acute and chronic stages of

ischemic damage and in the long-term sequelae of stroke (22).
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TABLE 3 Comparison of ischemic stroke diagnosis models based on machine learning.

Models Datasets AUC Sensitivity Specificity Accuracy

LASSO Train 0.969 (0.942–0.989) 0.929 0.946 0.938

GSE22255 0.890 (0.768–0.975) 0.850 0.850 0.850

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

SVM-RFE Train 0.957 (0.930–0.979) 0.857 0.946 0.902

GSE22255 0.805 (0.650–0.922) 0.950 0.550 0.750

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

RF Train 0.947 (0.907–0.980) 0.893 0.982 0.938

GSE22255 0.935 (0.855–0.988) 0.817 0.883 0.850

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

LASSO+SVM-RFE Train 0.898 (0.853–0.934) 0.777 0.866 0.822

GSE22255 0.692 (0.522–0.840) 0.617 0.683 0.650

GSE195442 0.920 (0.730–1.000) 1.000 0.900 0.950

SVM-RFE+RF Train 0.899 (0.854–0.939) 0.777 0.973 0.875

GSE22255 0.647 (0.473–0.820) 0.850 0.500 0.675

GSE195442 0.850 (0.640–1.000) 0.800 0.900 0.850

LASSO+ANN Train 1.000 (0.999–1.000) 1.000 1.000 1.000

GSE22255 0.688 (0.510–0.845) 0.850 0.500 0.675

GSE195442 0.740 (0.490–0.950) 0.800 0.500 0.650

SVM-RFE+ANN Train 0.995 (0.988–0.999) 0.946 0.982 0.964

GSE22255 0.605 (0.420–0.771) 0.700 0.400 0.550

RF+ANN Train 0.997 (0.991–1.000) 0.964 1.000 0.982

GSE22255 0.619 (0.429–0.787) 0.750 0.450 0.600

GSE195442 0.630 (0.360–0.860) 0.700 0.400 0.550

The pathways enriched in the IS group were complement

and coagulation cascades, lysosome, PPAR signaling pathway,

regulation of autophagy, and TLR signaling pathway. A

sudden interruption of IS blood flow can lead to vascular

endothelial changes, local retention of blood cells, platelet-

leukocyte adhesion, and activation of the coagulation cascade,

whereas thrombin induces the expression of adhesion molecules

on endothelial cells, disrupts endothelial barrier function,

and activates complement C3 and C5 (23). TLR, as part of

the innate immune system, plays an important role in the

immune response of IS (24). After the occurrence of hypoxic-

ischemic events, part of the TLRs present in the endothelial

cell membranes is involved in endothelial dysfunction and

plays an indispensable role in the activation of inflammatory

cascades (25). The autophagy-lysosomal pathway participates

in the clearance of aberrant cellular components to maintain

protein homeostasis and normal cellular function. Evidence

indicated that the impairment of this pathway during cerebral

ischemia led to ischemia-induced neuronal necrosis and

apoptosis (26).

Stroke is the second leading cause of disability and death

worldwide. Currently, there are no effective treatments to

improve stroke survival and quality of life. Early diagnosis and

intervention of IS play an essential role in reducing deaths.

A great deal of effort has been put into post-IS management,

and there are many methods that play a role in assessing

unfavorable post-IS outcomes, such as real-time biosignaling

(27), quantitative electroencephalography (qEEG) (28),

and electromyography (29). Noninvasive qEEG has good

discriminative power in the quantitative evaluation of

neurological outcomes after stroke compared with known

demographic, clinical, and radiographic prognostic markers.

Electromyography (EMG) is also considered a potential

predictive tool for post-stroke gait and rehabilitation

management because it is sensitive to neuromuscular changes

induced by IS. Myoelectric biomarkers will help detect gait

changes in stroke-impaired patients and determine post-stroke

rehabilitation. There are also many methods that can assist

in the diagnosis of IS. The imaging biomarker of carotid

plaque can also be used to predict stroke risk (30). To date,

most studies examining stroke have used MRI or CT images,

which can be difficult to diagnose in advance. Studies have

found that electrocardiography (31) and echocardiography

(32) can also predict IS risk. Although electrocardiography

and echocardiography are noninvasive and low-cost diagnostic

methods, their low sensitivity can easily lead to misdiagnosis.

Therefore, it is necessary to develop a highly sensitive and

accurate method for the early diagnosis of IS.
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FIGURE 6

Development and validation of ANN models. (A,E,H) Visualization of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models. (B–D) ROC

analysis for model prediction of the LASSO+ANN in the training, GSE22255, and GSE195442 datasets. (F,G) ROC analysis for model prediction of

the SVM-RFE+ANN in the training, GSE22255, and GSE195442 datasets. (I–K) ROC analysis for model prediction of the RF+ANN model in the

training, GSE22255, and GSE195442 datasets.
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This study aimed to construct prediction models of IS

based on transcriptomics using machine learning methods.

Overall, among the eight models, the LASSO, SVM-RFE, and

RF performed best with the highest values in performance

(AUC, sensitivity, specificity) in the training dataset and test

datasets, followed by LASSO+SVM-RFE and SVM-RFE+RF,

the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models

performed worst. It demonstrated that the LASSO, SVM-RFE,

and RF models could be used independently to predict the risk

of IS.

At present, many IS risk prediction models have been

established. In 2021, a case-control study in China developed

a LASSO model to better identify IS. The prediction model

showed good discrimination, with an AUC of 0.916 for the

LASSO method using 14 features (33). In this study, the LASSO,

SVM-RFE, and RF models performed well, and the AUC value

reachedmore than 90%. The sensitivity, specificity, and accuracy

of LASSO, SVM-RFE, and RF models were still very satisfactory

in the test datasets. This indicated that the LASSO, SVM-

RFE, and RF diagnostic models have diagnostic robustness and

potential utility in detecting IS.

A radiomics study identified the selection of the

LASSO combined with the SVM as the optimal method

for differentiating gliosarcoma and glioblastoma (34). This

result suggested that models constructed by combining

several machine learning algorithms may result in better

prediction ability than a single algorithm. Therefore,

we constructed and validated the LASSO+SVM-RFE

and SVM-RFE+RF models of IS. Although the AUC,

sensitivity, and specificity of LASSO+SVM-RFE and

LASSO+RF models were still very satisfactory, they

were still slightly inferior to LASSO, SVM-RFE, and

RF models. This result was the opposite of what

was expected.

The neural network of deep learning enables the models

to scale exponentially with the growing quantity and

dimensionality of data, which makes deep learning particularly

useful for solving complex problems (35). The growing

popularity of deep learning in healthcare has accelerated

research into its utility in the complex biology of cancer (36).

A study found that ANN is the most suitable diagnostic model

based on machine learning in skin cutaneous melanoma (37). In

this study, to evaluate the prediction performance of the ANN

model, we constructed and validated ANN models for feature

genes screened by LASSO, SVM-RFE, and RF, respectively. The

sensitivity value, that is, the true positive rate, reachedmore than

70% in the test dataset. However, the specificity value reached

<50% in the test dataset. This showed that the ANN model

is efficient at classifying positive samples and is unsuitable at

classifying negative samples. This study obtained the predictive

ability of each model by constructing and comparing the

multiple models of IS, which provided a new method for the

early diagnosis and prediction of IS.

This study also had some limitations. First, due to the lack of

clinical data on IS in the GEO database, the clinical features of

IS were not included in the diagnostic models. In addition, the

insufficient sample size of IS in the GEO database may affect the

diagnostic effect of the IS model.

Conclusion

In this study, we constructed and validated the LASSO,

SVM-RFE, RF, and ANN disease classification models. The

AUC, sensitivity, and specificity indicated that the LASSO,

SVM-RFE, and RF models performed well for IS diagnosis and

prediction. However, the ANN model is efficient at classifying

positive samples and is unsuitable at classifying negative

samples. Nevertheless, large-scale and multiple-center studies

will be needed to verify our findings.
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