AUTHOR=Sanz Diaz Carmen Teresa , de las Heras Flórez Silvia , Carretero Perez Mercedes , Hernández Pérez Miguel Ángel , Martín García Vicente TITLE=Evaluation of Kappa Index as a Tool in the Diagnosis of Multiple Sclerosis: Implementation in Routine Screening Procedure JOURNAL=Frontiers in Neurology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.676527 DOI=10.3389/fneur.2021.676527 ISSN=1664-2295 ABSTRACT=

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Previous studies have shown that cerebrospinal fluid (CSF) kappa free light chains (K-FLCs) may have a role in MS diagnosis. In this regard, the kappa index (K-Index) has demonstrated higher sensitivity, and slightly lower specificity than oligoclonal bands (OCBs), the gold standard for the detection of intrathecal immunoglobulin synthesis, a feature of MS. Here, we evaluated the performance of the K-Index (K-Index = CSF/serum K-FLC divided by CSF/serum albumin) for the differential diagnosis of MS in a cohort of patients with suspected MS. K-FLCs were quantitatively measured in parallel serum and CSF samples by turbidimetry (Freelite Mx reagent on an Optilite system, The Binding Site Group Ltd). From 160 (63.4%) of a total of 252 patients who had K-FLC in CSF <0.03 mg/dl, below the sensitivity limit of the technique, only one had a diagnosis of MS. However, the absence of OCB in this same patient suggested no synthesis of intrathecal immunoglobulin. Globally, MS patients presented significantly higher K-Index levels than patients without an MS diagnosis (66.96 vs. 0.025, respectively; p < 0.0001). In agreement, patients with positive OCB testing also exhibited higher K-Index levels than patients negative for OCB (65.02 vs. 0.024, respectively; p < 0.0001). An optimal K-Index cutoff of 3.045 was defined by receiver operating characteristic (ROC) analysis for screening suspected MS, achieving a higher diagnostic sensitivity and slightly lower specificity than OCB (Sens. 0.9778 and Spec. 0.8629 vs. Sens. 0.8889 and Spec. 0.9086, respectively). A previously reported K-Index cutoff of 6.6 also showed good diagnostic performance (Sens. 0.9333; Spec. 0.8731), validating its power as a diagnostic biomarker for MS. Finally, a time- and cost-effective algorithm for MS screening is proposed that would offer an initial rapid evaluation of the intrathecal immunoglobulin synthesis through the K-FLC in CSF and K-Index analysis, followed by reflexing OCB testing that may be ordered more selectively.