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The potential of multiparametric quantitative neuroimaging has been extensively

discussed as a diagnostic tool in amyotrophic lateral sclerosis (ALS). In the past, the

integration of multimodal, quantitative data into a useful diagnostic classifier was a

major challenge. With recent advances in the field, machine learning in a data driven

approach is a potential solution: neuroimaging biomarkers in ALS are mainly observed

in the cerebral microstructure, with diffusion tensor imaging (DTI) and texture analysis

as promising approaches. We set out to combine these neuroimaging markers as

age-corrected features in amachine learningmodel with a cohort of 502 subjects, divided

into 404 patients with ALS and 98 healthy controls. We calculated a linear support

vector classifier (SVC) which is a very robust model and then verified the results with a

multilayer perceptron (MLP)/neural network. Both classifiers were able to separate ALS

patients from controls with receiver operating characteristic (ROC) curves showing an

area under the curve (AUC) of 0.87–0.88 (“good”) for the SVC and 0.88–0.91 (“good”

to “excellent”) for the MLP. Among the coefficients of the SVC, texture data contributed

the most to a correct classification. We consider these results as a proof of concept

that demonstrated the power of machine learning in the application of multiparametric

quantitative neuroimaging data to ALS.

Keywords: diffusion tensor imaging (DTI), machine learning, support vector machine (SVM), neural network,

amyotrophic lateral sclerosis, motor neuron disease, neurodegeneration, magnetic resonance imaging (MRI)

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a clinically and genetically heterogeneous, multidomain
neurodegenerative syndrome of motor and extra-motor systems with multiple different clinical
subphenotypes and alterations in several brain regions, most prominently the corticospinal tract
(CST) (1). The potential of multiparametric, quantitative magnetic resonance imaging (MRI) in
the diagnostic procedures of ALS is widely recognized (2, 3). The development of current machine
learning algorithms introduced the opportunity to combine biomarkers from differentMRImetrics
into a single classifier, even in more complex settings. Previous approaches using resting state
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functional MRI (rs-fMRI), T1 weighted imaging (T1w), and
diffusion tensor imaging (DTI) data have achieved diagnostic
accuracy of well over 70% (4–6), recently summarized in a
systematic review (7). The challenge in designing a suitable
machine learning model remains the appropriate selection of
features and the collection of a meaningful amount of data to
build a reliable model (8). In addition to traditional techniques,
texture analysis is among the most promising approaches
for disease classification in ALS (9, 10). The combination
of texture analysis with traditional diffusion metrics makes a
multiparametric microstructural assessment possible that might
enhance diagnostic accuracy in machine learning classifiers. In
the present study, a retrospective data analysis with T1w and
DTI data was conducted. To this end, we extracted diffusion
metrics of the most important tracts in ALS as well as texture data
from the motor segment of the corpus callosum. We combined
these data in a linear support vector classifier (SVC) which is
a robust model that can give feedback on feature importance,
with the prospect of providing a proof of concept model with
high accuracy and unraveling underlying patterns that could help
to build future classifiers. Furthermore, we used a state-of-the-
art artificial neural network to verify the results. As a proof of
concept study, we primarily focused on the general feasibility of
the approach, not the optimization of the ML algorithm.

MATERIALS AND METHODS

Data Collection and Preprocessing
The data were collected from the MRI data archive of the Dept
of Neurology, University of Ulm, Germany and included 1.5 T
imaging data sets that contained a high-resolution T1w sequence
and also a DTI sequence with at least 39 gradients. The search
resulted in 404 data sets from ALS patients (237 male; mean age
63 ± 11 years) and 98 data sets from healthy control subjects (49
male; mean age 57 ± 16 years), recorded between May 2010 and
February 2021 (Table 1). Magnetic resonance imaging scanning
of all data sets was performed on the same 1.5 Tesla Magnetom
Symphony (Siemens Medical, Erlangen, Germany); the study
protocol consisted of a T1w scanwith 144 slices [256× 256 pixels,
slice thickness 1.2mm, pixel size 1.0 × 1.0mm, echo time (TE)
4.2ms, repetition time (TR) 1,640ms] and a DTI study protocol
with 52 volumes (64 slices, 128 × 128 pixels, slice thickness
2.8mm, pixel size 2.0 × 2.0mm, 39 control subjects, 306 ALS
subjects), 48 gradient directions (b = 1,000 s/mm2), and four
scans with b = 0, TE = 95ms, TR = 8,000ms (DTI protocol A).
Alternatively, DTI protocol B consisted of 39 gradients including
three b0 gradient directions (b = 1,000 s/mm², voxel size 2.0 ×

2.0× 2.8mm, 128× 128× 64 matrix, TE= 95ms, TR= 8,000 s,
0 control subjects, 33 ALS subjects); DTI protocol C consisted of
2 × 31 gradient directions including two b0 gradient directions
(b = 1,000 s/mm², voxel size 2.5 × 2.5 × 2.5mm, 64 slices, 128
× 128 in-plane matrix, TE = 102ms, TR = 8,700ms, 59 control
subjects, 62 ALS subjects). The study was performed according
to institutional guidelines in accordance with the Declaration
of Helsinki and was approved by the Ethical Committee of the
University of Ulm (reference # 19/12).

TABLE 1 | Demographic and clinical features of the subjects.

Control subjects

(n = 98)

ALS subjects (n = 404)

Age in years 56.75 ± 15.91 63.05 ± 11.48 p < 0.001

Gender w = 49, m = 49 w = 167, m = 237 n.s.

Training Test

(n = 98) (n = 306)

Disease duration

in months

19.25 ± 17.63 18.66 ± 7.16 n.s.

ALS-FRS 39.04 ± 22.81 39.64 ± 6.98 n.s.

Values are mean ± SD. Significance was tested using the t-test for age, disease duration,

and ALS-FRS, and the Fisher exact test for gender. ALS-FRS, ALS functional rating scale

(11). n.s., not significant (p > 0.05).

The software Tensor Imaging and Fiber Tracking (TIFT)
was used for data analysis (12). Prior to data analysis, data
underwent a standardized quality control. The DTI data were
stereotaxically normalized to the Montreal Neurological Institute
(MNI) stereotaxic space using a group-specific template (13);
in a consecutive step, fractional anisotropy (FA) maps were
corrected for the covariate age (14). For the harmonization of
FA differences resulting from different acquisition protocols,
FA maps were harmonized according to a previously reported
protocol by a linear first order correction (15) and have been
successfully applied to DTI data even from different scanners
(16, 17). Finally, an 8mm (FWHM) Gaussian filter was applied
for smoothing of FA maps in order to achieve a good balance
between sensitivity and specificity (13). For tractwise fractional
anisotropy statistics (TFAS), the following tracts of interest
(TOI) were isolated (18): the CST, the corticopontine tract,
the corticorubral tract, the corticostriatal pathway, the proximal
portion of the perforant path, and tracts originating in segments
II and III of the corpus callosum (19–21). Using a threshold of
0.2, the mean FA-value within each TOI was calculated (22). The
texture data calculation of the corpus callosum was described
in detail in a previous study (10). In brief, after alignment to
the AC-PC line (anterior and posterior commissure) and rigid
brain transformation, the corpus callosum was automatically
segmented from median and paramedian sagittal T1w slices. For
the segment III, the texture was analyzed and several texture
parameters were calculated, notably texture homogeneity and
entropy, each age-corrected. The texture and the FA data were
registered for consecutive machine learning operations.

Machine Learning Classifiers
According to previous studies, the following variables were
defined as features in the applied machine learning classifiers
(10, 19): age-corrected mean FA of the CST, the corticopontine
tract, the corticorubral tract, the corticostriatal pathway, the
proximal portion of the perforant path, and tracts originating
in the segments II and III of the corpus callosum, as well as
age-corrected texture homogeneity and entropy from segment
III of the corpus callosum. Age-correction was important, due
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to significant differences between groups (see Table 1). For the
diffusion metrics, FA was exclusively chosen out of the DTI
metrics, since it has been identified as the most robust DTI-
based parameter, according to a recent systematic review (7). All
parameters were z-transformed prior to further analyses. For the
dichotomous classification ALS patients vs. controls, two output
classes were defined.

Two machine learning classification models were employed,
i.e., first, a linear support vector machine (SVM) (23), which
is a very robust model that also allowed us to analyze the
linear coefficients of the model for later interpretation and
second, a multilayer perceptron (MLP) classifier (24) in order
to verify the results from the SVM. Each hyperparameter was
chosen a priori. In the majority of the hyperparameters, this
was done by using default values or referring to prior work
(24). Choosing the hyperparameters a priori was a design
choice, as we focused on the integration of multiparametric
MRI data, not on optimizing or comparing ML models. This
approach also had the consequence that the hyperparameters
were not fitted to the validation set, except for the hidden
layer sizes in the MLP. Calculations were done using the scikit-
learn 0.23.2 library for python (25). To assess the diagnostic
power of our models, receiver operating characteristics (ROC)
curves were used to calculate the area under the curve
(AUC) (26, 27).

Linear Support Vector Machine
For the SVM, we decided to use the “svc” estimator from
the “svm” class with the following (hyper) parameters: kernel
= “linear” for a linear SVM, class_weight = “balanced” to
account for the sample size imbalance, and max_iter =

−1 to ensure convergence during training (19, 21). For all
other parameters, the default value was used, including the
regularization parameter C = 1. The class weights were

implemented as coefficients to the regularization parameter
C for each class. This way, inaccurate classification for the
smaller control group were penalized more heavily than for
the larger ALS group, addressing the issue of imbalanced class
sizes. By implementing class weights, we favored the benefit of
having more examples over the downside of class imbalance,
in the case of the SVM. The model was fit using all 404 ALS
subjects and all 98 control subjects. For validation, a leave-
one-out cross-validation (LOOCV) was performed (23, 25). For
the interpretation of the input parameter weights, the “coef_”
attribute was called (25). The entire procedure was repeated for
each MRI modality, effectively resulting in three models, i.e.,
one with all features, one with only FA data, and one with only
texture data.

Multilayer Perceptron
To verify the results from the SVM classifier, the MLPClassifier
estimator from the “neural-network” class was chosen. We
modeled this estimator in close resemblance to a previous model
by van der Burgh et al. (24), using the following hyperparameters:
activation= “logistic” for a logistic unit activation function, alpha
= 0.1 to set the L2 penalty parameter to 0.1 in order to prevent
overfitting, and max_iter = 1,000 to ensure convergence during
training. The hidden layer sizes [hidden_layer_sizes = (23,23)]
were determined by an exhaustive grid search within a 1–500
interval. For all other parameters, the default value was used.
Because the MLPClassifier struggles with unbalanced sample
sizes, we undersampled the ALS subject group at random to
match the control group in size (n = 98). The model was then
fit using these 98 ALS subjects and all 98 control subjects. For
validation, a LOOCV was performed. Finally, the model was
tested on the ALS patients’ data that had been excluded during
the undersampling process (n = 306, referred to as “holdout test
sample”) (see Figure 1).

FIGURE 1 | (A) Training, validation, and test samples in the multilayer perceptron classifier. The ALS data were undersampled for the training and validation samples.

The leftover data were used as a holdout test sample. (B) Graphical representation of the multilayer perceptron/neural network. There were nine features in the input

layer and two classes in the output layer (ALS, controls). The 23 nodes in the two hidden layers were determined by an extensive grid search.
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RESULTS

Linear Support Vector Machine
Within the training sample, the linear SVC achieved 81%
sensitivity and 82% specificity with an AUC of 88% in the
ROC analysis (Figure 2A). The LOOCV analysis confirmed these
results with 80% sensitivity, 80% specificity, and an AUC of
87% in the ROC analysis. Each modality (FA maps, texture
data) on its own underperformed the combined model (Table 2).
Analysis of the (linear) coefficients demonstrated that the corpus
callosum texture homogeneity contributed the most to accurate
classification, followed by the CST FA and corpus callosum
FA (Table 3).

TABLE 2 | Sensitivity and specificity of the linear support vector classifier.

Specificity (%) Sensitivity (%) Youden-index (%) AUC

Training

All data 82 81 63 0.88

FA data 72 65 38 0.76

Texture data 77 76 53 0.85

Validation

All data 80 80 60 0.87

FA data 67 64 31 0.72

Texture data 77 76 53 0.84

AUC, area under curve in receiver operating characteristics curve.

FIGURE 2 | (A) ROC curve and AUC from the support vector classifier. Left, training sample; right, leave-one-out cross-validation. (B) ROC curve and AUC from the

multilayer perceptron classifier. Left, training sample; right, leave-one-out cross-validation.
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TABLE 3 | Linear coefficients of the support vector classifiers.

CC segment

III

homogeneity

CC segment

III entropy

CST FA Corticopontine

tract FA

Corticorubral

tract FA

Corticostriatal

pathway FA

Proximal

perforant

path FA

CC segment

II FA

CC segment

III FA

All data 1.08 −0.06 −0.53 −0.13 −0.04 0.35 −0.16 −0.37 0.46

FA – – −0.68 −0.40 −0.06 0.82 −0.13 −0.22 −0.26

Texture 1.00 −0.11 – – – – – – –

CC, corpus callosum; CST, corticospinal tract; FA, fractional anisotropy.

Multilayer Perceptron
Within the training sample, the MLP classifier achieved
81% sensitivity and 86% specificity with an AUC of 0.91
(“excellent”) in the ROC analysis (Figure 2B). The LOOCV
confirmed these results with 79% sensitivity, 84% specificity,
and an AUC of 0.88 (“good”) in the ROC analysis. In the
holdout test-sample (Figure 1A), the MLP classifier reached
72% sensitivity.

DISCUSSION

The present study demonstrated the potential of a
multiparametric approach in the diagnostic classification of
ALS, as a proof of concept.

Classifiers
The SVM classifier delivered themost robust results with 80–81%
sensitivity, 80–82% specificity, and an AUC of 0.87–0.88 (“good”)
in the ROC analysis. Analyses of the coefficients revealed that
texture homogeneity of the callosal area III was most important
in distinguishing ALS from controls, followed by CST FA and
corpus callosum FA. The high diagnostic accuracy of texture
data alone was surprising, as we expected diffusion metrics to
be superior in describing neurodegeneration in ALS, especially
in the CST, as demonstrated in a study using a Random Forest
approach to assess the clinical utility of DTI by combining FA,
mean diffusivity (MD), and radial diffusivity (RD) measured
along tracts between the cerebral peduncle and the corona
radiata, reaching a mean five-fold cross validation accuracy
of 80% in discriminating ALS from controls (28). Yet, prior
studies reported similar results using texture (10) and DTI
data (29). In addition, we noticed that the stage-defining tracts
besides the CST did not contribute much to the classification,
especially when texture data were present. Since adding a feature
whose information is already (fully) represented by another
does not increase accuracy, some DTI information might be
redundant in the use of diffusion data of the CST or the corpus
callosum or texture data. In a previous approach, Fekete and
co-workers have addressed multicollinearity by using a multiple
kernel learning (MKL) approach and implementing a nifty
optimization method for the weights of the kernel matrix sum
(30). Also, late-stage tracts will most probably only be affected
in a subset of ALS patients—this might be why these data did
not distinguish well-enough between patients and controls in
our model (31). Pruning these features in future models might
increase performance, as the subject to feature ratio increases

without necessarily losing predictive power. The neural network
classifier achieved higher performance metrics compared to the
SVM, with an AUC of 0.87–0.91 (“good” to “excellent”) in the
ROC curve. However, only 72% sensitivity was reached in the
holdout test-sample. This result is probably due to overfitting,
as well as some misrepresentation of the cohort by the random
undersampling of ALS subjects. If the model overfits the training
sample or the test sample differs substantially from the training
sample, loss of predictive performance is expected. Still, we
consider these results to be a proof of concept of what can be
achieved with sound feature selection and a reasonable amount
of multiparametric data.

The present study used only microstructural data, in a line
of agreement with a previous study that reached a mean five-
fold cross validation accuracy of 80% in discriminating ALS from
controls from tract-basedDTImetrics (28). Future studies should
extend on this by incorporating additional MRI parameters like
gray matter volume and functional connectivity. For functional
connectivity data, machine learning has been already applied to
independent component analysis, demonstrating an accuracy of
71.5% (4). The combination of different models, for example
in a stacking ensemble machine learning classification, might
further increase diagnostic accuracy (9). In a recent study
on longitudinal neurodegeneration in the brain in ALS, data
from different modalities were combined using deep learning
(32). In this study, a random walker model did not only
predict disease propagation in ALS, but also contributed to
correct survival prediction. Applying deep learning techniques
to disease classification might increase diagnostic accuracy in
future models.

Limitations
Although the number of subjects with ALS was rather high,
the machine learning models were trained with a comparatively
low number of control subjects. This sample size hampered
our model’s performance in two respects, first by the limited
data quantity of n < 100 control samples and second by
class imbalance. In addition, age differed significantly between
ALS patients and controls; however, data analysis included age
correction in order to compensate for this difference. Given that
this is a proof-of-concept study, we advise against using this
machine learning model in a clinical setting, as the field is still
developing and scientific consensus regarding diagnostic utility
of machine learning in ALS has not been reached yet. In addition,
a proper clinical classifier has to incorporate mimic disorders, as
only these are (falsely) suspected to be ALS cases. It can be argued
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that many ALS mimics are peripheral neuropathies with normal
cranial MRI, hence, training a model with healthy control data
and fine-tuning it with mimic disorders might suffice.

Conclusion
The integration of multimodal microstructural neuroimaging
data into an appropriate diagnostic classifier demonstrated the
power of machine learning for multiparametric, quantitative
neuroimaging, and this proof of concept allowed for an
accurate dichotomous classification of ALS patients vs. controls.
Extending this concept beyond microstructural data might
further enhance diagnostic accuracy in future models.
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