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Background: The oscillations and interactions between different brain areas during

recovery of consciousness (ROC) from anesthesia in humans are poorly understood.

Reliable stereoelectroencephalography (SEEG) signatures for transitions between

unconsciousness and consciousness under anesthesia have not yet been fully identified.

Objective: This study was designed to observe the change of electrophysiological

activity during ROC and construct a ROC network based on SEEG data to describe

the network property of cortical and deep areas during ROC from propofol-induced

anesthetic epileptic patients.

Methods: We analyzed SEEG data recorded from sixteen right-handed epileptic

patients during ROC from propofol anesthesia from March 1, 2019, to December 31,

2019. Power spectrum density (PSD), correlation, and coherence were used to describe

different brain areas’ electrophysiological activity. The clustering coefficient, characteristic

path length, modularity, network efficiency, degrees, and betweenness centrality were

used to describe the network changes during ROC from propofol anesthesia. Statistical

analysis was performed using MATLAB 2016b. The power spectral data from different

contacts were analyzed using a one-way analysis of variance (ANOVA) test with Tukey’s

post-hoc correction. One sample t-test was used for the analysis of network property.

Kolmogorov-Smirnov test was used to judge data distribution. Non-normal distribution

was analyzed using the signed rank-sum test.

Result: From the data of these 16 patients, 10 cortical, and 22 deep positions were

observed. In this network, we observed that bilateral occipital areas are essential parts

that have strong links with many regions. The recovery process is different in the bilateral

cerebral cortex. Stage B (propofol 3.0-2.5µg/ml) and E (propofol 1.5 µg/ml-ROC) play

important roles during ROC exhibiting significant changes. The clustering coefficient
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gradually decreases with the recovery from anesthesia, and the changes mainly come

from the cortical region. The characteristic path length and network efficiency do not

change significantly during the recovery from anesthesia, and the changes of network

modularity and clustering coefficient are similar. Deep areas tend to form functional

modules. The left occipital lobe, the left temporal lobe, bilateral amygdala are essential

nodes in the network. Some specific cortical regions (i.e., left angular gyrus, right angular

gyrus, right temporal lobe, left temporal lobe, and right angular gyrus) and deep regions

(i.e., right amygdala, left cingulate gyrus, right insular lobe, right amygdala) have more

significant constraints on other regions.

Conclusion: We verified that the bilateral cortex’s recovery process is the opposite,

which is not found in the deep regions. Significant PSD changes were observed in many

areas at the beginning of stop infusion and near recovery. Our study found that during

the ROC process, the modularity and clustering coefficient of the deep area network

is significantly improved. However, the changes of the bilateral cerebral cortex were

different. Power spectrum analysis shows that low-frequency EEG in anesthesia recovery

accounts for a large proportion. The changes of the bilateral brain in the process of

anesthesia recovery are different. The clustering coefficient gradually decreased with

the recovery from anesthesia, and the changes mainly came from the cortical region.

The characteristic path length and network efficiency do not change significantly during

the recovery from anesthesia, and the changes of network modularity and clustering

coefficient were similar. During ROC, the left occipital lobe, the left temporal lobe,

bilateral amygdala were essential nodes in the network. The findings of the current

study suggest SEEG as an effective tool for providing direct evidence of the anesthesia

recovery mechanism.

Keywords: stereoelectroencephalogram, electrophysiological activity, network, propofol, epilepsy, recovery of

consciousness

INTRODUCTION

Transitions between conscious and unconscious states are
essential aspects of clinical anesthesiology. The study of state
transitions during loss and recovery of consciousness (ROC) has
always been the focus of anesthesia research. The human brain
is a complex organ, and many of its functions are still unknown.
State transition in anesthesia also involves many brain regions
with unpredictable changes. Therefore, it is difficult to study the
underlying mechanisms accurately. However, it is essential to
understand the links and dynamic interactions among different
brain parts during anesthesia (1).

Network science is a relatively new academic field that
can enhance scientific understanding of the interfaces between
neuroscience and anesthesiology. It can also contribute to new
approaches for predicting and controlling neurologic function in
the perioperative period (2).

Many studies have tried to explore the mechanism of
anesthesia from the science of network point of view. Some of

Abbreviations: SEEG, stereoelectroencephalogram; fMRI, functional

magnetic resonance imaging; PSD, power spectrum density; MEG,

magnetoencephalography; ROC, recovery of consciousness.

the critical conclusions from these studies indicate that general
anesthesia can disrupt higher-order information processing, with
relatively preserved primary sensory networks and information
processing (3). It has also been reported that effective and
functional connectivity is inhibited from the frontal to parietal
regions during general anesthesia (4, 5). In addition, general
anesthesia tends to selectively inhibit long-latency evoked
potentials and preserve short-latency evoked responses (6).
Moreover, spatiotemporal complexity is decreased (7) and the
repertoire of connectivity configurations is constrained during
general anesthesia (8). The network experiments in anesthesia
research involve many species such as mice, rats, rabbits,
monkeys, and humans (9–11). Diverse anesthetics, including
propofol, isoflurane, sevoflurane, midazolam, ketamine, and
halothane, have been used to study anesthesia’s network science
(12–14). These studies may reflect the reduced capacity of
information integration in terms of reducing both differentiated
information and overall network integration, which is proposed
to result in unconsciousness.

It is evident from the above studies that a network can
be constructed by an array of clinical data such as functional
magnetic resonance imaging (fMRI), electroencephalography
(EEG), and electrocorticography (ECoG). However, few studies
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have used stereoelectroencephalogram (SEEG) to construct this
network in humans to investigate the mechanism of anesthesia.
With SEEG, it is feasible to detect cortical and subcortical
electrophysiological activities simultaneously (11) and can also be
used to detect drug-resistant epilepsy (15). As the electrodes need
to be implanted under general anesthesia (16), anesthesiologists
can obtain necessary SEEG data to observe the brain’s changes
after surgery. This surgery provides an excellent opportunity to
explore the effect of various anesthetic agents.

Network science is a helpful tool and a necessary theoretical
framework and method to uncover common principles of
changes of consciousness induced by anesthetics. The majority
of research studies to date have been conducted on the loss
of consciousness. However, in this study, we aimed to observe
the change of electrophysiological activity employing power
spectrum density (PSD), correlation, and coherence of different
frequency bands during ROC. Additionally, we constructed
ROC’s network based on SEEG data to describe the network
property of cortical and deep areas.

METHODS

Basic Information and Participants
This study was approved by the Ethics committee of Sanbo
Brain Hospital, Capital Medical University, Beijing, China, with
approval number: SBNK-YJYS-2019-009-01. The study was also
registered in the Chinese Clinical Trial Registry (registration
number: ChiCTR2000029067). All participants provided their
written informed consent and consent to publish the individual
and identifiable patient details before enrolling in this study. All
experiments in this study were conducted following good clinical
practices and the tenets of the Helsinki Declaration.

We collect data from 16 patients undergoing intracranial
monitoring for surgical treatment of epilepsy at Sanbo Brain

Hospital from March 1, 2019, to December 31, 2019. The
inclusion of patients was made based on (i) patients who
presented with intractable epilepsy and who required SEEG
electrode implantation; (ii) age between 18 and 40 years (both
male and female patients were included); (iii) ASA classification
of grade I or II, without severe systemic diseases of the heart,
lung, liver, or kidney; (iv) Patients with clear and conscious
minds with ordinary intelligence and willing to provide consent
for participation.

The exclusion criteria were set as: (i) Patients with a history
of receiving anesthesia within 6 months; (ii) pregnant or
breastfeeding patients; (iii) Patients who participated in other
clinical trials in the last 4 weeks; (iv) Patients who used long-
term sleeping pills and analgesics or alcoholic patients; (vi)
Patients with extreme anxiety and/or panic attacks and having
difficulty communicating.

Data Recording and Preprocessing
Four electrodes were used for one patients’ data collection per
the implant plan. Sixty-four–channel SEEG data were recorded
during the transition from unconscious states to awake states
during propofol general anesthesia after all planned electrodes
were implanted. The SEEG data were recorded using a video-
electroencephalogram monitor. The monitoring system had a
sampling rate of 1,024Hz, and the SEEG data were prefiltered
through a 0.1-Hz high-pass filter and an 80-Hz low-pass
filter. The reference electrode and ground electrode were fixed
uniformly (nasion point and central zero point). The ROC time
point was determined by response to verbal commands (17).

Recordings were obtained in the post-anesthesia care unit
room. Total intravenous anesthesia was used. Dosages of
anesthetics were determined according to standard dosing
requirements: remifentanil (induction: 1.5 µg/kg; maintain: 0.2
µg/min/kg); rocuronium (induction: 0.7mg/kg; maintain: none).

FIGURE 1 | Experimental flow diagram.
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Propofol was administered as a target-controlled infusion (TCI)
(induction: 4.5µg/ml of plasma; maintain: 3.5µg/ml of plasma)
based on the pharmacokinetic model by Marsh et al. (18).

The following stages were accurately marked on SEEG
data: (A) propofol 3.5–3.0µg/ml, (B) propofol 3.0–2.5µg/ml,
(C) propofol 2.5–2.0µg/ml, (D) propofol 2.0–1.5µg/ml,
and (E) 1.5 µg/ml-ROC. The experimental procedure is
presented in Figure 1.

The SEEG data were analyzed with MATLAB (version 2016b,
MathWorks Inc., USA). Large-amplitude SEEG artifacts were
removed, and bad channels were rejected by visual inspection. A
band-pass filter based on the EEGLAB was used to extract SEEG
data from 1 to 60Hz for calculation. The SEEG recordings were
resampled to 256 Hz.

Surgical Procedure and Contact Location
Before surgery, the electrophysiologist drew the plan for
implantation according to the patient’s symptoms and MRI data,
following which the data was input into the navigation machine.
During surgery, the neurosurgeon implanted electrodes under
the guidance of the navigation machine and after implantation
of all electrodes, the patient underwent a CT scan. Then, imaging
experts fused the CT and MRI data to verify the position of the
electrodes. In this study, we chose electrode contact with the help
of imaging experts.

EEG Analysis
We analyzed SEEG data for power spectrum density (PSD),
correlation, and coherence. The analysis was performed with
the Brainstorm toolbox (19), which is documented and freely
available for download online under the GNU general public
license (http://neuroimage.usc.edu/brainstorm). We considered
contact position based on anatomical location. In all, 32 contacts
were included.

Power Spectrum Density
Welch’s method was used to evaluates the power of the SEEG
signals at different frequencies. This method heavily reduces
noise, whereby a smooth spectrum and less spectral leakage can
be obtained (20).We split the signals in overlapping windows of a
given length to calculate the fast Fourier transform (FFT) of each
of these short segments and average the FFT coefficients’ power
for all the overlapping windows. In this study, we set the options
as follows:

(i) Time window: All file;
(ii) Window length: 10 s;
(iii) Overlap ratio: 50%;
(iv) The results were grouped in the frequency bands, i.e., delta

2–4Hz, theta 5–7Hz, alpha 8–12Hz, beta 15–29 Hz.

EEG Correlation and Coherence Analysis
The dependence or association among two EEG signals was
assessed using the primary and classical correlation approach.
This approach provides valuable information if clinicians have
to deal with a few narrow-banded signals. Coherence was used
to compute the relation between two signals in the frequency
domain using the FFT to compute the spectral densities. The
coherence of all data in this study was analyzed in different
frequency bands (i.e., delta 2–4Hz, theta 5–7Hz, alpha 8–12Hz,
beta 15–29Hz). Because there were many regions involved, we
analyzed the results of correlation and coherence from graphs
to avoid tedious calculations and to avoid redundant data. The
analysis results of different stages and frequency bands were
saved as images of the same size. Then, in MATLAB, the RGB
graphs were converted into gray graphs (function: rgb2gray)
and converted to histogram (function: imhist). We compare the
results from the perspective of graphs.

Graph Theory Analysis
Evaluation of interconnections between all possible pairs of
SEEG contacts in a particular frequency band could produce a

FIGURE 2 | Network analysis process.
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TABLE 1 | General information.

Sex

(F/M)

Age (y) Height (cm) Weight (kg) Surgery

duration (h)

ROC (min) Crystal*

(ml)

Colloid#

(ml)

BloodU

(ml)

Time of different stages (s)

9/7 22.5 ± 5.5 171.5 ± 9.3 70.0 ± 18.4 3.0 ± 0.4 29.0 ± 6.8 2.1 ± 0.5 0.6 ± 0.2 17.2 ± 5.7 A B C D E

94 133 238 687 397

*fluid of crystal, #fluid of colloid, Upost-operative hemorrhage.

TABLE 2 | Positions of included electrodes (10 cortical areas and 22 deep areas).

Cortical area

frontal

(left)

temporal

(left)

parietal

(left)

occipital

(left)

angular

(left)

frontal

(right)

temporal

(right)

parietal

(right)

occipital

(right)

angular

(right)

Deep area

Hippocampus

(left)

Cingulum

(left)

Amygdala

(left)

Entorhinal

(left)

Fusiform

(left)

SMP

(left)

Lingual

(left)

Cuneus

(left)

Calcarine

(left)

Interior frontal

(left)

insular

(left)

Hippocampus

(right)

Cingulum

(right)

Amygdala

(right)

Entorhinal

(right)

Fusiform

(right)

SMP

(right)

Lingual

(right)

Cuneus

(right)

Calcarine

(right)

Interior frontal lobe

(right)

insular

(right)

large number of matrices of correlation data that are hard to
interpret and handle statistically. To overcome these problems,
a graph theory-based approach (21), was used to provide useful
measures to characterize the topological properties and the
functional organization of the brain network. Each node in the
graph corresponded to a contact, and the mutual information
between electrodes time series acted as edge weights. The relative
threshold method (ranging from 0.1 to 0.5) was used and the step
was 0.01. We defined the network consisting of all nodes and
the corresponding edge weights were mapped from the mutual
information matrix. Only undirected functional connections
were considered. A 160 s period for each stage we extracted
consisting of 10 series (10 × 16 s). We get 10 matrices by
calculating the mutual information of 10 series. 10 matrices
calculate the network of each stage. Finally, we get five networks
of the successive stage. We analyzed brain regions’ changes
during anesthesia recovery by observing the change of network
in each stage. The Graphvar toolbox (22, 23) was used to describe
the network properties including Characteristic path length,
Clustering coefficient, Network efficiency, Modularity, Degrees,
and Betweenness centrality (Figure 2).

Statistical Analysis
Statistical analysis was performed using MATLAB 2016b. The
power spectral data from different contacts were analyzed using
a one-way analysis of variance (ANOVA) test with Tukey’s post-
hoc correction. One sample t-test was used for the analysis of
network property. Kolmogorov–Smirnov test was used to judge
data distribution. Non-normal distribution was analyzed using
the signed rank-sum test. A p-value of <0.05 was considered
statistically significant.

RESULTS

General Information
After excluding one patient because of postoperative intracranial
hemorrhage, a total of 16 right-handed patients were included
in the final analysis. There were no significant differences
concerning any demographic details among the patients. The
order from long to short of the average time of different stages
was observed as D > E > C > B > A (shown in Table 1). In
total, 32 positions were observed (i.e., 10 cortical and 22 deep
positions) (Supplementary Figure 1 and Table 2).

PSD of Different Regions of the Different
Frequency Bands
When different frequency bands were displayed separately during
recovery from propofol anesthesia, it was found that the delta
band’s energy was the highest, followed by theta, alpha, and beta
bands (Figure 3). The beta band’s energy was very low, thus,
the higher frequency gamma band was not analyzed and nor
described. Significant changes mainly occurred in stage B and
stage E. There were many contacts involved and were described
all contacts in different frequency bands separately in Figure 4.

Delta frequency band: (a) cortical areas: The changes in
bilateral cortical areas of the brain were opposite as a whole.
The energy of the left frontal lobe, left temporal lobe, and left
occipital lobe increased gradually while in the right frontal lobe,
right temporal lobe and right occipital lobe decreased with the
recovery from anesthesia. The right parietal lobe energy was
increased. As the angular gyrus’s anatomical position is similar to
that of the occipital lobe, we found that the change in energy was
similar. (b) Deep areas: Except for the tongue gyrus, both sides’
change of deep brain area was consistent. The hippocampus,
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FIGURE 3 | The overall change of PSD in the different frequency band.

amygdala, olfactory cortex, cuneus, calcarine fissure, interior
frontal lobe, and insular energy gradually decreased with the
recovery from anesthesia. The energy in the cingulate gyrus
raised in stage B, and then gradually decreased. The energy in the
fusiform gyrus and SMP gradually increased.

Theta band: (a) cortical areas: bilateral frontal lobe had no
apparent difference; the changes of theta band of the temporal
lobe, parietal lobe, occipital lobe, angular gyrus were consistent
with that of delta band. (b) Deep areas: left amygdala, left interior
frontal lobe, and right cuneus energy increased significantly in
stage E. Other regions’ changes were consistent with that of
the delta band.

Alpha band: (a) cortical areas: Compared with the low-
frequency band changes (delta and theta), the changes of the
alpha band in cortical areas were more significant. There was
no apparent change in the frontal lobe. The left temporal lobe
and left occipital lobe energy increased significantly in stage E.
The left parietal lobe energy increased significantly in stage B.
(b) Deep areas: The amygdala energy increased significantly in
stage E. The changes in other regions were consistent with that of
the delta band.

Beta band: (a) cortical areas: The difference in the beta
band was also significant. There was no apparent change in
the frontal lobe. The left temporal lobe and the left occipital
lobe energy increased significantly in stage E. Different from
the alpha band, the transient increase of the left parietal lobe
energy in stage B was not significant. Deep region: the changing
trend of the deep region energy was similar to the alpha
and beta band.

Correlation and Coherence Analysis
Correlation
Correlation analysis was used to observe the time domain
information. We discovered that the changes in correlation were
not significant. In this study, on the whole, we observed that
the correlation decreased in stage D and increased in stage E
(p > 0.05). Because of EEG data characteristics, we observed
that the changes were mainly concentrated in some fixed areas.
Besides, because the correlation analysis mainly focuses on the
time-domain information, it was impossible to detect frequency-
domain sources.
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FIGURE 4 | Power spectral density of cortical and deep areas. *Blue line: left hemisphere; red line: right hemisphere. X-axis: different stage (A, B, C, D, E); Y-axis:

Power spectral density [Magnitude (signal units/sqrt(Hz))*10−4].

Coherence Analysis
We observed the relationship among brain regions during
anesthesia recovery from the frequency domain perspective by
coherence analysis. The results are shown in Figure 5. In the
delta band, the coherence of each region in stage B increased
significantly and then decreased. In theta band, the coherence
of each region in stage B increased and then decreased, but
increased again in stage E; in the alpha band, the coherence
of each region in stage B increased, and then decreased, but
increased significantly in stage E. In the beta band, the coherence

was weak in stage A, B, C, D, and increased significantly in
stage E (Table 3).

Network Property
General Information
Graph theory is the most frequently used method to describe
the property of a network. The selection and definition of neural
network nodes mainly depend on the purpose of researchers.
Usually, in research, we hope that nodes can cover as many areas
as possible, that is, the whole brain (24). When the nodes cannot
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FIGURE 5 | The overall change of coherence among different regions.

be covered entirely, selective nodes are taken to represent this
part of the brain region ideally. When using EEG data to build
a network, the electrode sites of time series are generally selected
as the network nodes (25). In this study, the network was built
using 32 nodes, i.e., 10 cortical points, and 22 sub-cortical points.
In this network, we observed that bilateral occipital areas were
essential parts that have strong links with many regions.

Cluster Coefficient, Characteristic Path Length,

Efficiency, Modularity
(1) Cluster coefficient:

Our study shows that, as shown in Figure 6, the whole neural
network’s clustering coefficient increased in stage B, and then
gradually decreased with the anesthesia recovery, which may be
caused by the inconsistency of bilateral brains’ recovery process.
The changes of the cortical region and the whole network
were consistent. However, the clustering coefficient of deep
areas gradually increases with the recovery of anesthesia, which
indicates that the decrease of the clustering coefficient of the
whole network mainly comes from the changes in the cortical

TABLE 3 | Comparison of coherence analysis (p-value).

A vs. B B vs. C C vs. D D vs. E

delta 0.0281* 0.0700 0.1090 0.3863

theta 0.1044 0.1604 0.2084 0.0454*

alpha 0.0323* 0.05491 0.1261 0.0082*

beta 0.7351 0.6247 0.1661 0.0050*

*P < 0.05 there is a significant difference.

region. The nodes of the deep areas show a trend of aggregation
with the anesthesia recovery.

(2) Characteristic path length
Our study shows that the network’s characteristic path length

raised briefly in stage B and then gradually declined as shown
in Figure 7. Compared with the significant decrease of the
clustering coefficient, the change of characteristic path length was
not significant.

(3) Efficiency
Our study shows that the network’s overall efficiency decreases

briefly in stage B, then gradually increases with the recovery
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FIGURE 6 | Clustering coefficient analysis results [(A) clustering coefficient of the whole network, (B) clustering coefficient of the cortical region, (C) clustering

coefficient of the deep region].

of anesthesia, and finally returns to the level at the time of
anesthesia, as shown in Figure 8. The changes of network
efficiency in cortical and deep areas were the same, and
the change of network efficiency was not apparent with
anesthesia recovery.

(4) Modularity
The change of modularity was similar to that of the clustering

coefficient as shown in Figure 9. The whole neural network’s
modularity was first raised briefly and then decreased with
a gradual decrease of anesthesia depth. The reason for this
result was the same as for the change of clustering coefficient.
Because these two indicators are used to describe the aggregation
degree of nodes in the network, with the change of the
whole network’s aggregation degree, the possibility of forming
different groups among nodes also changes. In anesthesia
recovery, the network modularity of the cortical area decreased
significantly, while the network modularity of the deep area
increased gradually.

Betweenness Centrality and Degree
When the threshold value was high, the overall degree value
of each region was relatively high as shown in Figure 10B. On
the other hand, overall, the changing trend of degree value and
the difference between each period was not apparent as shown
in Figure 10A. We divided all the data into cortical and deep
areas and arranged them on average to observe the importance of
nodes in anesthesia recovery. When the threshold value was low,
each region’s overall betweenness was relatively high as shown
in Figure 11B. Overall, the changing trend of betweenness and
the difference between each period was more apparent than the
degree as shown in Figure 11A. We still divided all data into
cortical and deep areas and arranged them on average to observe
the more restrictive node’s effect during anesthesia recovery.

According to the above results, in the cortical area from
anesthesia to recovery, the node with the highest degree value was
the occipital lobe (A, B, C), and then gradually transferred to the
left temporal lobe (D, E) as shown in Figure 12A. In the deep
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FIGURE 7 | Characteristic path length analysis results [(A) Characteristic path length of the whole network, (B) Characteristic path length of the cortical region, (C)

Characteristic path length of the deep region].

areas, the node with the highest degree value was the bilateral
amygdala (A, B, C); in the D period close to recovery, the left
fusiform gyrus was the highest, and then gradually recovered
and returned to the bilateral amygdala (E). In the cortical areas,
the nodes with the highest betweenness centrality were the left
angular gyrus (A), the right angular gyrus (B), the right temporal
lobe (C), the left temporal lobe (D), and the right angular gyrus
(E) as shown in Figure 12B. In the deep areas, the nodes with
the highest intermediate centrality were the right amygdala (A),
the left cingulate gyrus (B), Right insular lobe (C), right amygdala
(D), right amygdala (E).

DISCUSSION

Most previous studies have focused on the relation of EEG
spectrum progression to loss of responsiveness during induction
of anesthesia (26–28). In this research, SEEG was used
to collect the data of epileptic patients. The changes of

various brain regions during the natural process of propofol
anesthesia recovery and the overall variation of the relationship
between them were observed. Simultaneously, the network
was constructed by SEEG data, and the brain network was
analyzed by the graph theory method. We verified that the
bilateral cortex’s recovery process is the opposite, which is
not found in the deep regions. Previous studies on anesthesia
research have speculated that the frontal and parietal lobes
are the critical areas associated with anesthesia anesthetic
induction (29). Our study showed that the occipital lobe
plays an essential role in ROC from anesthesia, which further
indicates that the induction of and ROC from anesthesia may
be associated with different brain regions. However, it remains
to be studied whether the results will be different with different
anesthetic drugs.

Some studies have shown that brain recovery from general
anesthesia is not random but ordered. A study about local
field potential data in rats found that when the anesthetic
isoflurane is discontinued, brain activities recover through
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FIGURE 8 | Efficiency analysis results [(A) Efficiency of the whole network, (B) Efficiency coefficient of the cortical region, (C) Efficiency of the deep region].

an ordered series of state transitions (30). Some transition
paths were found to be more probable than other paths. One
study observed two distinct emergence patterns after general
anesthesia. One pattern showed progressive spectral changes
in the electroencephalogram before the response, whereas the
other showed no explicit change of spectral properties before
an abrupt return of responsiveness (31). A recent study was
conducted on recording the electrophysiological activity of the
amygdala and other cortical areas from anesthesia to the recovery
of consciousness was in propofol-anesthetized five epileptic
patients using stereo-EEG (SEEG). They observed that when
propofol concentration decreased, PSD in the delta band of
the amygdala decreased significantly. When it was close to
awakening, the correlation between the amygdala and ipsilateral
temporal lobe significantly decreased followed by a considerable

increase when awake (11). In the study of Gugino et al., they
found decreased posterior alpha and increased frontal/central
beta power in the light sedation phase in healthy adult volunteers
anesthetized with propofol or sevoflurane (32). When the
sedation progressed to deep, the frontal power predominance
increased with greater involvement of alpha and, to a lesser
extent, delta and theta power. As the consciousness was lost,
delta and theta power increased further in anterior regions and
also spread to posterior regions. These changes reversed with
a return to consciousness (32). A similar study also classified
the emergence patterns of 100 surgical patients as progressive
(∼70% of the cohort) or abrupt (∼30% of the cohort) based
on the power spectra of σ (0.5–4Hz) and α/spindle (8–14Hz)
of the frontal electroencephalogram. The emergence patterns
can be qualitatively described as “progressive and earlier state
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FIGURE 9 | Modularity analysis results [(A) Modularity of the whole network, (B) Modularity of cortical region, (C) Modularity of deep region].

transition” and “abrupt but delayed state transition” (33).
Another study applied a graph-theoretic network analysis that
classified emergence patterns as progressive and abrupt, with
accompanying network features (34). For example, anesthetics
such as ketamine induce various subjective experiences even
though connected consciousness appears lost during ketamine
anesthesia, as evidenced by loss of responsiveness (35). We also
observed significant PSD changes in many areas at the beginning
of stop infusion and near recovery.

A system, such as a brain network, can generate information
capable of being used in many differentiated states. A system
is said to be highly integrated if it cannot be reduced to
independent parts. Any system that possesses both of these
properties is deemed to be conscious (36). Integrated information
theory predicts that, during sleep and anesthesia, possible
brain states’ repertoire is diminished (reduced information),

and cortical communication is impaired (reduced integration).
The combined loss of information and integration in the brain
may result in unconsciousness (37). In a study, EEGs from
32 normal subjects were recorded and functional networks of
three different sizes were extracted and concluded that the
estimates of network metrics significantly differ depending on
the network size (38). Our study found that during the ROC
process, the modularity and clustering coefficient of the deep
area network is significantly improved. However, the changes
of the bilateral cerebral cortex were different. The SEEG used
in this study, in essence, is also an EEG signal, so we selected
a specific electrode contact in the target area as the node
of the network.

In this study, we build a network from EEG data of multiple
patients, which is a new attempt, so when we define the edge,
we try the above methods, compare the results, and finally
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FIGURE 10 | The change of degree during anesthesia recovery [(A) the histogram of average degree values of each region; (B) The degree values of different

thresholds].

choose mutual information. This method can highlight the
characteristics of the network, and it is also a comprehensive
algorithm. Another critical part of network research is the choice
of threshold (39). At present, there is no unified conclusion
on the choice of threshold, which is also a topic worthy
of study. The standard methods to define threshold include
relative threshold, absolute threshold, consistent threshold, and
continuous threshold. In the study of McColgan et al., they
compared the above threshold strategies’ effects by using a
cohort of patients with chorea Huntington and a healthy control
group. Their study pointed out that the impact of various
thresholds on the network degree value was not significant.
Besides, in terms of the correlation of clinical studies, the
study pointed out that the threshold range of relative threshold
and consistency threshold was relatively stable (40). There are
some differences between continuous thresholds. The absolute
threshold is very unstable, and the results are highly variable
(41). Zhang et al. found that the relative threshold method
may be one of the most widely used threshold methods,
which is either performed on a predefined threshold level or
a series of thresholds (42). To sum up, the relative threshold
results are reliable in clinical research, and it is also the
most commonly used one. Therefore, in our study, we also
used the relative threshold method to describe each stage’s
network properties, ranging from 0.1 to 0.5, with a step
size of 0.01.

Graph theory analysis indicators are mainly used to describe
the changes of network properties in a state change. Specific
observations are determined by researchers which include
characteristic path length, global efficiency, clustering coefficient,
modularity, degree, and betweenness centrality. The higher
betweenness centrality of a point indicates that many or even all
of the shortest paths between other points must pass through it
(43). If this point disappears, the communication between other
points will become difficult or even disconnected. Therefore,
betweenness centrality and degree are similar, which are essential
indicators of nodes. In this study, when the threshold value is low,
each region’s overall betweenness is relatively high. Overall, the
changing trend of betweenness and the difference between each
period is more apparent than the degree.

Some pure mathematical algorithms are complicated for
clinical researchers to understand. In this study, we chose the
toolbox (Graphvar) to analyze the network’s graph property.
Using a toolbox is easier for clinical researchers than using
other traditional methods, and it enables us to focus on
experimental-related content rather than complex mathematical
calculations. Another critical frontier of network science is
network dynamics, leading to a greater understanding of state
transitions due to diverse anesthetic perturbations. Network-
based theories and analyses of big data in neuroscience might
also enable greater predictive power in the clinical realm. For
example, it is conceivable that LOC, ROC, and specific altered
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FIGURE 11 | The change of Betweenness centrality during anesthesia recovery [(A) the histogram of average Betweenness centrality of each region; (B) The

Betweenness centrality of different thresholds].

FIGURE 12 | The Change of Degree and Betweenness centrality during anesthesia recovery [blue represent the cortical area, green represent deep area; (A) Degree;

(B) Betweenness centrality].

cognitive functions could be predicted based on structural or
functional network architectures and their dynamic response to
anesthetic or sedative interventions. Such a framework could

create new opportunities for clinical anesthesiologists to perturb
consciousness and cognition or manipulate state transitions.
In the future, we will try to observe the differences among
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different anesthetics and compare left and right-handed patients.
Moreover, the electrophysiological activity of the brain is closely
related to that of the perioperative neurocognitive disorders
(PND). We also intend to explore the fundamental mechanism
through animal experiments.

CONCLUSION

Electrophysiological activity of the cortical and some deep
brain areas from anesthesia to the recovery of consciousness
was investigated in propofol-anesthetized 16 epileptic patients
using stereo-EEG (SEEG). We observed significant PSD changes
in many areas at the beginning of stop infusion and near
recovery. Our study found that during the ROC process,
the modularity and clustering coefficient of the deep area
network is significantly improved. However, the changes of
the bilateral cerebral cortex were different. Power spectrum
analysis shows that low-frequency EEG in anesthesia recovery
accounts for a large proportion. The changes of the bilateral
brain in the process of anesthesia recovery are different. Except
for the frontal lobe, the left and right sides of the cortex
showed an opposite trend with the decrease of anesthesia. The
left and right sides of the deepest areas showed the same
trend with the decrease of anesthesia. Significant increases
and decreases are mainly observed in stage B and stage E.
Comparing with the low-frequency band (delta and theta),
the change of the high-frequency band (alpha and beta) was
more obvious. Coherence changes among brain regions mainly
occurred at stage B and stage E. The increase in stage B
was mainly from low-frequency EEG, and the increase in
stage E was mainly from high-frequency EEG. The EEG
changes of the B and E stages may be caused by brain
network remodeling.

The clustering coefficient gradually decreased with the

recovery from anesthesia, and the changes mainly came from
the cortical region. The characteristic path length and network

efficiency do not change significantly during the recovery from

anesthesia, and the changes of networkmodularity and clustering
coefficient were similar. During ROC, the left occipital lobe, the

left temporal lobe, bilateral amygdala were essential nodes in the

network. Some specific cortical regions [left angular gyrus (A),
right angular gyrus (B), right temporal lobe (C), left temporal
lobe (D) and right angular gyrus (E)] and deep regions [right
amygdala (A), left cingulate gyrus (B), right insular lobe (C),
right amygdala (D), right amygdala (E)] had more significant
constraints on other regions. Our study showed that the occipital
lobe plays an essential role in ROC from anesthesia, which further
indicates that the induction of and ROC from anesthesia may
be associated with different brain regions. However, it remains
to be studied whether the results will be different with different
anesthetic drugs.

Our study has some limitations. First, SEEG signals were
recorded from epileptic patients, and the electrode coverage

was determined by clinical criteria. Therefore, the present
study’s findings can only be interpreted in the context of
the covered areas. Second, the SEEG may differ between
epileptic patients and healthy populations because of the effect
of seizure foci and antiepileptic drug therapy. Whether the
findings of this study can be generalized to the healthy
brain requires additional investigation. Finally, this study
describes exploratory research, and the sample size is relatively
small. Therefore, further research and analysis are required to
validate our results. Another limitation of this study is the
application of non-directed functional connectivity methods.
Future studies will be performed using the connectivity
methods based on the Granger causality principle, or the
Transfer Entropy.
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