AUTHOR=Modrau Boris , Winder Anthony , Hjort Niels , Johansen Martin Nygård , Andersen Grethe , Fiehler Jens , Vorum Henrik , Forkert Nils D.
TITLE=Machine Learning-Based Prediction of Brain Tissue Infarction in Patients With Acute Ischemic Stroke Treated With Theophylline as an Add-On to Thrombolytic Therapy: A Randomized Clinical Trial Subgroup Analysis
JOURNAL=Frontiers in Neurology
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.613029
DOI=10.3389/fneur.2021.613029
ISSN=1664-2295
ABSTRACT=
Background and Purpose: The theophylline in acute ischemic stroke trial investigated the neuroprotective effect of theophylline as an add-on to thrombolytic therapy in patients with acute ischemic stroke. The aim of this pre-planned subgroup analysis was to use predictive modeling to virtually test for differences in the follow-up lesion volumes.
Materials and Methods: A subgroup of 52 patients from the theophylline in acute ischemic stroke trial with multi-parametric MRI data acquired at baseline and at 24-h follow-up were analyzed. A machine learning model using voxel-by-voxel information from diffusion- and perfusion-weighted MRI and clinical parameters was used to predict the infarct volume for each individual patient and both treatment arms. After training of the two predictive models, two virtual lesion outcomes were available for each patient, one lesion predicted for theophylline treatment and one lesion predicted for placebo treatment.
Results: The mean predicted volume of follow-up lesions was 11.4 ml (standard deviation 18.7) for patients virtually treated with theophylline and 11.2 ml (standard deviation 17.3) for patients virtually treated with placebo (p = 0.86).
Conclusions: The predicted follow-up brain lesions for each patient were not significantly different for patients virtually treated with theophylline or placebo, as an add-on to thrombolytic therapy. Thus, this study confirmed the lack of neuroprotective effect of theophylline shown in the main clinical trial and is contrary to the results from preclinical stroke models.