High-frequency oscillations (HFOs) have received much attention in recent years, particularly in the clinical context. In addition to their application as a marker for pathological changes in patients with epilepsy, HFOs have also been brought into context with several physiological mechanisms. Furthermore, recent studies reported a relation between an increase of HFO rate and age in invasive EEG recordings. The present study aimed to investigate whether this relation can be replicated in scalp-EEG.
We recorded high-density EEG from 11 epilepsy patients at rest as well as during motor performance. Manual detection of HFOs was performed by two independent raters following a standardized protocol. Patients were grouped by age into younger (<25 years) and older (>50 years) participants.
No significant difference of HFO-rates was found between groups [
Lack of replicability of the age effect of HFOs may be due to the local propagation patterns of age-related HFOs occurring in deep structures. However, limitations such as small sample size, decreased signal-to-noise ratio as compared to invasive recordings, as well as HFO-mimicking artifacts must be considered.