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Objective: Skull fractures caused by head trauma can lead to life-threatening

complications. Hence, timely and accurate identification of fractures is of great

importance. Therefore, this study aims to develop a deep learning system for automated

identification of skull fractures from cranial computed tomography (CT) scans.

Method: This study retrospectively analyzed CT scans of 4,782 patients (median

age, 54 years; 2,583 males, 2,199 females; development set: n = 4,168, test set:

n = 614) diagnosed with skull fractures between September 2016 and September

2020. Additional data of 7,856 healthy people were included in the analysis to reduce

the probability of false detection. Skull fractures in all the scans were manually labeled

by seven experienced neurologists. Two deep learning approaches were developed

and tested for the identification of skull fractures. In the first approach, the fracture

identification task was treated as an object detected problem, and a YOLOv3 network

was trained to identify all the instances of skull fracture. In the second approach, the task

was treated as a segmentation problem and a modified attention U-net was trained to

segment all the voxels representing skull fracture. The developed models were tested

using an external test set of 235 patients (93 with, and 142 without skull fracture).

Results: On the test set, the YOLOv3 achieved average fracture detection sensitivity

and specificity of 80.64, and 85.92%, respectively. On the same dataset, the modified

attention U-Net achieved a fracture detection sensitivity and specificity of 82.80, and

88.73%, respectively.

Conclusion: Deep learning methods can identify skull fractures with good sensitivity.

The segmentation approach to fracture identification may achieve better results.

Keywords: skull fractures, deep learning algorithms, automated detection, CT bone algorithm sequences,
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INTRODUCTION

Head trauma is one of the most common diseases observed
in emergency departments. Cases of head trauma caused by
instances of relatively high force, such as motor vehicle accidents,
pedestrian injuries, falls, and assault commonly present with
skull fractures (1). Skull fractures can result in numerous critical
and life-threatening complications, including intracranial and
orbital injuries, cerebrospinal fluid (CSF) leakage, cranial nerve
palsies, and vascular injuries (2). Therefore, timely and accurate
diagnosis of skull fracture is very important for the management
of traumatic head injury.

Cranial computed tomography (CT) is the commonly
used diagnostic tool in the care of suspected skull injuries.
In the present clinical practice, radiologists assess the CT
scans for the presence of skull fractures. However, on the
CT images, skull fractures are generally observed as very
small sized narrow slits in the cranium and are present
at diverse locations in diverse forms (linear, depressed,
diastatic, or basilar) (3–5). Also, skull fractures, especially
linear fractures, may be missed when they are within the
plane of the image reconstruction (6). Furthermore, other
skull features like artery entrapment gap, emissary veins, and
cranial sutures share a similar appearance as that of skull
fractures. These characteristics make the manual identification
of skull fractures a time-consuming, laborious, and error-prone
process. Therefore, an automated system for the identification
of skull fractures can significantly reduce the diagnostic
time and help in better management of traumatic head
injury. Furthermore, such a system can aid in prioritizing
the skull fracture patients for radiological assessments and
further treatments.

A few studies have attempted the automatic detection of skull
fractures from the CT scans using the classical methods of image
manipulations like entropy function, Sobel edge detection, and
selective black hat transform (7–9). However, these methods only
considered local features for the prediction of skull fracture,
were tested with significantly smaller datasets, and experienced
a very high number of false detections. Different from the
classical approach, a data-driven approach of deep learning,
which is a branch of artificial intelligence (AI), has achieved
remarkable progress in image interpretation tasks (10, 11).
Deep learning extracts features of images through a cascade of
many layers of non-linear processing units and tries to explain
the representations of the image data based on the learning
of multiple levels of features. Since 2012, deep learning has
rapidly become the cutting-edge method in image analysis with
the use of convolutional neural networks (CNNs). There has
been increasing interest in the application of deep learning in
medical image analysis in certain fields, including the automated
analysis of diabetic retinopathy (12), mammographic lesions
(13), lung nodules (14, 15), pulmonary tuberculosis (16), gastric
cancer (17), and dermatological diseases (18–22). Considering its
success in themedical domain (12–25), one study has also applied
deep learning for the task of skull fracture identification (26).
However, the achieved detection accuracy was limited, possibly
due to the lack of a large amount of training data (26).

In this study, we aim to develop two different approaches of
deep learning for the identification of skull fracture from the CT
scans using a significantly large dataset. In the task of fracture
detection, identification of the presence of the fracture and its
approximate location are sufficient in clinical use. Therefore,
in the first approach, we treat the task of fracture detection
as an object detection problem and apply the YOLOv3 object
detection algorithm for the detection of fractures. In the second
approach, we employ more stringent criteria and aim to precisely
segment the fractured pixels using a modified attention U-net
architecture. We compare the results of these two approaches.

MATERIALS AND METHODS

Standard Protocol Approvals, and Patient
Consents
This study was approved by the Ethics Committee of the
Beijing Tiantan Hospital and was in accordance with the
Helsinki Declaration.

Study Design and Participants
This study retrospectively analyzed the data from 4,782 patients
admitted to the Tiantan hospital, Bejing, China from September
2016 to September 2020 with a diagnosis of skull fractures. The
patients with a mention of a skull fracture in the electronic health
records were reviewed by experienced clinicians and the patients
with a confirmed diagnosis of skull fracture were included in
this study. The patients were reviewed for the availability of
good-quality cranial CT images. The data was randomly divided
into a training dataset (n = 4,168, ∼85%) and an internal test
dataset (n = 614, ∼15%) for the development and testing of the
developed models. In addition to the data from patients with
a skull fracture, to control for cases of false detection, we also
included CT imaging data from 7,856 healthy patients in the
training dataset. Lastly, for independent assessment of the model
performance, an independent test dataset of 235 patients was
prospectively collected and it contained CT images of 93 people
with skull fractures and 142 healthy people.

CT Acquisition and Manual Annotation of
Skull Fractures
The cranial CT images were acquired according to the standard
clinical CT acquisition protocol for each patient. Each CT scan
contained 32–40 number of axial slices and the sagittal and
coronal view spacing were between 0.43 and 0.9 (equal along both
the planes). All the collected CT scans were manually labeled by
a team of seven radiologists. For each CT scan, the skull fractures
were labeled in the 2D axial slices in two different ways. In the
first method, all the pixels representing the skull fracture were
labeled as lesions (segmentation mask). In the second method,
all the isolated instances of skull fracture were annotated with
rectangular bounding boxes that enclose each skull fracture.
In this method, each isolated fracture was identified using the
coordinates (x, y), and height and width (h, w) of its bounding
box within the 2D axial slices. A few examples of these manual
annotation methods are presented in study. All the annotations
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were reviewed by two neurologists with more than 15 years of
experience. Final adjudications were defined as the ground truth.

CT Preprocessing
Prior to the analysis with the deep learning methods, all the axial
2D slices were resampled to uniform axial dimensions of 512 ×
512 pixels using bilinear interpolation.

Fracture Identification With Object
Detection Approach
In the first approach, the problem of automatic identification of
skull fractures was formulated as an object detection problem
with isolated instances of skull fracture being the object of
interest. In this approach, the aim was to correctly identify
the presence of skull fracture and find its approximately
accurate location in 2D CT slices. Here, each fracture was
represented by a rectangular bounding box at coordinate
locations x, y, and of size h, w, which tightly encloses the
fracture. For each fracture, the objective of the deep learning
system was to correctly predict the coordinate locations and
size of the fracture bounding box (x,y,h,w) and identify the
content of the box to be a fracture. The bounding boxes
predicted by the deep learning system were considered to
be accurate if the mean intersection over union (mIOU)
between the predicted box and ground truth box was higher
than 0.4.

For the identification of skull fractures with the object
detection approach, we employed a YOLOv3 architecture, which
is one of the most successful object detection frameworks
designed for the analysis of natural images. As presented in
the manuscript, the YOLOv3 architecture primarily consists of
two parts; a Darknet53 backbone network and a multiscale
prediction headmodule. The Darknet53 backbone is a stack of 53
convolution layers that acts as a feature extractor and is designed
to learn abstract higher dimensional features from the input
images. The multiscale prediction head module is a set of three
parallel convolution blocks that process the features encoded by
the Darknet53 at 3 different spatial resolutions and predict the
coordinates of multiple bounding boxes (x,y,w,h), probabilities of
each bounding box to contain any object (pc, pc is the confidence
of bounding boxes predicted by YOLOv3.), and the probabilities
of the object in each box belonging to a particular class of interest
(pci, pci is the probability of the bounding boxes belongs to
the i-th category.). In this study, we repurposed the YOLOv3
architecture to accept the preprocessed 2D axial CT slices as an
input [input shape: (512, 512, 1)] and to predict the bounding
box locations and the probability of the presence of the fracture
in the bounding box as an output.

The YOLOv3 architecture was trained with the composite
YOLOv3 loss function with a batch size of 8 using the Adam
optimizer. Image augmentation strategies including resize, crop,
zoom, horizontal flip, and rotation were randomly applied
during the training process to improve the model generalization
performance. The initial learning rate was set to 10∧{-3} and
the learning rate was reduced by a factor of 2 if the loss on
the validation set (20% of the training data) did not decrease

for 10 consecutive epochs. The training was stopped when the
validation set loss did not decrease for 50 consecutive epochs and
themodel with the lowest validation set loss was selected as a final
skull fracture object detection model. This model was used to
detect the skull fractures on the internal and external test datasets.

The performance of the YOLOv3 architecture was evaluated
using precision and recall in correctly identifying the fracture
bounding boxes. The box-wise precision was defined as the
number of correctly detected fracture bounding boxes divided
by the total number of predicted bounding boxes. Similarly,
the box-wise recall was defined as the number of correctly
detected fracture bounding boxes divided by the total number
of ground truth fracture bounding boxes. The precision
and recall were separately calculated for every patient and
were averaged across all the patients to compute the dataset
level performance.

Fracture Identification With a
Segmentation Approach
In the second method, we approach the problem of skull fraction
identification as a lesion segmentation problem wherein the
objective is to identify all the pixels containing skull fracture
in the 2D CT axial slices. This is a more stringent criterion

FIGURE 1 | Workflow of the study.
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than the object detection approach and it seeks the exact
location of the skull fracture. Moreover, the small size and highly
heterogeneous location of skull fractures make the segmentation
task more difficult.

To segment skull fractures, a modified attention U-Net
architecture was used and it is presented in the manuscript.
This architecture primarily consists of the encoder and decoder
path. The encoder was composed of 3 residual convolution
blocks which were combined with a max-pooling operation.
Similarly, the decoder consisted of 3 corresponding residual
attention blocks with up-sampling layers and skip connections.
The architecture was designed to accept preprocessed 2D axial
CT slices as an input [input shape: (512, 512, 1)] and predicted a
lesion mask of size (512, 512, 1), classifying each pixel to either
skull fracture or background class.

The modified attention U-Net architecture was trained in a
similar manner as that of the YOLOv3. Image augmentation
strategies including resize, crop, zoom, horizontal flip, and
rotation were randomly applied during the training process
to improve the model generalization performance. The
initial learning rate was set to 10∧{-3} and was reduced
by a factor of 2 if the dice coefficient on the validation
set (20% of the training data) did not increase for 3
consecutive epochs.

For the training of the modified attention U-Net we used a
composite loss function which was weighted sum of dice loss
(
√

ldice) and weighted binary cross-entropy loss (
√
lwBCE). The

total loss was defined as:

√

loss = l = wdice ldice + wwBCE lwBCE

The
√
wdice, and

√
wwBCE determined the relative weight of the

dice and the BCE loss, and they were set to 2.0, and 1.0,
respectively, in this work. Furthermore, owing to the very small
size of the skull fractures relative to the background pixels,
we differently defined the weight pattern of the BCE loss. The√
lwBCE was defined as:

√

√

√

√lwBCE =
P

∑

p=0

WpC
(

Ip, I′p
)

Where,
√

C
(

Ip, I′p
)

is a cross-entropy loss at pixel p (Ip and

Ip’ stand for corresponding value of pixels in groundtruth and
prediction, respectively), and

√

Wp is the weight assigned to that

pixel. Here, we define the
√

Wp to give higher weights to the

FIGURE 2 | Morphology of skull fractures and structures analogous to skull fractures. (A) Morphology of skull fractures in different positions and different fracture

morphologies. (B) Skull fracture mimics the structure of the artery entrapment gap. (C) Skull fracture mimics the structure of the emissary’s vein. (D) Skull fracture

mimics the structure of the sutura crania.
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pixels with a skull fracture and which are at the boundary of the
skull fracture. It is calculated as:

√

Wp =
∑

Pool(I′i)
∑

5× e−6×[Pool(I′i )−1]

where
√
Pool is the average pooling function, the pooling size of

which is 5.
In this manner, the model was trained, and the training

was stopped when the validation set dice coefficient did not
increase for 50 consecutive epochs. The model with the highest
validation set dice coefficient was selected as a final skull fracture
segmentation model. This model was used to detect the skull
fractures on the internal and external test datasets.

The performance of the segmentation model was evaluated
using lesion-wise precision and recall. A continuous skull
fracture lesion was considered to be correctly predicted if more
than 50% of pixels in the lesion were identified as lesioned

by the segmentation model. Using this criterion, lesion-wise
precision was defined as the number of correctly detected skull
fracture lesions divided by the total number of predicted lesions.
Similarly, the lesion-wise recall was defined as the number of
correctly detected lesions divided by the total number of ground
truth lesions. The precision and recall were separately calculated
for every patient and were averaged across all the patients to
compute the dataset level performance. We selected the lesion-
wise statistics rather than commonly used pixel-wise statistics
because these metrics were more closely comparable to the box-
wise performance assessment of the first approach. The pixel-
wise precision and recall were also computed in a similar manner.

Statistical Analysis
Model performance was compared using a Fisher exact analysis.
P < 0.05 was considered a significant difference. The statistical
analysis was performed using SPSS software (version 20.0).

FIGURE 3 | YOLOv3 network. (A) Structure of the YOLOv3 network. (B) Train loss curve of the YOLOv3 network. (C) Validation loss curve of the YOLOv3 network.
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We assume that the detection (segmentation) results can be
expressed as a confusion matrix:

(

TP

FN

FP

TN

)

The boxes level metrics is defined as:

precision =
TP

TP + FP

recall =
TP

TP + FN

The slices level metrics is defined as:

precision =
1

|s|
∑

s∈S

TPs

TPs + FPs

recall =
1

|s|
∑

s∈S

TPs

TPs + FNs

The patient level metrics is defined as:

precision =
1

|P|
∑

p∈P

TPp

TPp + FPp

recall =
1

|P|
∑

p∈P

TPp

TPp + FNp

RESULTS

Patient Basal Information and
Characteristics
In Figure 1, we represent the entire method for the DLS
setup. A total of 172,028 patients’ CT bone algorithm sequence
images performed in 4,782 skull fracture patients were included.
We distributed these data into the training cohort, validation
cohort, and testing cohort (data not shown) randomly; thus, no
significant differences in sex or age could be observed (data not
shown). Additionally, this study included 251,392 slices from
7,856 healthy people.

Themorphology of the skull fracture and structures analogous
to skull fractures, such as the structure of the artery entrapment
gap, the structure of the emissary vein, and the structure of
the sutura crania, as shown in Figure 2. The distribution of the
lesion data has no bias due to the random distribution method.
The parameters of these data were obtained from a similar
investigator and scanner. We confirmed the scanner parameter
by pixel and thinness, the brightness, and contrast data were
normalized before being fed into the DLS system.

Set-Up DLS and Performance of the DLS
Contouring
To set up the DLS, the labeling data for the model training and
validation were manually performed. In summary, we manually
labeled ∼172,028 images for training and validation (Figure 1).
For the first DLS, named YOLOv3, the proposed 2-dimensional
convolutional neural network’s network architecture is shown in
Figure 3. More detailed information on the network architecture

FIGURE 4 | Representative images show the raw data of skull fractures based on CT bone algorithm sequence slices, manual skull fracture labeling, and prediction

(by the YOLOv3 network). Samples 1, 2, and 3 were from different patients, and the Dice scores were 0.829, 0.892, and 0.850, respectively.
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can be found in the Methods of Network Architecture (YOLOv3)
section. After training and validation, the DLS was tested using
the testing data set. The accuracy of the DLA-generated masking
is represented in Figure 4 sample 1 to sample 3 with a Dice score
around 0.87. For the second DLS, named Attention Unet, the
proposed 2D deep learning segmentation framework’s network
architecture is shown in Figure 5. More detailed information for
the network can be found in the method of network architecture
(Attention Unet) section. After training and validation, the DLS
was tested using the testing data set. The accuracy of the DLS-
generated masking is represented in Figure 6, with a Dice score
of 0.72.

Results on the Test Dataset
Following the training of both deep leering systems for skull
fracture identification, their performance was tested on the
test dataset containing the CT scans of 235 patients. On
this dataset, the object detection approach using YOLOv3

achieved a box-wise precision and recall of 0.894 and
0.587, respectively. The algorithm was able to identify at
least one skull fracture layer in the patients, achieving the
sensitivity of 80.64% in the identification of patients with
skull fractures.

On the same dataset, the segmentation approach of skull
fracture identification using the modified attention U-Net
architecture achieved a lesion-level precision and recall
of 0.71 and 0.567, respectively. The algorithm was able
to identify at least one lesion in the patient and achieved
a sensitivity of 82.8% in the identification of patients
with skull fractures. Despite the relatively low lesion-wise
recall, a high degree of visual agreement was observed
between the predicted and ground truth skull fracture
segmentations. Some examples of fracture segmentation
using the modified attention U-net are presented in Figure 6.
The complete results on the internal test dataset are presented in
Table 1.

FIGURE 5 | Attention Unet. (A) Architecture of Attention Unet. (B) Train loss curve of Attention Unet. (C) Validation loss curve of Attention Unet.
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FIGURE 6 | Represented images for the demo case. (A) Representative images showing the raw data of skull fractures based on CT bone algorithm sequence slices,

manual skull fracture labeling, 3-D reconstruction images of sutura and fracture, and 3-D reconstruction images of sutura, fracture, and whole skull. (B) The

represented images show the demo case from a 3D perspective (front, back, right side, left side), with manually labeled images and predication-labeled images.

Clinical Evaluation
To understand the generalizability of the model, the performance
of the two models was tested on the test dataset of 235 patients.
In this dataset, the YOLOv3 architecture was able to identify
the presence of skull fracture in 75 of the 93 patients. Also,
it correctly predicted 122 of the 142 people to not have any
skull fracture. This resulted in patient-level sensitivity, specificity,
and accuracy of 80.64, 85.92, and 83.83%, respectively. For the
same dataset, the patient level sensitivity, specificity, and accuracy
of the modified attention U-net was 82.8, 88.73, and 88.26%,
respectively. More detail information of the complete result is
presented in Table 2.

TABLE 1 | Skull fracture identification on the test dataset.

Model Precision Recall

YOLOv3 Box-wise 0.5722 0.7302

Modified attention U-net Pixel-wise 0.410 0.419

Lesion-wise 0.710 0.567

DISCUSSION

In this study, we found that a deep learning CNN has
good performance identifying and detecting skull fractures.
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TABLE 2 | Skull fracture identification on the test dataset.

YOLOv3 Modified attention U-net

Predicted label Predicted label

P N P N

Actual Have fracture (P) 75 18 77 14

Label Healthy (N) 15 127 16 126

Sensitivity 83.33% 82.80%

Specificity 80.65% 88.73%

Accuracy 85.96% 88.26%

The trained CNN model exhibits excellent performance
to detect skull fractures. This indicates that the well-
trained CNN model makes the automated detection
and identification of skull fractures possible. With more
data about skull fracture included in the training of the
CNN model, we think the deep learning CNN may have
similar and even superior diagnostic capability to that of
the radiologists.

Previous studies have reported the feasibility of applying
CNNs in the analysis of medical images, and promising results
were achieved in these studies.

Esteva et al. trained a CNN using a dataset of 129,450
clinical images and found that the CNN demonstrated artificial
intelligence capable of classifying skin cancer with a level
of competence comparable to dermatologists (21). Kooi T
et al. performed a head-to-head comparison between CNN
models and radiologists on mammogram reading and found
that the CNN network was comparable to certified screening
radiologists on a patch level and that there was no significant
difference between the network and the readers (13). Hua
et al. and Nishio et al. reported that deep learning methods
could achieve better discriminative results, were promising in
computer-aided diagnosis, and could distinguish lung nodule
classifications among benign nodules, primary lung cancer,
and metastatic lung cancer at different image sizes using
a deep convolutional neural network (14, 15). In addition,
CNNs have been used to detect fractures on radiographs and
have shown promising results (12–25). Kim and MacKinnon
trained the CNN network to recognize wrist fractures on lateral
wrist radiographs, and their results showed that the AUC
was 0.954, with maximized sensitivity and specificity values
of 0.9 and 0.88, respectively (22). Urakawa et al. conducted
a study to compare the capacities of the VGG_16 network
and orthopedic surgeons in detecting intertrochanteric fractures
on radiographs, revealing that the diagnostic performance
of the CNN exceeded that of orthopedic surgeons (96 vs.
92%) (26). All previous studies have demonstrated that well-
trained CNN models may have comparable capabilities of
automated detection and identification of certain features
in medical images and may have promising applications in
the future.

This study has several limitations. First, the size of the
original sample in our dataset was small. More samples
will be needed in future studies to reduce overfitting and
improve performance because the small sample size might
restrict the improvement of the CNN’s performance in
the training and test procedures. Second, the training and
assessment of the diagnostic performance of the CNN
models were based on standard plain CT scans of the
brain, which may limit the application of this method to a
practical scenario. In addition, the algorithms currently in
use have technical limitations, which may lead to errors in
image analysis.

CONCLUSION

The well-trained DLS system exhibited an excellent diagnostic
capability in distinguishing skull fractures under limited
conditions. It could be a trusted tool for the detection
of skull fractures. More image data in different clinical
conditions will be needed in future studies to improve
CNN performance.
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