AUTHOR=Hsu Wen-Chi , Lin Yu-Ching , Chuang Hai-Hua , Yeh Kun-Yun , Chan Wing P. , Ro Long-Sun
TITLE=A Muscle Biosignature Differentiating Between Limb-Girdle Muscular Dystrophy and Idiopathic Inflammatory Myopathy on Magnetic Resonance Imaging
JOURNAL=Frontiers in Neurology
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.783095
DOI=10.3389/fneur.2021.783095
ISSN=1664-2295
ABSTRACT=
Background: The overlapping clinical presentations of limb-girdle muscular dystrophy (LGMD) and idiopathic inflammatory myopathy (IIM) make clinical diagnosis challenging. This study provides a comprehensive evaluation of the distributions and characteristics of muscle fat substitution and edema and aims to differentiate those two diseases.
Methods: This retrospective study reviewed magnetic resonance imaging (MRI) of seventeen patients with pathologically proved diagnosis, comprising 11 with LGMD and 6 with IIM. The fat-only and water-only images from a Dixon sequence were used to evaluate muscle fat substitution and edema, respectively. The degrees of muscle fat substitution and edema were graded and compared using the appropriate statistical methods.
Results: In LGMD, more than 50% of patients had high-grade fat substitution in the majority of muscle groups in the thigh and calf. However, <50% of IIM patients had high-grade fat substitution in all muscle groups. Moreover, LGMD patients had significantly higher grade fat substitution than IIM patients in all large muscle groups (p < 0.05). However, there was no significant difference in edema in the majority of muscle groups, except the adductor magnus (p = 0.012) and soleus (p = 0.009) with higher grade edema in IIM. Additionally, all the adductor magnus muscles in LGMD (100%) showed high-grade fat substitution, but none of them showed high-grade edema.
Conclusions: MRI could be a valuable tool to differentiate LGMD from IIM based on the discrepancy in muscle fat substitution, and the adductor magnus muscle could provide a biosignature to categorizing LGMD.