AUTHOR=Rong Jifeng , Ding Li , Xiong Li , Zhang Wen , Wang Weining , Deng Meikui , Wang Yana , Chen Zhen , Jia Jie
TITLE=Mirror Visual Feedback Prior to Robot-Assisted Training Facilitates Rehabilitation After Stroke: A Randomized Controlled Study
JOURNAL=Frontiers in Neurology
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.683703
DOI=10.3389/fneur.2021.683703
ISSN=1664-2295
ABSTRACT=
Purpose: Robot-assisted training has been widely used in neurorehabilitation, but its effect on facilitating recovery after stroke remains controversial. One possible reason might be lacking consideration of the role of embodiment in robotic systems. Mirror visual feedback is an ideal method to approach embodiment. Thus, we hypothesized that mirror visual feedback priming with subsequent robot-assisted training might provide additional treatment benefits in rehabilitation.
Method: This is a prospective, assessor-blinded, randomized, controlled study. Forty subacute stroke patients were randomly assigned into an experimental group (N = 20) or a control group (N = 20). They received either mirror visual feedback or sham-mirror visual feedback prior to robot-assisted training for 1.5 h/day, 5 days/week for 4 weeks. Before and after intervention, the Fugl-Meyer Assessment Upper Limb subscale, the Functional Independence Measure, the modified Barthel Index, and grip strength were measured. Scores of four specified games were recorded pre and post one-time mirror visual feedback priming before intervention in the experimental group.
Results: All measurements improved significantly in both groups following interventions. Moreover, the Fugl-Meyer Assessment Upper Limb subscale, self-care subscale of the Functional Independence Measure, and the grip strength were improved significantly in the experimental group after a 4-week intervention, compared with the control group. Significantly higher scores of two games were revealed after one-time priming.
Conclusions: Mirror visual feedback prior to robot-assisted training could prompt motor recovery, increase ability of self-care, and potentially enhance grip strength in stroke patients, compared to control treatment. Moreover, mirror visual feedback priming might have the capability to improve the patient's performance and engagement during robot-assisted training, which could prompt the design and development of robotic systems.
Clinical Trial Registration:www.ClinicalTrials.gov, identifier: ChiCTR1900023356.