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Ischemic stroke is a common cerebrovascular disease that seriously a�ects

human health. However, most patients do not practice self-care and cannot

rely on the current clinical treatment for guaranteed functional recovery. Stem

cell transplantation is an emerging treatment studied in various central nervous

system diseases. More importantly, animal studies show that transplantation

of mesenchymal stem cells (MSCs) can alleviate neurological deficits and

bring hope to patients su�ering from ischemic stroke. This paper reviews

the biological characteristics of MSCs and discusses the mechanism and

progression of MSC transplantation to provide new therapeutic directions for

ischemic stroke.
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Introduction

Stroke is a common neurological disease affecting human survival and health; it is

characterized by high morbidity, mortality, disability, and a high recurrence rate (1).

Statistically, more than 13.7 million people suffer from strokes worldwide annually, and

5.8 million die (2). More remarkable, ischemic stroke incidence is increasing yearly

due to the aging population and other reasons. Therefore, ischemic stroke has received

increasing attention as the most common type (accounting for∼70% of strokes) (3).

Ischemic stroke is a pathological process caused by a blood circulatory disorder

in the brain that leads to neuronal cell death or softening of the brain tissue. As a

terminally differentiated cell, the death of a large number of neuronal cells leads to

irreversible damage to brain tissue. Early recovery of blood volume in the ischemic

area and reduction of nerve cell death are the key points in the treatment of ischemic

stroke. However, treatments such as thrombolysis andmechanical thrombectomy benefit

only 5% of patients because of narrow therapeutic windows and severe treatment

complications (4–6). Thus, further research for safer and more effective ways is still

warranted (7).
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Stem cells are primitive and unspecialized cells that can

develop into diverse specialized cells through mitosis and

differentiation and have the potential to regenerate a variety of

tissues and organs (8). Extensive preclinical evidence suggests

that stem cell transplantation therapy can alleviate brain tissue

damage by directional proliferation and differentiation of nerve

cells and other pathways. A large number of abnormal nerve

cell deaths can occur after an ischemic stroke, and stem cell

transplantation will be a viable treatment to relieve neurological

deficits in the future (9).

Various types of stem cells have been studied in animal

models or clinical studies, such as neural progenitor cells

(NPC), mesenchymal stem cells (MSC), endothelial progenitor

cells (EPC), and human umbilical cord blood cells (HUCBCs)

(10). However, these kinds of stem cells all have limitations

in therapeutic effects. For example, EPC therapy faces ethical

problems (11). NPCs are tricky to harvest and have a low

proliferation rate (12). The treatment of engineered cells, such

as induced pluripotent stem cells (iPSC), NT2N cells, CTX0E3,

and SB623, is hampered by technology (13, 14). Nevertheless, it

is worth noting that MSC cells have become the preferred cells

for treating ischemic stroke due to their characteristics, such as

high availability, efficient isolating and culturing, high immune

tolerance, and fewer treatment complications. Furthermore,

MSC cell therapy is not contrary to social ethics (15, 16).

In this paper, we analyze the biological characteristics of

MSCs and the neuroprotective mechanism in treating ischemic

stroke with the hope of providing new therapeutic directions for

ischemic stroke.

Overview of MSCs

MSCs were first described as spindle-bone marrow stromal

cells adhered to plastic by Friedenstein and his colleagues in

1970 (17). Four years later, they found that MSCs can form

colonies outside the body that adhere to the wall like fibroblasts.

Hence, MSCs are also known as cluster unit fibroblasts (CFU-

Fs) (18). In 1991, Caplan coined the term “mesenchymal stem

cells” and predicted that these mesodermally derived cells

would represent the main arsenal of autologous therapies for

regenerative purposes (19). With their development in recent

decades, MSCs have become the most widely studied stem cell

population. They are widely used in clinical trials and/or the

treatment of various diseases, especially neurological diseases

(20, 21).

MSCs were isolated from bone marrow for the first time.

MSCs have previously been isolated from a variety of tissues,

such as the lung, liver, kidney, placenta, fallopian tubes,

endometrial polyps, adipose tissue, dental pulp, salivary glands,

inferior turbinate, umbilical cord blood, menstrual blood, and

other tissues (22, 23). They are plastic-adherent and can

express mesenchymal markers, including CD90, CD105, CD73,

and others, but cannot express CD11b, CD14, CD19, CD34,

CD45, and human leukocyte antigen (HLA)-DR (24). MSCs

can be harvested from different tissues, and various donor

characteristics restrict the surface markers, quality, and isolated

numbers of MSCs. Currently, the most frequently reported

sources of MSCs utilized in clinical trials are the bone marrow,

adipose tissue, and umbilical cord. MSCs obtained from adipose

tissue (AD-MSCs) can express CD49d and produce more HGF

and VEGF than bone marrow-derived stem cells (BM-MSCs)

(25). Compared with bone marrow-derived stem cells, the

number of cells obtained from 1 g of fat tissue may be 500

times greater than that of the same weight of bone marrow

(26). However, BM-MSCs are safer than AD-MSCs because

they can promote the proliferation of existing cancer cells,

especially breast cancer (27). Both BM-MSCs and AD-MSCs

have significant neurotrophic potential to stimulate neurite

growth in DRG-neurons despite different growth factors, which

further supports the feasibility of MSC-based stroke treatment

(28). Recent investigations into the transplantation of human

umbilical cord mesenchymal stem cells (hUC-MSCs)in stroke

models have displayed favorable results, including a reduction

in infarct size, improved functional recovery, and increased

expression of several neuroprotective factors (including VEGF

and BDNF) (29). Yet, their isolation can be difficult (30). MSCs

from other sources, such as canine-derivedMSCs (cMSCs), have

not obtained sufficient clinical evidence and cannot be directly

applied (31) (Table 1).

MSCs can self-renew and show polymorphic differentiation

(41). They can differentiate into mesoderm cells (described

above), endoderm (smooth muscle cells), and ectoderm

(neurons) cells under certain conditions (42), which can

promote the repair of various damaged tissues (41). Neural

regeneration, including neurogenesis, angiogenesis, and

synaptic plasticity, is crucial for functional recovery after a

stroke. Because MSCs have the characteristics of plasticity,

multidirectional differentiation, immunomodulation, and anti-

inflammatory, they have the potential to participate in brain

regeneration, which can promote tissue repair after ischemic

stroke (Figure 1) (43).

The role and research progress of
MSC transplantation in the
treatment of ischemic stroke

Since Azizi et al. published the first report on the

transplantation of human BM-MSCs into the rat brain

in 1998, an increasing number of studies on treating

neurological diseases by MSC transplantation have been

conducted. Moreover, MSC transplantation therapy is gradually

shifting from laboratory to clinical therapy. Successful clinical

studies demonstrate the clinical transformation of MSC

transplantation in treating ischemic stroke. Researchers have
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TABLE 1 Advantages and disadvantages of MSCs from di�erent sources.

Type BM-MSCs AD-MSCs UCB-MSCs

Advantages 1. Powerful

immunomodulatory properties;

2. More extensive clinical application

than other stem cells (14).

1. Adequate organizational sources;

2. Stable growth and proliferation

kinetics;

3. Pro-angiogenesis (produce more

HGF and VEGF) (32).

1. Easily and safely collected by UCB

banks (a non-invasive collection

procedure with low immunogenicity);

2. High proliferative rates, enhanced

stem cell capacity, and delayed

senescence (33);

3. Maintain multipotency for longer

periods (34).

Limitations 1. The extraction process is often

accompanied by pain and other

adverse reactions;

2. Marrow is quite low and decreases

gradually with age (35).

1. It can promote the proliferation of

existing cancer cells, especially breast

cancer (36).

1. Difficult to isolate (37);

2. Efficacy may be limited by the route

of administration (38).

The main clinical application Organ transplantation; Hematologic

malignancies; Graft-vs.-host-disease

(GVHD) (39).

Auto-immune diseases (such as systemic

lupus erythematosus, systemic sclerosis,

scleroderma, and Crohn’s disease) (39).

Hematopoietic diseases (39).

Commonalities 1. Can adherence to plastic;

2. Can express different markers, including

CD90, CD105, CD73, and others, but not

CD11b, CD14, CD19, CD34, CD45,

and HLA-DR;

3. Multipotent differentiation potential (40);

4. Have a variety of mechanisms to rescue the

damaged tissues.

BMSCs, bone marrow-derived MSCs; ADMSCs, adipose tissue-derived MSCs; UC-MSCs: umbilical cord-derived mesenchymal stem cells; HGF, hepatocyte growth factor; VEGF, vascular

endothelial growth factor; and CD, cluster of differentiation.

adopted various methods (intravenous, artery, and intrathecal

injection) to administer MSCs to patients with ischemic stroke.

They have focused on the safety, feasibility, and short-term

effectiveness of MSCs in treating ischemic stroke. This section

summarizes several clinical trials to explore the feasibility of

MSCs in treating patients with ischemic stroke.

Plentiful preclinical studies of MSC
transplantation therapy in ischemic
stroke provide a theoretical basis for
clinical practice

Medication, rehabilitation training, and physical union

therapy have not been effective as experimental treatments

for ischemic stroke. Except for thrombolysis and mechanical

thrombectomy, no effective medications or procedures

have yet been developed. In this situation, new therapeutic

strategies using multiple mechanisms are sought, with MSC

transplantation being one of them.

In the preclinical studies, researchers explore different

sources of MSCs, feasibility, security, and specific mechanisms

of MSC-based therapy. First, using in vitro models, they isolate

MSCs from various tissues and demonstrate cell differentiation,

neuroprotection, neurogenesis, and angiogenesis. In in vivo

models, MSCs are injected into animals by different pathways.

Researchers demonstrate that MSC transplantation has a

potential therapeutic activity that can repair damaged brain

tissue, and it seems feasible and secure (summarized in Table 2).

Model in vitro

The in vitro propagation of MSCs is a three-step process:

Extracted from various tissues, MSCs are separated and obtained

using density gradient centrifugation digesting culture before

being cultured in a plastic cell tissue culture bottle for 3–5 days

for further expansion. These steps are then repeated to expand

adhered MSCs (63). The following are detailed procedures: To

begin, isolate MSCs from multiple tissues such as bone, adipose

tissue, tooth tissue, and others using Percoll or Ficoll density

gradient centrifugation. Second, rinse MSCs with buffer once to

eliminate contaminants before cultivation in 10% fetal bovine
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FIGURE 1

Mechanism of MSC therapy.

serum (FBS) or FBS substitutes, and incubate them in flasks at 37
◦C in a humidified 5% CO2 incubator for 2 days. Non-adherent

cells are removed by replacing the medium with a fresh one.

Subsequently, the attached MSCs proliferate for 2–3 weeks with

regular medium change. When the cells have grown to cover

about 80% of the flask, it is critical to separate them and allow

them to proliferate continually (63).

At present, researchers agree on the multi-lineage

differentiation and transplantation potential of MSCs to replace

lost tissue after ischemic stroke. When these isolated MSCs

are treated with corresponding growth factors or induction

medium, they can differentiate into various cell types from

different blastoderms (64, 65). These differentiated neuron cells

also have functional activity. For example, electrophysiological

measurements show that the differentiated cells have voltage-

gated sodium and potassium currents, which can be reversibly

blocked by tetrodotoxin and tetraethylammonium, respectively

(6, 9). However, we need more evidence to prove whether the

differentiated cells can fire repetitive action potentials (64).

In addition, MSCs have great neuroprotective effects and

promote neurite outgrowth in vitro. Liu et al. claim that BM-

MSCs can promote the survival of oxygen-glucose deprivation

(OGD) injured neurons, promote axonal outgrowth, and

upregulate the expression of GAP-43 when they are cocultured

for 48 h with neurons following OGD injury (66). BM-MSCs can

also stimulate neurite outgrowth of DRG neurons (67). When

hippocampal slices or cortical neurons are cocultured with

hMSCs or MSC-derived SB623 cells separated by a semi-porous

membrane or with MSC- or SB623 cell-conditioned medium

following OGD, neural cell death or damage is decreased.

Moreover, 11 neurotrophic factors are identified as secreted by

MSCs and/or SB623 cells, and most of them are potentially

beneficial to neural tissue following an ischemic insult (68).

Furthermore, BM-MSCs from normal healthy and cerebral

ischemia rats increase neuronal survival and connectivity in

glial-neuron mixed cultures (69). These reports support the fact

that MSCs have neuroprotective effects and stimulate neurite

development in vitro.

Lastly, the ability of MSCs to stimulate angiogenesis,

participate in vascularization, and re-establish a blood supply is

evaluated in in vitromodels. It is also the fundamental process of

tissue repair (70). In in vitromodels, MSCs can differentiate into

endothelial lineage cells to protect ECs against hypoxia-induced

cell death (71), promote the formation of endothelial rings (65),

improve the paracrine activity of angiogenic growth factors and

EC migration, and form mature vascular tissue (70). Hypoxic

preconditioning enhances the pro-angiogenic effects of MSCs

by increasing the expression of angiogenic growth factors and

boosting the proliferation and migration of ECs (72).

Thus, MSCs show great promise in vitro, including the

potential for cell differentiation, neuroprotection, neurogenesis,

and pro-angiogenesis. Therefore, several studies have ulteriorly

transplanted MSCs into animal models of ischemic stroke and

evaluated the outcomes as discussed below.

Model in vivo

In in vivo studies, researchers focus more on the

effectiveness, including the neuroprotection, immune

regulation, angiogenesis, neurogenesis, and other potential

of MSC transplantation, as well as the feasibility and security.

The commonly used transplantation pathways are stereotactic

administration (intrastriatum and intraventricular), systemic

administration (intra-vein IV, intra-arterial IA), and other

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.1000777
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhou et al. 10.3389/fneur.2022.1000777

TABLE 2 Preclinical studies of MSCs for the treatment of ischemic stroke.

Cell sources Route Time Dosage Outcome References

hATSCs I.C 1-day after MCAO 1× 106 cells Improved behavior; neural differentiation. (44)

hMSCs I.C 1-week after MCAO 75,000 cells Improved behavior; neural differentiation. (45)

HUMSCs I.C 1-day after MCAO 5× 105 cells Reduces the area of infarction, angiogenesis;

improved behavior; neural differentiation.

(46, 47)

hMSCs I.C 3-days after MCAO 5× 105 cells Immune modulatory; endogenous neurogenesis. (48)

rBMSCs I.C 1-day after MCAO 1× 105 cells Neurological function improved; reduced infarct

area; decreased amount of apoptosis

(49)

hBMSCs I.V 60 days post-stroke, 4× 106 cells Reduce infarct area; improve systemic

inflammatory response;

(50)

eMSCs I.V 1-day after MCAO 20× 106 cells Improved behavior; neural and endothelial cell

differentiation; reduced infarct area.

(51)

B10 -hMSCs I.V 1-day after MCAO 3× 106 cells Improved behavior; neural cell differentiation;

reduced infarct area; neurotrophic factors and

cytokines produced.

(52)

HUMSCs I.V 2-day after MCAO Low-dose (1× 104 cells)

and high-dose (1× 105

cells)

Immunomodulation; improved behavior; high

dose (1× 105) of UC-MSCs improved functional

outcomes.

(53)

rBMSCs I.V 1 h after dMCAO 1× 106 cells Immunomodulation; produce neurotrophic

factors and cytokines.

(54)

rBMSCs I.A 1-day after MCAO 2× 106 cells Improved behavior; axon remodeling;

angiogenesis.

(55)

rBMSCs I.A 1, 6, 24, 48 h after MCAO 1× 106 cells Improved behavior; reduced infarct area; 24 h after

MCAOmay be optimal timing for stroke.

(56)

hBMSCs I.A 1-day after MCAO 1× 106 cells Improved behavior; reduced infarct area;

Methylation of ANP and BDNF promoter further

decreased, which showed a significant increase in

ANP and BDNF expression.

(57)

hBMSCs I.A 1, 4, or 7 days after

MCAO

1× 106 cells Neuroprotection regulates reactive astrocytes and

angiogenesis; these effects are timing-dependent.

(58)

Autologous ADMSCs I.A Three days after MCAO 2× 106 cells Improved behavior; attenuated astroglial

reactivity; inhibited cell apoptosis and promoted

cellular proliferation

(59)

rBMSCs Intranasal Three days after MCAO 1× 105 cells Improved behavior; reduced infarct area;

HP-rBMSCs optimize the therapeutic efficacy

(60)

rBMSC Intranasal Three days after MCAO 1× 106 cells Reduce infarct area; reduces motor deficits;

endogenous neurogenesis;

(61)

rBMSCs Intranasal 6 h (first), and 3 days

(second) after neonatal

Stroke model

1× 106 cells Improved behavior; reduced infarct area;

angiogenesis and neurogenesis.

(62)

I.C, intracranial administration; I.V, intravenous infusion; I.A, artery infusion; hATSCs, human adipose tissue stromal cells; rBMSCs, rat BMSCs; HP-rBMSCs, hypoxic pretreatment

rBMSC; HUMSCs, human umbilical mesenchymal stem cells; BAO, basilar artery occlusion; and hBMSCs, human bone marrow stromal cells.

routes used, such as the intranasal route (73). Peripheral

transplantation may be more appropriate for acute stroke

patients because the BBB is permeable in this period, and stem

cells are easy to pass through, whereas direct stereotaxic cell

administration seems appropriate for fixed, chronic stroke

patients (74).

Stereotactic transplantation (intracerebral and

intraventricular), also called intracranial transplantation, is

used to transplant MSCs into various brain parts. In particular,

MSCs can be precisely administered to a selected location by

intracerebral (IC), and intraventricular (IV) techniques, which

are the earliest transplantation means used in experiments.
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Moreover, more MSCs can reach the target sites of brain injury

in this way without going through the whole body’s metabolic

cycle (75). Zhao et al. pioneer intracranial transplantation of

MSCs and find that MSCs migrate toward the infarct region

of the brain and can survive in the host brain and promote

functional recovery (45). Transplanted hMSCs can differentiate

into mature neurons and gliacytes, which are observed at the

grafting site and along the migration pathways (47). Rats are

given two injections of grafted HMSCs into the infarct cortex

within 24 h after MCAO, which is shown to substantially

enhance neuronal metabolic activity, facilitate repair of the

infarct cortex, and improve functional outcomes in rats (46). By

expressing neuroprotective and growth-associated cytokines,

intracerebral transplanted MSCs also increase neuronal activity,

decrease cell death, and promote angiogenesis in the infarct

cortex (47). They also modulate the immune response and

produce TGF-, which inhibits MCP-1 secretion and restricts

the infiltration of CD68 + cells into the damaged tissue (48).

When MSCs are injected into the ventricles and cisterns, they

are distributed throughout the brain and spinal cord with

cerebrospinal fluid. It can effectively improve the survival rate of

transplanted MSCs without going through general metabolism.

It is proven that hADSCs can migrate safely into damaged areas

and survive when injected into subarachnoid space through the

superior orbital fissure (76). However, it may have higher risks

due to the invasive procedures and complexity of stereotaxic

procedures, which are unbearable for most clinical patients (54).

Systemic administration (Intra-vein IV, Intra-arterial IA):

To overcome the invasiveness and complexity of stereotaxic

transplantation, researchers find that a microtrauma method

can be achieved. Bone marrow MSCs injected intravenously

or arterially can migrate into the infarct area to promote

neurogenesis and angiogenesis (77), facilitate axonal sprouting

and remyelination (55), attenuate microglia/macrophage

infiltration (69, 78), inhibit gliosis and apoptosis in the ischemic

brain, and reduce infarct volume and improve functional

outcomes in ischemic stroke rats (59). The intravenous route

has advantages such as simplicity, safety, high feasibility,

repeatable operation, high patient acceptance, and small adverse

reactions. Furthermore, the IV MSCs will preferentially migrate

to the spleen (50) and abrogate the systematic inflammation-

plagued secondary cell death. However, IV delivery has the

“first-pass effect” after transplantation; that is, the transplanted

cells are distributed in the liver, lung, spleen, kidney, bone

marrow, thymus, and even skin and tumors on the way.

Thus, only a few transplanted cells reach the lesion site (77).

Therefore, IV delivery needs a large number of cells to be

injected into patients, which may increase potential side

effects and the cost of the treatment (79). As the number

of IA catheter-based interventions depending on stroke

therapy characteristics (such as mechanical thrombectomy and

catheter-directed thrombolysis for patients with penumbra) is

constantly increasing, it seems that IA cell injection is ideally

suited in the specific setting (80, 81). The arterial route has a

high transplantation rate, does not pass through other organs,

reaches the cerebral cortex and peripheries of the lesion directly

and quickly, expresses glial and neuronal markers, and induces

faster improvement of neurological function in animals (56).

However, it may form microemboli and cause new infarctions.

Intra-arterial cell administration at low doses may reduce the

risk of embolic complications and promote functional recovery.

However, more research is still needed to determine the most

effective dosage (82).

Another route: Intranasal administration is a simple,

convenient, and non-invasive delivery method that bypasses the

BBB, directly guides therapeutics to the CNS (83). reaches the

frontal part of the brain within 30mins after administration, and

distributes throughout the whole brain after 3 h (84). Wei et al.

first provided information on intranasal cell delivery for treating

ischemic stroke (60). In the study, hypoxic-preconditioned BM-

MSCs were intranasally delivered 24 h after stroke. The result

shows that BM-MSCs reach the ischemic cortex and deposit

outside vasculatures as early as one and a half hours after

administration, upregulating expressions of MMP-2, MMP-

9, and the SDF-1 receptor CXCR4, reducing cell death and

infarct volume and improving functional outcomes (60). This

method is effective and minimally invasive and has been used

in the treatment of neonatal stroke. In the neonatal HI model,

intranasal delivery of MSC- and MSC-BDNF significantly

reduces infarct size and gray matter loss, increases Ki67-positive

cell number in the SVZ, enhances endogenous repair processes,

and effectively reduces long-term functional impairment (61).

In the perinatal brain injury (PBI) model, MSC-exosomes

reduce gray and white matter injuries and improve functional

recovery (84).

Additionally, intranasally administered BM-MSCs improve

local cerebral blood flow in the ischemic cortex after a neonatal

stroke and significantly decrease infarct size and BBB disruption.

They also promote angiogenesis and neurogenesis (62). These

reports indicate that intranasal-delivered BM-MSCs are feasible

and effective, but more research and exploration are still needed.

In order to make cell therapy more viable, it is necessary

to clarify cell migration, viability, and efficient delivery to

target locations after transplantation. In a study by Archana

Mukherjee, the researcher labeled umbilical cord-derived MSCs

with 51Cr (85). After 96 h of being injected into healthy Swiss

mice via the tail vein, retention of activity in the blood and

high uptake of 51Cr in the kidneys were still observed. The rate

and proportion of cells reaching the damaged site vary with

administration. Factors determining cell distribution have not

been fully elucidated. A study by Ilya et al. demonstrated a high

coefficient of determination of up to 30% correlation between

the distribution of IA transplanted MSCs and brain perfusion

(86). The apoptosis of MSCs is the same as normal cells,

which are cleared via the hepatobiliary and renal routes with

time. Biodistribution and imaging studies are desired in animal
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models to disclose more mechanisms. A study by Seungho Lim

and colleagues provides dual-modal stem cell imaging probes

as a new method of labeling human AD-MSCs to realize non-

invasive and precise tracking after transplantation in living

subjects, which will be a forceful tool in the future (87).

Increasingly successful clinical studies
provide evidence for the possibility of
clinical transformation of MSC
transplantation in the treatment of
ischemic stroke

In recent years, clinical trials have focused on the safety,

feasibility, and short-term effectiveness of MSCs in treating

ischemic stroke (9) (summarized in Table 3). Transplantations

of MSCs in human patients began in 1995, with most early

trials focusing on the potential benefits of autologous MSCs

in promoting the engraftment of hematopoietic stem cells in

the setting of hematological malignancy (105). In 2005, the

first randomized case-control clinical trial was conducted to

evaluate the effects of intravenous autologous MSCs on patients

with middle cerebral artery infarction (106). Thirty patients

from 30 to 75 years (n = 5 in the MSCs group and n =

25 in the control group) were randomized to receive 1 ×

108 BM-MSCs intravenously within 7 days of the stroke. It

showed that BM-MSCs could improve functional recovery, and

no adverse events were associated with transplantation during

the 1-year follow-up period. Three cases of ischemic stroke

and one case of hemorrhagic stroke in the territory of the

middle cerebral artery were treated with 2 × 107 umbilical

cord-derived MSCs by a catheter to a near lesion site in 2012

by Jiang et al. (88), and the patients were followed up for 6

months after the procedure. Muscle strength was improved in

two ischemic stroke patients, and there were no adverse events.

Subsequently, in 2014, 8 patients with large cerebral infarction

or anterior arterial infarction were treated with MSCs alone

(intravenous injection of MSCs at 0.5 × 106/kg body weight

four times) or MSCs combined with neural stem/progenitor

cells (NSPCs) (intravenous injection of MSCs at 0.5 × 106/kg

body weight the first time, and then injected three times at

5 × 106/patient MSCs and 6 × 106/patient neural NSPCs)

through the cerebellar bulbar cistern. Except for the occurrence

of slight dizziness and low fever within 2–24 h, there were no

other serious adverse reactions, and levels of disability and daily

living ability improved. The result indicates that the combined

transplantation of NSPCs and MSCs is a safe and feasible

method to improve neural function (93). In 2018, Deng et al.

(96) included 108 patients with IS within 30 to 90 days of

onset and were randomized into an experimental group (n

= 59) and a control group (n = 59). Then allogeneic BM-

MSCs (1× 106 cells/kg body weight) were injected intrathecally

four times a week. All patients underwent a detailed functional

assessment and magnetic resonance imaging before the cell

infusion and at 1-year intervals, then assess its safety and

feasibility. Currently, it is in the phase II experiment. In 2020,

a single-center, open-label, randomized controlled trial enrolled

patients aged 18–70 following moderate-severe ischemic carotid

stroke (National Institutes of Health Stroke Scale, NIHSS>10)

for <2 weeks was conducted. Patients were randomized 2:1

to receive intravenous 1–3 × 108 BM-MSCs (n = 31) or

not (n = 16), with a 2-year follow-up. Researchers found

that the intravenous injection of autologous MSCs was safe

and feasible for treating moderate to severe stroke (100). In

2021, Chung et al. confirmed that intravenous application of

preconditioned autologous MSCs with autologous serum was

feasible and safe for patients with chronic major stroke (101).

A neuroimaging study also showed positive changes in network

reorganization to facilitate motor recovery after stroke (102). A

phase 2, single-center, assessor-blinded randomized controlled

study by Zhe Kang Law and colleagues estimated the safety,

tolerability, and efficacy of intravenous infusion of autologous

MSCs (104). The treatment group (received culture-expanded

autologous BM-MSCs intravenously) and the control group

(received standard medical care) had recovery effects, but there

was no significant difference between them. The 17 patients

were all safe and welltolerated. Consistent with these results,

intravenous injection of autologous MSC administration is safe

and feasible for treating stroke. In 2022, a Phase I open-label

study by Tsung-Lang Chiu adopted autologous adipose-derived

stem cells to treat three chronic stroke patients by stereotactic

implantation, which improved patients in many aspects without

any adverse effects observed (91). Another study by Elena de

Celis-Ruiz also demonstrated the safety of intravenous adipose

tissue-derived mesenchymal stem cell therapy from the first 2

weeks after ischemic stroke to 24 months of follow-up (89, 91).

A first-in-human, open-label intervention study by Lisanne M.

Baak and team used intranasally delivered bonemarrow-derived

allogeneic MSCs for neonates with perinatal arterial ischaemic

stroke (98). All ten enrolled neonates were welltolerated with

the therapy, and no serious adverse events were observed until

3 months of age follow-up.

These clinical trials have tried all of the common modes of

drug delivery, including stereotactic administration, intravenous

injection, and intranasal routes, and patient ages range from

newborn to middle-aged and elderly. The existing results

provide confirmed data for the safety and feasibility of MSC

therapy. However, given the differences in patient population,

cell origins, time of administration, and drug delivery systems, as

well as small sample sizes and lack of randomization and double-

blind control, the interpretation of these results is limited.

Therefore, higher quality randomized clinical trials, including

better phenotypes and larger series, are still necessary to provide

more reliable data to further clarify the safety and efficacy of

MSC-based therapy in cerebrovascular disease.
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TABLE 3 Clinical studies of MSCs for the treatment of ischemic stroke for the past 10 years.

Cell sources Patient population;

the MSCs/control

group;

Route Time Dosage Outcome References

UCMSCs 40–50 years old; Within 3

months of the stroke; Four

male patients; No control

group or blinding.

I.A Within 3 months of the stroke 2× 107 cells. Follow up 6 months;

Improving muscle strength

and increase of mBI score; No

adverse events.

(88)

Allogeneic ADMSCs 60–80 years old; <12 h

of stroke; NIHSS of

8–20 scores 4/13

I.V Within 2 weeks of the stroke 1× 106 cells/kg Follow up 24 months;

improvement of clinical

scores of NIHSS; No adverse

events. No

tumor development

(89, 90)

Allogeneic ADMSCs 65–80 years old; NIHSS of

16–20 scores; Post-stroke

between 6 months and

ten years; 3/3

I.C 1 week after inclusion. 1× 108 cells Follow up six months;

improvement of clinical

scores of NIHSS, Barthel

Index, Berg balance scale,

and F-M; No adverse events.

(91)

Allogeneic AD-MSCs ≥18 years old; NIHSS of 8–20

score (with at least 2 in

sections 5 and 6) Treatment

within four days (±1 day)

from the onset 15/30

I.V Within the first four days

from stroke onset

1× 106 cells/kg Results not released.

(estimated end date is

July 2023.)

(92)

HUMSCs AND hNSPCs 30–85 years old; Three

females and three males;

Acute/subacute and during

stroke sequelae; Three

patients had IV MSCs four

times, and three had

cotransplantations of MSCs

and NSPCs four times.

I.V and I.C Acute/subacute and during

stroke sequelae.

The first group IV MSCs (0.5

× 106/kg) four times; the

second group first IV MSCs

(0.5× 106 /kg) followed three

times by IC MSCs (5×

106/patient) and NSPCs (6×

106/patient) 2.5× 106 , 5.0×

106 , or 10× 106 cells.

Follow up two years; Safe and

feasible; different degrees of

clinical and

functional improvement; No

adverse events.

(93)

Modified BMSCs (SB623

Cells)

Mean age of 61 years old;

NIHSS (SD): 9.44 score;

Within 6 to 60 months

of stroke; 11 females,

seven males; 16/36.

I.C The mean poststroke interval

was 22 months.

2.5× 106 , 5.0× 106 , or 10×

106 cells.

Follow up two years;

Significant improvement of

clinical scores of ESS, NIHSS,

and F-M; No adverse events.

(94, 95)

(Continued)
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TABLE 3 (Continued)

Cell sources Patient population;

the MSCs/control

group;

Route Time Dosage Outcome References

Allogenic BMSCs 18–75 years old; NIHSS of

15–25 score; 30 to 90 days;

59/59.

I.C 30 to 90 days. Four times 1× 106 cells/kg. Results not released. (96)

Allogenic BMSCs ≥18 years old; NIHSS≥6

score; >6 months of stroke;

27 females, nine males; Phase

1 (n= 15), phase 2 (n= 21).

I.V >6 months of stroke. In phase 1 (n= 15), each dose

(0.5, 1.0, and 1.5× 106

cells/kg body weight); phase 2

(n= 21) received 1.5× 106

cells/kg.

Follow up 1 year; Decreasing

of NIHSS/Barthel Index score;

No adverse events.

(97)

Allogenic BMSCs Neonates born at full term

(≥36 weeks of gestation);

MRI-confirmed PAIS in the

middle cerebral artery region;

10/10.

Intranasal Within seven days of

presenting signs of PAIS

One dose of 45–50× 106 cells. Follow up 3 months;

improvements on MRI; No

adverse events. (except for a

mild transient fever without

the need for

clinical intervention.)

(98)

Autologous BMSCs 12 patients (four females,

eight males); NIHSS

between 4–15; Three months

to two years after stroke; 6/6.

I.V 21+7 days after inclusion. 5∼6× 107 cells. Follow up 1 year; Significant

improvement of mBI score;

No adverse events.

(99)

Autologous BMSCs 18–70 years old; NIHSS>10

scores; within 2 weeks

of stroke; 11 females,

22 males; 16/15.

I.V Three weeks after inclusion. Low-dose MSCs (1× 108);

high-dose MSCs (3× 108).

Follow up two years;

Decreasing of NIHSS score;

No adverse events.

(100)

Autologous BMSCs 30–75 years old; NIHSS of

6–21 score; Within 3 months

of the stroke; 39/15.

I.V After being included. 1× 106 cells/kg Follow up two years; feasible

and safe Have an

improvement in leg

motor functionality; No

adverse events.

(101–103)

Autologous BMSCs 30–75 years old; NIHSS of

10–35 score; within two

months of stroke; 9/17.

I.V After being included. 2 million cells/kg Follow up 1 year;

improvement in median

infarct volume; No

adverse events.

(104)

m-NIHSS, motor NIHSS; ESS, European Stroke Scale; F-M, Fugl-Meyer; MRS, Modified Rankin Scale.
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More new ideas for MSC-related
therapies

SB623 cells are a gene-modified derivate of MSCs using

gene transfection with Notch intracellular domain (NICD) and

are subsequently followed by the administration of certain

trophic factors (107). Though the transfected plasmid gets

lost because of the expansion and split of cells, patterns of

DNA methylation and protein expression have been altered.

Compared to hMSCs from the same donors, preclinical studies

showed that SB623 cells had higher secretion of angiogenin,

angiopoietin-2, HB-EGF, and VEGF levels in the conditioned

medium (108). SB623 cells also secrete higher-level factors that

protect cells and enhance MSC migration after a hypoxic injury,

such as DKK-1, IL-6, IL-8, MCP-1, and GM-CSF (68, 109).

These trophic factors play a pivotal role in anti-inflammatory

and immunosuppressive effects.

They are intended for use as an allogeneic cell therapy for

chronic motor deficiency, particularly after a stable stroke, due

to their ability to produce trophic factors, encouraging neuronal

cells’ reconstructive approach. In the completed 2-year phase

1/2a, open-label, a single-arm study by Gary K. Steinberg and his

colleagues, 18 patients with stable, chronic stroke received SB623

cell implantation therapy (94). At 12 months after treatment,

there were manymeaningful developments in measures assessed

for acute and long-term outcomes, like the mean scale scores

of ESS, NIHSS, F-M total score, and F-M motor function

total score. During the 2-year follow-up of treatment-emergent

adverse events (TEAE), all patients experienced at least one

TEAE, although no evidence suggested that it was probably

related to SB623 cell treatment. All patients were generally safe

and welltolerated at 2 years (94, 95).

Some researchers considered that combination cell therapy

for MSCs might interact well with other types of stem cells. In

a study by Seyed et al. BMSCs and neural stem cells (NSCs)

were used together to treat MCAO rats (49). From a theory

basis, MSCs could provide an appropriate microenvironment

for NSCs after stroke via immunomodulation, and anti-

inflammatory and NSCs have a great capacity to differentiate

into neural lineage cells. Luckily, they got satisfactory results: In

the group receiving combination therapy, neurological function

was improved, infarct area was reduced, and they had the lowest

amount of apoptosis. This therapy is effective in the prevention

of strokes as well (110). A study published by Li-yanQiao in 2004

also proved its effectiveness and safety (mentioned on page 11,

line 294) (93). We believe these new therapies can lead to better

post-stroke recovery for patients.

Concluding remarks

The potential of MSCs in the treatment of ischemic

stroke is huge. In this article, we review MSCs in IS

therapy. Although a large number of preclinical and clinical

studies support their safety and restorative effects, each

patient with ischemic stroke has different symptoms and

physiological conditions. Thus, many key issues must be

resolved before the clinical application, like optimal cell

source, dosage, transplantation time window and pathway,

and adverse event monitoring and management. Therefore,

a better understanding of the mechanism of stem cell

treatment of stroke will be required to help solve the above

problems. The data regarding their exact mechanisms of action

remain incompletely clear. The paracrine effects of MSCs,

a crucial part of their therapeutic potential, have powerful

neurotrophic, neuroprotective, angiogenesis, and neurogenesis

activity. However, exploring the interaction between various

soluble cytokines in the ischemic brain is necessary. In

addition, their distinctive immunological profile supports their

clinical application, especially as a product with the use

of allogeneic MSCs. Moreover, the cell replacement and

modulating multicellular fate of MSCs have a significant impact

on the repair of brain tissue and are worth further study in

the future. In conclusion, it seems that MSCs can be utilized

as therapeutic candidates in stroke therapy and may pave

the way for new treatments in the near future to improve

neurologic function, survival, and quality of life for patients with

ischemic stroke.
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