AUTHOR=Bivard Andrew , Levi Christopher , Lin Longting , Cheng Xin , Aviv Richard , Spratt Neil J. , Kleinig Tim , Butcher Kenneth , Chen Chushuang , Dong Qiang , Parsons Mark TITLE=Assessing the Relative Value of CT Perfusion Compared to Non-contrast CT and CT Angiography in Prognosticating Reperfusion-Eligible Acute Ischemic Stroke Patients JOURNAL=Frontiers in Neurology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.736768 DOI=10.3389/fneur.2021.736768 ISSN=1664-2295 ABSTRACT=

In the present study we sought to measure the relative statistical value of various multimodal CT protocols at identifying treatment responsiveness in patients being considered for thrombolysis. We used a prospectively collected cohort of acute ischemic stroke patients being assessed for IV-alteplase, who had CT-perfusion (CTP) and CT-angiography (CTA) before a treatment decision. Linear regression and receiver operator characteristic curve analysis were performed to measure the prognostic value of models incorporating each imaging modality. One thousand five hundred and sixty-two sub-4.5 h ischemic stroke patients were included in this study. A model including clinical variables, alteplase treatment, and NCCT ASPECTS was weak (R2 0.067, P < 0.001, AUC 0.605) at predicting 90 day mRS. A second model, including dynamic CTA variables (collateral grade, occlusion severity) showed better predictive accuracy for patient outcome (R2 0.381, P < 0.001, AUC 0.781). A third model incorporating CTP variables showed very high predictive accuracy (R2 0.488, P < 0.001, AUC 0.899). Combining all three imaging modalities variables also showed good predictive accuracy for outcome but did not improve on the CTP model (R2 0.439, P < 0.001, AUC 0.825). CT perfusion predicts patient outcomes from alteplase therapy more accurately than models incorporating NCCT and/or CT angiography. This data has implications for artificial intelligence or machine learning models.