AUTHOR=Liu Xiang , Shu Yongqiang , Yu Pengfei , Li Haijun , Duan Wenfeng , Wei Zhipeng , Li Kunyao , Xie Wei , Zeng Yaping , Peng Dechang TITLE=Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis JOURNAL=Frontiers in Neurology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.1005650 DOI=10.3389/fneur.2022.1005650 ISSN=1664-2295 ABSTRACT=
In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.