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Background: The use of electrocorticography (ECoG) to avoid intraoperative

stimulation-induced seizure (ISS) during awake craniotomy is controversial. Although a

standard direct cortical stimulating (DCS) protocol is used to identify the eloquent cortices

and subcortical structures, ISS still occurs. Epilepsy is related to alterations in brain

networks. In this study, we investigated specific alterations in brain networks in patients

with ISS.

Methods: Twenty-seven patients with glioma were enrolled and categorized into the ISS

and non-ISS groups based on their history of ISS occurrence. A standard DCS protocol

was used during awake craniotomy without ECoG supervision. Graph theoretical

measurement was used to analyze resting-state functional magnetic resonance imaging

data to quantitatively reveal alterations in the functional networks.

Results: In the sensorimotor networks, the glioma significantly decreased the functional

connectivity (FC) of four edges in the ISS group, which were conversely increased in

the non-ISS group after multiple corrections (p < 0.001, threshold of p-value = 0.002).

Regarding the topological properties, the sensorimotor network of all participants was

classified as a small-world network. Glioma significantly increased global efficiency, nodal

efficiency, and the sigma value, as well as decreased the shortest path length in the ISS

group compared with the non-ISS group (p < 0.05).

Conclusions: The specific alterations indicating patient susceptibility to ISS during DCS

increased global and nodal efficiencies and decreased the shortest path length and FC

induced by gliomas. If the patient has these specific alterations, ECoG is recommended

to monitor after-discharge current during DCS to avoid ISS.

Keywords: intraoperative stimulation-induced epilepsy, direct cortical stimulating, glioma, seizure, sensorimotor

network
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INTRODUCTION

Awake craniotomy (AC) is the optimal approach to prevent
neurological deficits when eloquent structures are invaded (1).
Intraoperative stimulation-induced seizure (ISS) is the most
serious complication of AC. Despite the application of a standard
protocol of direct cortical stimulation (DCS) and using ice-cold
Ringer’s solution for control (2, 3), ISS is difficult to prevent
(incidence was 2.2–21.5%) (1, 4–14). If ISS occurs, patients will
have poor cooperation, and the time of functional monitoring
will be prolonged, and the accuracy of identifying functional
areas will be decreased. Accordingly, ISS prevention is crucial
in AC.

Electrocorticography (ECoG) is a minimally invasive
technique of intraoperative neuro-monitoring. Whether or not
ECoG should be used in AC to prevent ISS remains controversial
(2, 4). Some traditional studies supported the use of ECoG
during AC to establish the threshold of stimulation and capture
after-discharges (15). In contrast, Boetto et al. (16) suggested that
ECoG was unnecessary for AC. They proposed that ISS incidence
was only 3.5% and that using ECoG would only complicate the
surgical process. Hence, identifying patients susceptible to ISS is
important to clarify the standards for using ECoG.

Seizures are considered related to brain network alterations.
However, the association between ISS and alterations in
functional networks remains poorly understood. Resting-state
functional magnetic resonance imaging (rs-fMRI) with graph
theoretical analyses can reveal the distribution of brain networks
and identify changes in topological properties. Hence, we
enrolled glioma patients who underwent AC and performed rs-
fMRI analysis using a graph theoretical approach. We aimed to
find characteristic differences in functional networks between
patients with and without ISS and to ascertain which patients are
suitable for ECoG to capture after-discharges during AC.

MATERIALS AND METHODS

The institutional review board of Beijing Tiantan Hospital
approved this study. All enrolled patients and participants
provided written informed consent.

Participants
We retrospectively reviewed 84 patients diagnosed with gliomas
who underwent AC with DCS to preserve motor, sensory,
and motor-related language functions between March 2017
and March 2019 at Beijing Tiantan hospital. The inclusion
criteria were as follows: (a) patient aged >18 years; (b) no
history of biopsy, radiotherapy, or chemotherapy. The exclusion
criteria were as follows: (a) contraindications for MRI; (b) head
motion >1mm in translation or 1◦ in rotation; and (c) the
administration of antiepileptic drugs before preoperative rs-fMRI
scanning. All enrolled patients were classified into epileptic (ISS)
and non-epileptic (non-ISS) groups based on ISS occurrence.
Moreover, all patients received 0.5 g levetiracetam twice a day
to prevent glioma-related epilepsy after rs-fMRI scanning. We
also recruited 20 healthy participants matched for age, sex, and
education level.

Clinical Characteristics
Data for age, sex, education level, preoperative epilepsy,
Karnofsky Performance Scale (KPS) score, and histopathology
were derived from inpatient records and results of preoperative
electroencephalograms. ISS and stimulation current information
was derived from surgical records and intraoperative photos.

Intraoperative Stimulation Protocol
The stimulation protocol was the same as that described
previously (17). The Ojemann stimulators with 5-mm diameter
were employed to identify the eloquent cortices (intensity, 1–
6mA; frequency, 60Hz; square wave). The stimulation current
began at 1mA and was increased by 0.5-mA increments until the
stimulation threshold was established. The stimulation threshold
was determined by inducing unconsciousmovements (precentral
gyrus stimulation) or transient numbness (postcentral gyrus
stimulation). If the stimulation threshold were established, the
stimulation current would remain constant and would be used
to identify the eloquent cortices and subcortical structures.
The duration of stimulation for identification was 1 s for
sensorimotor-related structures and 4 s for language-related
structures. No site was continuously stimulated. Whenever ISS
occurred, ice-cold Ringer’s solution was used to terminate it. If
the seizure duration was over 10 s, benzodiazepine medications
were administered, and functional monitoring was discontinued.
ECoG was not used to capture after-discharges or determine the
stimulation threshold.

MRI Acquisition
A MAGNETOM Prisma 3T MR scanner (Siemens, Erlangen,
Germany) was used to acquire all image data. The parameters
of MRI sequences (T1, FLAIR, and rs-fMRI) were as follows:
T1 magnetization-prepared rapid acquisition gradient echo
with gadolinium enhancement to acquire anatomical images,
repetition time (TR): 2,300ms; echo time (TE): 2.3ms; field of
view (FOV): 240 × 240 mm2; flip angle: 8◦; slice number: 192;
voxel size: 1.0 mm3

× 1.0 mm3
× 1.0 mm3; FLAIR sequence,

TR: 5,000ms; TE: 387ms; FOV: 220 mm2
× 220 mm2; flip angle:

150◦; slice number: 128; thickness: 0.9mm; voxel size in panel: 0.4
mm3

× 0.4 mm3
× 0.9 mm3; rs-fMRI sequence, TR: 2,000ms;

TE: 30ms; FOV: 220 mm2
× 220 mm2; flip angle: 90◦; slice

number: 30; voxel size in panel: 3.0 mm3
× 3.0 mm3

× 3.0 mm3,
acquisition duration: 8 min.

Participants were asked to close their eyes without thinking
about anything in particular during rs-fMRI acquisition.

Regions of Tumor Invasion
The MRIcron software (http://www.mccauslandcenter.sc.edu/
mricro/mricron/) was used to manually draw the extent of
glioma invasion (shown in Supplementary Figure 1), in the
individual patient images, by two neuroradiologists (with 10
years’ experiences of glioma diagnosis) independently based on
the enhanced regions of the FLAIR images for low-grade glioma
and T1 enhancement images for high-grade glioma. If there was
over 5% difference in the region between the two drawn images,
a third neuroradiologist with 20 years’ experience made the final
decision. The drawn regions of tumor invasion of all patients
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were normalized into the MNI-152 T1 template using SPM 8
(University College London, London, United Kingdom; http://
www.fil.ion.ucl.ac.uk/spm/). The tumor volume was calculated
using MRIcron software.

Functional MRI Preprocessing
A graph theoretical network analysis toolbox (GRETNA, https://
www.nitrc.org/projects/gretna) (18, 19) was used for rs-fMRI
preprocessing. The pipeline of preprocessing was as follows
(20): (a) data transformation (from DICOM to NIFTI);
(b) removal of the first 10 images; (c) timing slice; (d)
realignment; (e) normalization (normalized to the EPI template)
(21); (f) smoothing (full width half maximum: 6mm); (g)
linear detrending; (h) regressing out covariance [cerebrospinal
fluid (CSF) signal: with CSFMask_3mm; white matter signal:
with WMMask_3mm; head motion: Friston-24 parameters];
(i) temporal filtering (0.01–0.1Hz); and (j) scrubbing (using
default parameters according to the interpolation strategy: linear
interpolation; FD threshold = 0.5; previous time point number
= 1; subsequent time point number= 2).

Regions of Interest
All ISSs occurred during the monitoring of motor reactions on
the cortex. Hence, we focused on the sensorimotor network
template that was extracted from a brain atlas, “brainnetome
atlas” (http://www.brainnetome.org/) (22). The seeds were
generated as spheres/circles of 5-mm diameter based on the
coordinates of the sensorimotor network. To avoid the effects
of neurovascular uncoupling or tumor involvement, the regions
invaded by gliomas were excluded (Supplementary Table 1).

Network Construction
To construct the functional connectivity (FC) matrix, Pearson’s
correlation coefficients were used to compare regional mean time
series for all extracted nodes of sensorimotor networks.

Graph Theoretical Measures
Graph theoretical analyses were used to calculate
global and nodal topological properties [the detailed
information of topological properties is shown in the
Supplementary Material (Part 1)]. All matrices were
transformed into absolute and binary values to calculate
topological properties.

Statistical Analyses
Clinical characteristics were compared between the patient
groups using Student’s t-test, Mann–Whitney U tests, chi-
square tests, Fisher’s exact tests, and one-way analysis of
variance (ANOVA) according to the type of data. To explore
group differences in network topological properties, we applied
a series of sparsity thresholds (0.17–0.33; interval, 0.01)
consistent with a previous study (23). False discovery rate
(FDR) corrections were used to correct FC. Moreover, an eta-
squared correlation was applied to explore the relationship
between ISS and FC values. Topological properties were
compared among the groups by one-way ANOVA test. Least
significant difference (LSD) was subsequently used for post-
hoc analysis when the results of one-way ANOVA were found

TABLE 1 | Demographic and clinical characteristics.

Demographic and

clinical characteristics

ISS group

(n = 12)

Non-ISS

group (n = 15)

Healthy

(n = 20)

p-value

Gender

Male 6 10 11 0.43

Female 6 5 9

Age (y)* 41.5 ± 4.3 44.4 ± 3.0 40.7 ± 1.7 0.57

Handedness

Right 12 15 20 -

Left 0 0 0

KPS score (pre-operative)

100 10 14 - 0.56

90∼100 2 1 -

KPS score (post-operative 3 months)

100 10 15 - 0.18

90∼100 2 0 -

Education level (years)* 14.7 ± 1.0 15.2 ± 0.9 15.3 ± 0.4 0.85

Histopathology

Astrocytoma 5 5 - -

Oligodendroglioma 3 4

Anaplastic astrocytoma 1 3

Glioblastoma 3 3

IDH status

Mutation 6 6 - 0.78

Wild type 6 9 -

Tumor volume (ml)* 29.93 ± 4.34 33.98 ± 5.29 - 0.57

Stimulation current (mA)* 3.3 ± 0.4 3.0 ± 0.3 - 0.69

*Values are means ± standard error of the mean.

ISS group, group of patients with intraoperative stimulation-induced epilepsy.

Non-ISS group, group of patients without intraoperative stimulation-induced epilepsy.

Using Mann–Whitney U-test to compare the difference of Karnofsky performance status

between the ISS and non-ISS groups.

Using Student’s t-test to compare the difference of tumor volume and stimulation current

between the ISS and non-ISS groups.

Using one-way ANOVA test to compare the differences of age and education level

between the ISS, non-ISS, and healthy groups.

Using Fisher’s exact test to compare the differences of gender and Iocitrate

dehydrogenase status between the ISS and non-ISS groups.

KPS, karnofsky performance status; IDH, iocitrate dehydrogenase.

to be significantly different between the three groups (the
ISS, non-ISS, and healthy groups). A p-value <0.05 was
considered significant.

RESULTS

Demographic Characteristics
Owing to the limited number of patients with right hemispheric
gliomas accompanying ISS (two patients), 27 patients with left
hemispheric gliomas were finally enrolled (men, n= 16; all right-
handed; Tables 1, 2). The screening process of recruiting patients
is shown in Supplementary Figure 2. After matching for age,
sex, and education level, 20 healthy participants were enrolled as
controls (men, n= 11).

No significant differences were observed in age, sex, or
education level among the three groups. No differences were
seen in preoperative and postoperative KPS scores, tumor
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TABLE 2 | Clinical information of enrolled patients.

Number of

patients

Age Gender Tumor location Tumor volume

(ml)

Preoperative

KPS score

Intraoperative

stimulated

seizure

Stimulation

current (mA)

Histo-pathology IDH status

1 34 F Inferior frontal lobe and

precentral gyrus

18.8 90 No 6 GBM Wild type

2 30 F Inferior frontal lobe and

precentral gyrus

9.20 100 Yes 6 O Mutation

3 30 M Postcentral gyrus 12.54 100 No 4 AA Wild type

4 52 F Precentral gyrus 11.26 90 Yes 3 GBM Wild type

5 54 F Inferior frontal lobe and

precentral gyrus

13.22 100 Yes 4 A Wild type

6 29 M Insular lobe 40.49 100 Yes 6 A Mutation

7 50 F Insular lobe 59.77 100 Yes 2.5 AA Mutation

8 64 M Inferior frontal lobe and

insular lobe

20.77 100 Yes 2.5 A Wild type

9 19 F Inferior frontal lobe and

insular lobe

34.94 90 Yes 2 GBM Wild type

10 39 F Precentral gyrus 24.45 100 No 2 A Mutation

11 53 M Paracentral lobe 17.60 100 No 2 AA Wild type

12 56 M Premotor area 13.95 100 No 5.5 A Wild type

13 44 M SMA and premotor area 18.86 100 No 2.5 AA Wild type

14 52 F Postcentral gyrus 49.33 100 No 2 O Mutation

15 40 F Precentral gyrus 36.77 100 Yes 4 A Wild type

16 63 M Inferior frontal lobe and

precentral gyrus

29.25 100 Yes 3 GBM Wild type

17 35 F SMA and premotor area 29.29 100 No 1.5 O Mutation

18 64 M Postcentral gyrus 43.48 100 No 3 A Wild type

19 30 M Inferior frontal lobe and

precentral gyrus

46.04 100 Yes 2 A Mutation

20 32 F Postcentral gyrus 84.16 100 No 2 GBM Wild type

21 40 F Inferior frontal lobe and

precentral gyrus

31.26 100 No 4 A Wild type

22 31 F Postcentral gyrus 53.29 100 No 2 GBM Wild type

23 45 M Inferior frontal lobe and

insular lobe

34.26 100 No 3 O Mutation

24 46 M Postcentral gyrus 18.16 100 No 3 A Mutation

25 39 M Inferior frontal lobe and

precentral gyrus

31.26 100 Yes 2 O Mutation

26 65 M Postcentral gyrus 60.26 100 No 3 O Mutation

27 28 F Inferior frontal lobe 26.23 100 Yes 2 O Mutation

*KPS, karnofsky performance status; A, astrocytoma; O, oligodendroglioma; AA, anaplastic astrocytoma; GBM, glioblastoma; M, male; F, female.

volumes, stimulation current, and the proportion of patients
with preoperative epilepsy between the ISS and non-ISS groups
(Table 1).

Functional Connectivity
Compared with the non-ISS group, four functional edges had a
decreased FC in the ISS and healthy groups after FDR correction
(p-value threshold = 0.002; Figure 1, Supplementary Table 2)
as follows: (1) the medial Brodmann area (BA) 6 in the right
hemisphere (A6m_R) and BA 4 (head and face) in the right
hemisphere (A4hf_R): ISS vs. non-ISS, p < 0.001; non-ISS vs.
healthy, p < 0.001; (2) A4hf_R and the BA 4 (trunk) in the
right hemisphere (A4t_R): ISS vs. non-ISS, p < 0.001; non-ISS

vs. healthy, p < 0.001; (3) A4hf_R and the BA 4 (low limb) in
the right hemisphere (A4ll_R): ISS vs. non-ISS, p < 0.001; non-
ISS vs. healthy, p < 0.001; and (4) the BA 4 (upper limb) in the
right hemisphere (A4ul_R) and BA 1/2/3 (tongue and larynx) in
the left hemisphere (A1_2_3tonIa_L): ISS vs. non-ISS, p < 0.001;
non-ISS vs. healthy, p < 0.001.

Moreover, compared with the non-ISS group, the FC of the
edge that was between BA 4 (upper limb) in the left hemisphere
(A4ul_L) and BA 1/2/3 (tongue and larynx) in the left hemisphere
(A1_2_3tonIa_L) only decreased in the ISS group (ISS vs. non-
ISS, p < 0.001).

Furthermore, compared with the non-ISS group, seven
functional edges only decreased FC in the healthy group but were
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FIGURE 1 | Alterations in functional connectivity (FC) among the ISS, non-ISS, and healthy groups. ISS, group of patients with intraoperative stimulation-induced

seizures; Non-ISS, group of patients without intraoperative stimulation-induced seizures.

insignificantly altered in the ISS group after FDR correction. The
detailed information is shown in Supplementary Table 2.

The Relationship Between Functional
Connectivity and Intraoperative
Stimulation-Induced Seizure Occurrence
Four negative correlations were found between ISS occurrence
and FC in four functional edges. The detailed correlations were
as follows: (1) A6m_R and A4hf_R: r = −0.734, p < 0.001, eta-
squared correlation; (2) A4hf_R and A4t_R: r = −0.696, p =

0.001; (3) A4hf_R and A4ll_R: r = −0.687, p = 0.001; and (4)
A4ul_R and A1_2_3tonIa_L: r =−0.695, p= 0.001.

Global Topological Properties
There were some differences in global efficiency (p = 0.041),
shortest path length (p = 0.043), and local efficiency (p
= 0.009) between the three groups after one-way ANOVA
(Supplementary Table 3, Figure 2).

On post-hoc analysis with LSD test, the non-ISS group (0.636
± 0.004) showed weaker global efficiency than the ISS group
(0.651 ± 0.002, p = 0.027). Moreover, compared with the non-
ISS group (1.966± 0.034), the shortest path length was shorter in

the ISS group (1.850± 0.013, p= 0.026). Additionally, compared
with the non-ISS group (0.667 ± 0.013), the local efficiency was
greater in the healthy group (0.740± 0.011, p= 0.002).

Small Worldness Properties
Our results showed that all three groups were a small-world
network because gamma value was >1 and lambda was nearly
equal to 1 (γ > 1, λ ≈ 1; Supplementary Table 3). There were
some differences observed in gamma value (p= 0.037) and sigma
value (p= 0.046) among the three groups using one-way ANOVA
(Supplementary Table 3, Figure 3).

After post-hoc analysis with LSD test, compared with the non-
ISS group (1.075 ± 0.030), the gamma value was greater in the
healthy group (1.249 ± 0.038, p = 0.011). Moreover, compared
with the non-ISS group (0.968 ± 0.038), the sigma value was
greater in the ISS (1.127 ± 0.059, p = 0.044) and healthy (1.14
± 0.041, p= 0.017) groups.

Nodal Topological Properties
After one-way ANOVA, there were some differences in nodal
efficiency between the three groups. These nodes were BA area
4 (tongue and larynx region) in the right hemisphere (A4tl_R, p
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FIGURE 2 | Global properties of the ISS, non-ISS, and healthy groups. ISS, group of patients with intraoperative stimulation-induced seizures; Non-ISS, group of

patients without intraoperative stimulation-induced seizures.

= 0.009), BA area 1/2/3 (lower limb region) in the left hemisphere
(A1/2/3ll_L, p= 0.022), BA area 2 in the left hemisphere (A2_L, p
= 0.006), and A1/2/3tru_L (p= 0.048) (Supplementary Table 4,
Figure 4). No differences in other nodal properties (cluster
efficiency, nodal shortest path length, and nodal local efficiency)
were found among the three groups.

After post-hoc analysis with LSD test, compared with the
non-ISS group (0.182 ± 0.071), the nodal efficiency of A4tl_R
increased in the ISS (0.466± 0.054, p= 0.007) and healthy (0.437
± 0.052, p = 0.006) groups. Moreover, compared with the non-
ISS group (0.457 ± 0.084), the nodal efficiency of A1/2/3ll_L
increased in the healthy group (0.629 ± 0.018, p = 0.007).
Additionally, compared with the non-ISS group (0.310 ± 0.083),
the nodal efficiency of A2_L increased in the ISS (0.563 ± 0.067,
p = 0.006) and healthy (0.549 ± 0.025, p = 0.007) groups.

Furthermore, compared with the non-ISS group (0.572± 0.064),
the nodal efficiency of A1/2/3tru_L increased in the ISS (0.692±
0.015, p= 0.028) and healthy (0.675± 0.014, p= 0.029) groups.

DISCUSSION

This study investigated the alterations of FC and topological
properties in the sensorimotor networks of patients with and
without ISS during DCS.We found that the glioma induced some
totally opposing alterations in FC and topological properties, thus
leading to different susceptibilities to ISS in patients.

In our treatment center, ISS incidence during AC was 16.7%
(14/84) using the same routine stimulation protocol as in a
previous study (24). This was consistent with that reported in
previous studies (2.2–21.5%) (1, 4–14).
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FIGURE 3 | Small-world properties of the ISS, non-ISS, and healthy groups. ISS, group of patients with intraoperative stimulation-induced seizures; Non-ISS, group of

patients without intraoperative stimulation-induced seizures.

In this study, all ISSs occurred during sensory and motor
function monitoring. All sites inducing ISS were located in the
sensorimotor network. Consequently, we mainly focused on
alterations in the sensorimotor network.

Functional Connectivity Alterations
Different alterations in FC were associated with ISS. Here, we
found that there were four edges that decreased FC in the
ISS group and simultaneously increased FC in the non-ISS
group. It is widely accepted that glioma can disrupt functional
networks and induce reorganization of the disrupted networks
(25, 26). In our study, no patient had preoperative motor
or sensory findings, indicating that sensorimotor functions of
these patients were compensated. Hence, all FC alterations

in the sensorimotor network were related to glioma-induced
disruption and reorganization. Additionally, our findings showed
that the glioma-induced reorganization was different. Such
difference may lead to the stratification of susceptibility to ISS.
Furthermore, our findings regarding the negative correlations
between FC and occurrence of ISS revealed that the decreased
FC may be a potential marker for identifying patients susceptible
to ISS.

Topological Property Alterations
Glioma-induced alterations of topological properties in ISS
patients were converse to those of patients without ISS. The
increased global efficiency, sigma value, and decreased shortest
path length represented that the ability of information transiting
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FIGURE 4 | Alterations in nodal efficiency in the ISS, non-ISS, and healthy groups. ISS, group of patients with intraoperative stimulation-induced seizures; Non-ISS,

group of patients without intraoperative stimulation-induced seizures.

is strong. Hence, these results indicated that gliomas could
strengthen the ability of information conduction in ISS patients
and weaken them in non-ISS patients. Moreover, a shortening
network path contributes to reducing the convulsive threshold
underlying epileptic seizures (27, 28). Conversely, longer network
paths are related to a prolonged system response time that
counteracts the rapid spread of local epileptic discharges
(29). Consequently, the strengthened ability of information
conduction and shortened network pathway can make the
patients susceptible to ISS. Some studies focused on the
temporal lobe epilepsy found that the longer shortest path
length was related to seizure onset (30). We thought that this
difference was due to different pathologies between idiopathic
seizure and glioma-related epilepsy. The low-grade glioma
grows slowly and induces network reorganization easily, and
the idiopathic seizure often leads to gray matter atrophy
(31) and hypometabolism (32). Hence, the decreased shortest
path length was often found in patients with glioma-related
epilepsy, and the increased shortest path length was often
found in patients with temporal lobe epilepsy (20). Moreover,
our results showed that nodal efficiency of three regions of
BA 1/2/3 areas (including trunk, tongue, and lower limb)
increased in the ISS group. These findings indicated that
those nodes were activated to participate in the glioma-
induced motion generation process in the ISS group, but

those nodes were inhibited from participating in this process
in the non-ISS group. The BA 1/2/3 areas were directly
associated with information conduction of motion generation
and control (33, 34). Hence, we believe that the increased
ability of information conduction induced by glioma specifically
implied patients with glioma would develop ISS during DCS.
In addition, no differences in preoperative epileptic status and
stimulation current were found between the ISS and non-
ISS groups. Thus, we believe that the specific alterations in
the sensorimotor network were more likely to be induced by
glioma itself.

Value of the Current Study
Duffau et al. (25) proposed that using ECoG was unnecessary.
Because the low-intensity stimulation could not result in
ISS, the absence of ECoG monitoring could simplify the
surgical procedure. However, under the same stimulation
protocol without ECoG monitoring, our patients experienced
ISS [incidence was four times of that reported by Duffau
(25)] with 1 or 1.5mA as the initial stimulation current.
Hence, we recommend that ECoG should not be omitted
in some patients. Fortunately, the specific glioma-induced
alterations in patients susceptible to ISS were found. These
findings indicated that preoperative rs-fMRI may contribute
to identifying patients who are more susceptible to ISS.
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For these susceptible patients, neurosurgeons should use
ECoG to capture after-discharge current during DCS to
avoid ISS.

CONCLUSION

Patients with increased global and nodal efficiency, decreased
shortest path length, and decreased FC induced by glioma
are susceptible to ISS during DCS. In such patients, ECoG
is recommended to monitor after-discharges during DCS to
prevent ISS.
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