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Background: While immune checkpoint inhibitors (ICIs) have been

revolutionary in the treatment of cancer, their administration has been

associated with a variety of immune-related adverse events (irAEs), including

myasthenia gravis (MG), and Lambert-Eaton myasthenic syndrome (LEMS).

Objective: To provide a comprehensive synthesis of the evidence supporting

an etiological role for ICIs in MG and LEMS in patients with no prior history of

autoimmune disease.

Hypothesis: ICIs may trigger MG and LEMS in patients with no prior

susceptibility to autoimmune disease.

Methods: Relevant primary research on Medline was interrogated using

a series of search algorithms. Search terms were constructed based on

the PICOS tool endorsed by the Cochrane Collaboration, which describes

population, intervention, comparison, outcomes, and study design. Papers

were screened according to inclusion and exclusion criteria. Additional papers

were retrieved from the reference lists of screened papers. Each paper included

in the qualitative synthesis was assigned an integrated metric of evidence (IME)

value, ranging from 0 to 7, based on study design, quality of data, likelihood

of a causal link between the immune checkpoint inhibitor(s) and MG/LEMS,

confidence of MG/LEMS diagnosis, and the number of patients treated with an

ICI prior to MG/LEMS diagnosis.

Results: Ninety-four papers describing at least one patient treated with ICI(s)

prior to the onset of MG and/or LEMS were documented. Overall evidence for

a causal link between ICI administration and MG/LEMS was low, with a median

IME value of 2.88 (range 2.05–6.61).

Conclusions: There is a paucity of evidence in support of an etiological

relationship between ICIs and MG/LEMS, due largely to the lack of mechanistic

studies and/or prospective clinical trials with relevant study endpoints. The
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current literature is dominated by case reports and retrospective cohort

studies, which inherently yield only low-level evidence, supporting the need

for further work in this area. A role of ICIs in the etiology of MG/LEMS remains

plausible, arguing for continued vigilance for irAEs in patients treated with

these drugs. We argue that there is a need for future mechanistic, high quality,

large-scale studies specifically investigating the possible etiological role of ICIs

in MG/LEMS.

KEYWORDS

myasthenia gravis, Lambert-Eaton myasthenic syndrome, autoimmunity, immune

checkpoint inhibitors, etiology

Introduction

Immune checkpoint blockade has in recent years become
one of the most promising treatments for cancer (1–
3). Immune checkpoint inhibitors (ICIs) are monoclonal
antibodies that target negative regulators of T cell activation
such as programmed death protein-1 (PD-1), programmed
death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4
(CTLA-4) (4). These drugs target the overactive inhibitory T cell
pathways in cancer and thus enhance anti-tumor T cell activity
(5, 6). While ICIs have yielded promising therapeutic results,

their administration has also been associated with numerous
immune-related adverse events (irAEs). These irAEs range from
minor to severe, with some being life-threatening. One such rare
and potentially fatal autoimmune disease is myasthenia gravis
(MG) (4, 7–9).

MG is a B-cell mediated autoimmune disease of the
neuromuscular junction caused by autoantibodies against
acetylcholine receptors (AChR) or, less commonly, muscle-
specific kinase (MuSK) or a low-density lipoprotein receptor-
related protein (LRP4). This results in dysfunction at the muscle
endplate and muscle fatigue and weakness (10). Lambert-
Eaton myasthenic syndrome (LEMS) is a junctionopathy
clinically resembling MG, in which antibodies directed against
presynaptic voltage-gated calcium channels (VGCC) decrease
the release of ACh (11, 12). Although T cells are not directly
involved in the impairment of neuromuscular transmission in
these diseases, CD4+ T helper cells (Th cells) have an important
pathogenic role by permitting and facilitating the synthesis of
high-affinity autoantibodies (13).

Several systematic reviews and meta-analyses investigating
the role of ICIs in irAEs have been published (9, 14–21). Past
case reports and narrative reviews have also summarized the
literature describing an association of ICIs with MG (22–41).
However, to the best of our knowledge, a rigorous analysis of the
relationship between ICIs and both MG and LEMS has not been
undertaken. We have therefore addressed this unmet need by
conducting a species-agnostic systematic review of the current

literature, in which we interrogate the evidence for a causal
relationship between ICIs and MG/LEMS.

Methods

Literature review

The literature search was conducted in June 2022. Medline
and Web of Science were interrogated for relevant primary
research, the former by means of PubMed. Search strings
were constructed by means of the “population,” “intervention,”
“comparison,” “outcomes,” and “study design” (PICOS) tool
endorsed by the Cochrane Collaboration (42). In the case of
this systematic review, the “population” comprises patients
without a history of autoimmune disease who have received
ICIs; the “intervention” is ICI administration; the “comparison”
is not applicable as the reviewed papers do not offer
contemporaneous data on control patients; the “outcomes” are
represented by the presence or absence of MG/LEMS; and the
“study design” is incorporated into the IME metric. Papers
captured by two primary search algorithms {((myasthenia
gravis[MeSH Terms]) OR (myasthenia gravis)) AND (immune
checkpoint) NOT (review)} and {((lambert-eaton myasthenic
syndrome) OR (lambert eaton myasthenic syndrome)) AND
(immune checkpoint) NOT (review)}, denoted as A1 and
A2, respectively, were screened according to defined inclusion
and exclusion criteria, described in Supplementary material.
The search algorithm {(immune checkpoint inhibitors) AND
((adverse events) OR (side effects)) NOT (review)} was used
to define ICIs commonly associated with adverse events, after
which search algorithms for MG or LEMS and individual ICIs
were written. Species-specific search algorithms were written
for MG or LEMS and ICIs, including humans, mice, rats, dogs,
cats, pigs, horses, cattle, sheep, guinea pigs, baboons, macaques,
chimpanzees, chickens, and fish, to ensure that all relevant
literature was captured in a manner agonistic of species. Only
one paper discussing a non-human species was captured (43).
Reference lists of relevant papers and reviews were also screened
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FIGURE 1

PRISMA flow diagram: curation of records. Papers captured by search algorithms in PubMed (n = 786) and additional records identified through

reference lists (n = 4) were manually curated to remove duplicates (n = 276). The titles and abstracts of these papers were screened to assess

whether they met the inclusion and exclusion criteria, yielding a total of 232 papers. These full-text articles were then assessed for eligibility,

excluding 138 for various reasons. Ninety-four papers were included in the qualitative synthesis.

in order to identify any papers that were not captured by the
search algorithms.

Curation of records

Records were reviewed following the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA)
guidelines (44). Strict observation of the well-defined inclusion
and exclusion criteria avoided disputes over which papers to
include in the study. All decisions on data accrual were made
in a collaborative manner involving CS and OAG; remaining
coauthors had access to the entire dataset and were involved in
open discussions as data were collected. Multiple opportunities
were presented to coauthors during data analysis for discussion
of disparate viewpoints, of which none arose.

A total of 786 papers were captured by the search strings A1
and A2, and ICI and species-specific searches (Figure 1). After
the removal of duplicates, 276 papers remained. A screening
of titles and abstracts removed 44 papers, including irrelevant
records and those with pre-existing MG or autoantibodies and
lack of primary data. Of the remaining papers, 138 were excluded
due to a lack of a definitive diagnosis of MG or LEMS (n
= 61), no MG/LEMS or ICI administration reported (n =

15), a positive AChR titer or diagnosis of MG prior to ICI
administration (n = 16), a lack of primary data reported (n =

43), and/or the administration of therapeutic agents other than
ICIs (n = 3). The reference lists of records caught by the search
strings and reviews were interrogated to identify any papers not
captured by the algorithms. Four papers were retrieved, yielding
a total of 94 papers for qualitative analysis, including 93 human
and one murine study.

Ethics statement

This systematic review used historical data derived from
anonymized patients included in published studies subject to
ethical review, precluding the need for de novo ethical review
or institutional review board approval in this project. No
primary samples or prospective data were collected from current
human patients.

Quality assessment

A published assessment instrument called the integrated
metric of evidence (IME) designed by Garden et al. was applied
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to each record (45). This metric assesses study design (D),
the quality of the paper (Q), the likelihood of a causal link
between the ICI and MG or LEMS (L), the confidence of MG
or LEMS diagnosis (I), and the number of patients treated
with the ICI(s) (N). The IME value was calculated as a sum
of normalized scores for each quantity, weighing each value
according to its perceived relevance to evidence rating, using
the formula:

IME = 2D+ Q+ 2L+ I + N.

Each value had a maximum normalized score of 1; therefore,
the total maximum IME value was 7. When one value of
an individual paper could have multiple scorings, the most
parsimonious scores were assigned. Threshold IME values were
calculated to categorize associations between ICIs and the onset
of MG as being of negligible, low, intermediate, and high
evidence. The threshold between negligible and low evidence
was taken to be a hypothetical retrospective case report, with a
D score of 2, Q score of 14, L and I scores of 2, and N score of
1 (IME = 2.76). The threshold between low and intermediate
evidence was taken to be a hypothetical cross-sectional study
with a D score of 3, Q score of 24, L score of 3, I score of 2,
and N score of 2 (IME = 3.96). Lastly, the threshold between
intermediate and high evidence was taken to be a hypothetical
prospective cohort/case-control study with a D score of 5, Q
score of 28, L and I scores of 3, and N score of 2 (IME
= 4.96).

Ten references were selected at random from the
pool of papers collected by the search strings, after the
removal of duplicates and prior to inclusion/exclusion
screening. These papers were independently scored by
OAG and CS. The majority of these papers all yielded
low level evidence. In order to accommodate papers
across the spectrum of evidence, five papers hypothesized
to be of higher evidence were specifically selected and
independently reviewed by OAG and CS in similar
fashion. Agreement between reviewers was evaluated using
intraclass correlation.

Diagnosis of MG and LEMS

The diagnosis of MG or LEMS was made based upon
clinical signs and physical examination. Many patients
experiencing MG symptoms first complain of muscle
weakness and fatigue, after which a serological test is
often performed. The detection of anti-AChR or anti-
MuSK by cell-based assay (CBA), radioimmunoassay (RIA),
or enzyme-linked immunoassay (ELISA) was considered
diagnostic for MG, while the presence of anti-VGCC
autoantibodies was diagnostic for LEMS (46, 47). Since
some MG patients are classified as “triple seronegative,”

meaning that neither anti-AChR nor anti-MuSK antibodies are
detected, repetitive nerve stimulation (RNS) and single-fiber
electromyography (SFEMG) compatible with a postsynaptic
neuromuscular junction disorder or the presence of anti-
striational antibodies was considered supportive of MG (48–50)
(Figure 2).

Analysis and figures

All analyses were carried out in R (51). Graphs were created
using the packages<lattice> and<latticeExtra> (52, 53). Inter-
observer correlation coefficient was calculated using the ICC
package (54).

Statistical analysis

A Kruskal-Wallis test was performed to investigate the
statistical significance between ICI classes and between
individual ICI treatment.

Results

Patient data

Out of 220 patients described by papers in this study,
information on histological type treated, prior therapy,
and ICI administered for 92 was recorded and thus
analyzed (Supplementary Table 1). Of these 92 patients,
29 were treated for melanoma, 16 for non-small cell lung
cancer (NSCLC), three for small cell lung cancer (SCLC),
16 for renal/urothelial/hepatocellular carcinoma, six for
squamous cell carcinoma (SCC), four for thymoma, and
18 for other/unspecified malignancies. Thirty-two patients
underwent surgery, 37 chemotherapy, and 18 radiation, either
in combination or sole treatment. Six patients received ICIs as
first line therapy, and 25 did not report prior therapy.

Paraneoplastic MG/LEMS is a known phenomenon in
thymic cancer and SCLC, and was thus considered a
confounding variable in these cancer types (11, 55). However,
only eight of 92 patients included in our analysis suffered
thymic cancer or SCLC in association with MG or LEMS,
yielding a negligible impact on overall study conclusions
(Supplementary Table 1). In the patients with malignancies
other than thymic cancer and SCLC, the probability of
paraneoplastic MG/LEMS would have been very low based upon
the prevailing literature, arguing against a significant impact
on study conclusions. Furthermore, there was no discernible
correlation between histological type and MG/LEMS onset in
our study cohort.
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FIGURE 2

Diagnostic algorithm for MG and LEMS. Having presented with muscle weakness, the patient would be tested for AChR, anti-MuSK, or

anti-VGCC antibodies. Detectable levels of such antibodies are diagnostic for MG and LEMS, respectively. If levels of these antibodies are not

detectable, single-fiber electromyography, repetitive nerve stimulation, and/or the detection of anti-striational antibodies would support a

diagnosis MG, but not LEMS.

Reliability of scoring system

To ensure that the qualitative assessment of papers was
independently repeatable between reviewers, 10 papers were
selected from the initial pool using a random number generator.
Most of these papers yielded negligible to low evidence. Five
papers hypothesized to be of higher evidence were therefore
targeted to ensure assessment of repeatability across the
spectrum of evidence. All 15 papers were scored independently
by OAG and CS. The intraclass correlation coefficient for
the dataset was 0.99. Furthermore, the IME values of articles
assigned by both reviewers fell within 0.2 of each other,
confirming excellent reliability of the scoring system (Figure 3).

Immune checkpoint inhibitors as an
etiological trigger

In total, 94 manuscripts were reviewed (43, 56–147). IME
values were calculated for each paper by year of publication
(Figure 4). In addition, IME values were computed for three

classes of ICI (anti-PD-1, anti-PD-L1, and anti-CTLA-4) and
nine individual ICIs (nivolumab, pembrolizumab, cemiplimab,
toripalimab, durvalumab, atezolizumab, avelumab, ipilimumab,
and tremelimumab) as well as combination therapies (Figures 5,
6). Because most papers directly correlating ICIs with MG or
LEMS were retrospective case reports or case series, the median
IME values for all categories fell within the low to intermediate
range (median = 2.88). Many papers described a link between
ICIs and general irAEs instead of focusing on MG or LEMS
specifically. In addition, most papers described a correlation of
multiple monotherapies and combination therapies with irAEs.
Statements are provided for each class of ICI as well as the
individual ICIs and combination therapies.

Anti-PD-1

Of the papers describing a link between the administration
of anti-PD-1 drugs and the onset of MG/LEMS, 43 manuscripts
mentioned nivolumab, 45 mentioned pembrolizumab,
three mentioned cemiplimab, one mentioned toripalimab,

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.1004810
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Seligman et al. 10.3389/fneur.2022.1004810

and 14 mentioned combination therapies involving an
anti-PD-1 drug. The median IME values for nivolumab,
pembrolizumab, cemiplimab, and toripalimab association
were 2.88, 2.88, 3.10, and 3.00, respectively, while the

FIGURE 3

Agreement of integrated metric of evidence (IME) values for 10

randomized and five higher evidence publications. Ten papers

from the pool of included records were selected at random and

five papers hypothesized to be of higher evidence were selected

in targeted fashion. These 15 papers were individually assessed

by two reviewers, blinded to each other’s scores. The

correlation between IME values was 0.99, demonstrating

excellent reliability of the scoring system. Horizontal dotted

lines indicate the threshold IME values between negligible and

low (2.76), low and intermediate (3.96), and intermediate and

high (4.96) levels of evidence.

median IME for papers mentioning combination therapy
using at least one anti-PD-1 drug was 2.86. Overall, the
IME values ranged from 2.05 to 4.21, with a median
of 2.88 (Figures 5, 6). These data suggest low evidence
for a causal link between anti-PD-1 administration
and MG/LEMS.

Anti-PD-L1

Six papers mentioned the administration of durvalumab,
seven mentioned atezolizumab, and two mentioned avelumab
in association with the onset of MG/LEMS. The median
IME values for durvalumab, atezolizumab, and avelumab
administration were 3.14, 3.00, and 3.73, respectively. One
paper mentioned the administration of at least one anti-PD-
L1 drug in combination therapy, of which the IME value
was 4.14. The IME values ranged from 2.55 to 4.14, with
a median of 3.41 (Figures 5, 6). These data suggest low
evidence for a causal link between anti-PD-L1 administration
and MG/LEMS.

Anti-CTLA-4

Twenty-one manuscripts mentioned the administration of
ipilimumab, while two papers mentioned tremelimumab. The
median IME values for papers describing ipilimumab and
tremelimumab administration were 2.88 and 3.78, respectively.

FIGURE 4

Integrated metric of evidence (IME) values for immune checkpoint inhibitors. Horizontal dotted lines indicate the threshold IME values between

negligible and low (2.76), low and intermediate (3.96), and intermediate and high (4.96) levels of evidence. The median IME value was 2.88 (range

2.05–6.61). The sole prospective, blinded, randomized control trial is represented by a blue circle. Papers excluded from formal analysis but

considered in our qualitative review are represented by a red circle.
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FIGURE 5

Integrated metric of evidence (IME) values for class of ICI. The

median IME values were 2.88, 3.41, and 2.93 for anti-PD-1,

anti-PD-L1, and anti-CTLA-4, respectively.

In addition, 15 papers mentioned an association between
combination therapy involving at least one anti-CTLA-4
drug and the onset of MG/LEMS, of which the median
IME value was 2.88. Overall, the median IME values for
anti-CTLA-4 administration ranged from 2.38 to 6.61, with
a median of 2.93. Interestingly, the only manuscript that
described induction of experimental autoimmune MG (EAMG)
explored possible mechanisms in mice and was thus able to
demonstrate a high level of evidence for anti-CTLA-4 antibodies
(Figures 5, 6) (43). Overall, this dataset demonstrated low
evidence for a causal link between anti-CTLA-4 administration
and MG/LEMS.

Combination therapy

Overall, 20 of the 94 manuscripts mentioned at least
one type of combination therapy with or without ICI
monotherapy. The most common combination was nivolumab
and ipilimumab, mentioned in 13 papers. Fourteen papers
mentioned combination therapy with at least one anti-PD-1
drug (median IME value= 2.86), one with at least one anti-PD-
L1 drug (IME value= 4.14), and 15 with at least one anti-CTLA-
4 drug (median IME value = 2.88; Figure 6). These data suggest
low and intermediate evidence for a causal link between anti-
PD-1, anti-CTLA-4, and anti-PD-L1 combination therapies and
MG/LEMS onset.

Statistical significance

There was no significant difference between the IME
values of ICI classes, of individual ICIs, or of combination
therapies (Figures 5, 6). These data suggest no difference in the
associations between the administration of distinct ICIs and the
onset of MG/LEMS in the evaluated dataset.

Discussion

ICIs are commonly used to treat cancer. Tumors activate
immune checkpoints such as CTLA-4 and PD-1 to inhibit anti-
tumor T cell responses (148, 149). ICIs block these checkpoints,
thus reversing the attenuation of T cell anti-tumor defense
mechanisms (150, 151). While these drugs help in blocking the
growth and metastasis of cancer, their inhibition of the immune
system can also cause uncontrolled irAEs such as MG and
LEMS, prototypical antibody-mediated autoimmune diseases
(19). Because ICIs are widely used, understanding their risks to
patients, especially those predisposed to autoimmune disease,
is important. Owing to the phenomenon of paraneoplastic
autoimmune disease, some cancer patients, such as those with
thymic cancer or SCLC, could potentially be at increased
risk of MG/LEMS with ICI administration (152, 153). For
these patients, particular caution may be warranted since
ICI administration may trigger the clinical manifestation of
autoimmune diseases such as MG and LEMS.

Numerous reviews and meta-analyses have been conducted
to elucidate the safety of ICIs. Hottinger outlines the many
possible, albeit rare, neurological irAEs known to be associated
with ICI administration, highlighting the lack of guidelines
available to identify those at risk of developing irAEs (20).
In a 2022 meta-analysis, Farooq et al. describe the increased
risk of neurological adverse events with the use of ICIs
compared to controls, but the ICIs presented less of a risk than
chemotherapies (21). As such, while the role of ICIs in irAEs
has been investigated, a thorough analysis of their potential
role in MG and LEMS has not been undertaken to the best of
our knowledge. In order to address this unmet need, we have
conducted a systematic review of the literature to investigate the
potential role of ICIs in MG/LEMS.

Most the papers included in our qualitative analysis yield
a low to intermediate level of evidence in support of a causal
link. However, we suggest that this lack of cogent evidence
stems from the design of the papers themselves. Many of the
studies reviewed were case reports or case series, intrinsically
unable to provide convincing evidence. There was a noticeable
lack of mechanistic studies that could present higher levels
of evidence by virtue of study design. The sole prospective,
blinded, randomized control trial that met our inclusion criteria,
a paper in which EAMG was induced in mice, yielded an IME
value of 6.61, demonstrating high evidence for a causal link
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FIGURE 6

Integrated metric of evidence (IME) values for specific ICIs. The median IME values were 2.88, 2.88, 3.10, 3.00, 3.14, 3.00, 3.73, 2.88, and 3.78 for

nivolumab, pembrolizumab, cemiplimab, toripalimab, durvalumab, atezolizumab, avelumab, ipilimumab, and tremelimumab, respectively. For

combination therapy/other, other single-agent is represented by a square, nivolumab + ipilimumab by an up-pointing triangle, durvalumab +

tremelimumab by a diamond, and other/non-specified combination by a down-pointing triangle.

(Figure 4). This observation suggests that if more mechanistic
studies had been conducted and thus included in our analysis,
the median IME value of the dataset would demonstrate higher
levels of evidence. While the phenomenon of paraneoplastic
autoimmune disease renders it difficult to distinguish between
MG/LEMS as paraneoplastic in origin or a consequence of ICI
administration in specific individuals, it poses limited relevance
in this study since evidence supporting a causal link was lacking;
“false positives” were not observed. However, future studies
must account for the phenomenon of paraneoplastic MG/LEMS
as a potential confounding variable, especially for patients with
thymic cancer or SCLC.

Some of the larger studies sourced by our literature search
failed to satisfy our inclusion criteria and were therefore
excluded from formal analysis but were considered in our
qualitative review in order to maximize information derived
from the dataset (Figure 4). These studies did not specify the
methods of MG/LEMS diagnosis, yet demonstrated some of the
attributes necessary for a study to yield strong evidence. Two
such papers describe multicenter, open-label phase 1/2 and 1b
trials, yielding high scores for quality of study design scores
(154, 155). While these studies did not specifically investigate
the role of ICIs in MG/LEMS, they demonstrate the rigor of
study design necessary for future work specifically focusing on
these autoimmune diseases. Six of the papers describe large-scale

database studies (156–161), offering the power of large patient
populations in drawing conclusions. While the IME values of
two of these papers would have fallen in the low to intermediate
evidence range when given the most parsimonious I value of
1 (IME = 3.44. 3.85), the other four would have fallen in
the intermediate to high range (IME = 4.09, 4.43, 4.43, 4.43).
These eight papers thus highlight the potential value of large-
scale patient populations, especially when aligned with uniform
assessment and diagnostic criteria for MG/LEMS.

In recent years, the administration of ICIs has become
a mainstream treatment for cancer (162, 163). Physicians
must therefore understand the risks associated with their
administration to vulnerable patients. Although irAEs
associated with ICIs are rare, the possibility of developing
potentially fatal autoimmune diseases such as MG and LEMS
warrants future study. While our data suggest no significant
differences between ICI classes or individual ICIs in the
development of MG/LEMS, future studies would also yield
more conclusive inferences on whether some drugs have
a greater propensity to induce autoimmune diseases than
others. We propose that there is a need for mechanistic and
large-scale prospective studies investigating the etiological
role of ICIs in MG/LEMS, an important prerequisite in better
understanding the risk of these diseases with increasing use of
ICIs in clinical medicine.
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