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Real-time ocular responses are tightly associated with emotional and cognitive

processing within the central nervous system. Patterns seen in saccades, pupillary

responses, and spontaneous blinking, as well as retinal microvasculature and

morphology visualized via office-based ophthalmic imaging, are potential biomarkers for

the screening and evaluation of cognitive and psychiatric disorders. In this review, we

outline multiple techniques in which ocular assessments may serve as a non-invasive

approach for the early detections of various brain disorders, such as autism spectrum

disorder (ASD), Alzheimer’s disease (AD), schizophrenia (SZ), and major depressive

disorder (MDD). In addition, rapid advances in artificial intelligence (AI) present a growing

opportunity to use machine learning-based AI, especially computer vision (CV) with

deep-learning neural networks, to shed new light on the field of cognitive neuroscience,

which is most likely to lead to novel evaluations and interventions for brain disorders.

Hence, we highlight the potential of using AI to evaluate brain disorders based primarily

on ocular features.

Keywords: ocular assessment, retina, computer vision, cognitive neuroscience, brain disorders, eye-brain

engineering

INTRODUCTION

The neurosensory retinas play a critical role in the functioning of our central nervous system
(CNS), the latter of which processes our sensory input, motor output, emotion, cognition, and
even consciousness (1). Multiple studies have shown that ocular evaluations can be used to
assess CNS disorders (2). Many neurological and psychiatric disorders—such as glaucoma, stroke,
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Parkinson’s disease (PD), autism spectrum disorder (ASD),
Alzheimer’s disease (AD), major depressive disorder (MDD),
and schizophrenia (SZ)—lead to considerable personal suffering,
financial costs, and social burden (3). Distinct ocular findings
have exhibited the possibility of ocular assessments as early
biomarkers for these disorders (2, 4). Since brain disorders
represent one of the most challenging issues to modern
humans, indeed, novel approaches are needed to advance
psychiatric medicine, especially in terms of objective cognitive
measurements (5) and real-time interventions for cognitive
problems (6).

Recently, the Google/DeepMind was able to detect retinal
diseases and cardiovascular risk factors using artificial
intelligence (AI) algorithms on retinal images (7, 8). AI
studies have already shown that AI-based detection to various
diseases is possible and the potential of AI to impact the next
generation of medical care as well (9). Given the increasing
data connecting ocular parameters with brain disease states, it is
possible that applying AI algorithms on ocular patterns would
be helpful for the detection and evaluation of these diseases,
especially with the rapid advancement of computer vision (CV)
and deep-learning algorithms [(9, 10); Figures 1A,B]. In this
present review, we discuss and highlight a novel approach of
using CV with advanced AI to evaluate human brain disorders
based primarily on ocular responses.

EYE–BRAIN CONNECTION

The eyes and the brain are intimately connected. Approximately
80% of the sensory input to the human brain initiates from the
vision system, which begins at the retinas (1, 2). The axons of
retinal ganglion cells (RGCs) send visual information collected
on the neurosensory retinas to the CNS. There are at least
20 nuclei that receive projections from the retinas into the
mammalian brain (13, 14); for example, the lateral geniculate
nucleus serves as a thalamic visual relay to primary visual cortex,
the superior colliculus is responsible for visuomotor processing,
and the hypothalamic suprachiasmatic nucleus is involved in
non-visual hormonal photoentrainment (15).

The eyes are usually linked to facial expressions, such as
eye widening can be a sign of fear, whereas eye narrowing
can be a sign of disgust (16). Lee et al. demonstrated that
eye widening enhances one’s visual field, thereby improving
stimulus detection, while eye narrowing increases visual acuity,
which improves objective discrimination (17, 18). Moreover,
visual attention, pupillary responses, and spontaneous blinking
are regarded as non-invasive and complementary measures of
cognition (19). Vision-based attentional control includes the
planning and timing of precise eye movements, which has
been shown to be controlled by neural networks spanning
cortical, subcortical, and cerebellar areas that have been
extensively investigated in both humans and non-human
primates [(20–22); Figure 1C]. Pupillary responses are primarily
modulated by norepinephrine in the locus coeruleus, which
controls physiological arousal and attention (23–25), whereas
spontaneous eye-blink rates are tightly correlated with CNS

dopaminergic levels and are associated with processes underlying
learning and goal-directed behavior [(26, 27); Figure 1D]. Below,
we outline in detail the connections between ocular assessments
and some brain disorders including autism spectrum disorder
(ASD), Alzheimer’s disease (AD), schizophrenia (SZ), and major
depressive disorder (MDD).

AUTISM SPECTRUM DISORDER:
WITHOUT NORMAL EYE CONTACT

A lack of normal eye contact during social interaction is
one of the main clinical features of ASD (28). Screening for
ocular fixation at 2–6 months old can provide early detection
and even interventions for children with ASD (29). Full-
field electroretinogram (ERG), which measures specific cellular
functions within the retinas, further exhibits decreases in rod
b-wave amplitude in ASD individuals (30). Different types of
oculomotor dysfunction—such as saccade dysmetria (over- or
undershooting of visual targets), loss of saccadic inhibition, and
fixation impairment—have all been documented in patients with
ASD (11). Saccade dysmetria may be caused by the dysfunction
of neural networks connecting the cerebellar vermal–fastigial
circuitry to the brainstem premotor nuclei that regulate
oculomotor movements [(28, 29); Figure 1C]. A diminished
ability to inhibit reflexive saccades during anti-saccade tasks
is thought to be associated with the characteristic repetitive
behaviors seen in patients with ASD (31, 32). In addition,
fixation is often significantly impaired in ASD patients, which
is more likely secondary to a reduced top–down modulation of
sensorimotor processing (33, 34).

ALZHEIMER’S DISEASE: DEMENTIA
FEATURE IN THE EYES

Ocular assessments of AD patients have demonstrated saccadic
dysfunctions indicative of poor visual attention. In particular, AD
patients have difficulty focusing on fixed objects (35). Prettyman
et al. showed early in 1997 that there was a 75% greater latency
in pupillary constriction in AD patients compared with that
in age-matched controls (36). Additionally, AD patients have
markedly decreased visual contrast sensitivity, which is evident
even at the early stage of AD (37). Patients with AD also
have altered retinal microvasculature, such as sparser and more
tortuous retinal vessels and narrower retinal venules (38) and
decreased retinal blood flow/blood-column diameter as indicated
by laser Doppler flowmetry (39). Studies using optical coherence
tomography (OCT) have indicated a gradual decrease in retinal
nerve fiber layer thickness (RNFL), most prominently in the
superior quadrants, when comparing patients with no AD to
mild AD to severe AD (40, 41). AD patients exhibit a number
of specific ocular findings; these ocular findings provide an
opportunity for their collective use as biomarkers for machine
learning algorithms to test AD (42).
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FIGURE 1 | The eye as a window to uncover a healthy level of the brain. (A1) A restful and calm eye (positive state) is shown compared with (A2) a stressful and

anxious eye (negative state). Note that a positive state is more frequently associated with an upside view of the eyes, whereas a negative state exhibits a more

(Continued)
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FIGURE 1 | downside view of eyes. The eye images shown here are presented following permission from the corresponding subjects. (B1) Example of a retinal

fundus image in color, whereas (B2, B3) show the same retinal image but in black and white. Machine learning predictions of diabetes and body mass index (BMI)

states mainly rely on the features of the vasculature and optic disc, as indicated by the soft attention heat map with green color in those images. The images in

(B1–B3) were adapted from Poplin et al. (8) (with permission). (C) Complex neural networks spanning the cortical, subcortical, and cerebellar areas are involved in

voluntary saccadic eye movements for attentional control. The image was modified from that of Johnson et al. (11). Red arrows indicate the direct pathway (PEF, the

parietal eye fields; FEF, frontal eye field; SEF, supplementary eye field) to the superior colliculus (SC) and brainstem premotor regions, while yellow arrows indicate the

indirect pathway to the SC and brainstem premotor regions via the basal ganglia (striatum, subthalamic nucleus, globus pallidus, and substantia nigra pars reticularis).

(D) An architectural model of the hierarchy of visual cortical circuitry, modified from Felleman and Van (12). There is a feedforward ascending pathway of the vision

system from the retinas to the cortex, as well as a feedback descending pathway from the cortex to multiple downstream areas. (E) A potential application of

eye–brain engineering developed to compute human brain states mainly based on smart cameras to detect ocular responses, combined with other biological signals

including electroencephalography (EEG) and photoplethysmography (PPG).

SCHIZOPHRENIA: TO SEE OR NOT TO SEE

Visual processing impairment including visual hallucination,
distortion of shapes, or light intensity, is commonly observed
in patients with SZ (43). Abnormal retinal findings like dilated
retinal venules, RNFL thinning, and ERG abnormalities were
present in SZ patients (44, 45). A twin study showed a positive
correlation between wider retinal venules and more severe
psychotic symptoms (46), suggesting the possible use of retinal
venule diameter as a biomarker for SZ. In addition, RNFL
thinning, which corresponds to the loss of RGCs axons, is seen
in SZ patients (47, 48) and also in patients with PD (49) and AD
(50). ERG abnormalities in SZ indicate reduced functionalities
of rod and cone photoreceptors, bipolar cells, and RGCs, all
of which can reflect the deregulation of neurotransmitters such
as dopamine (51, 52). Furthermore, a portable handheld ERG
device was made and can be used in psychiatry clinics for
screening and evaluation of SZ (53).

MAJOR DEPRESSIVE DISORDER: A GRAY
WORLD OF EYES

Reduced contrast sensitivity is frequently seen in individuals
with MDD, both medicated and unmedicated (54). There is
even a strong correlation between contrast gain and depression
severity, as indicated by pattern electroretinogram (PERG) (54,
55). When compared with healthy controls, patients with MDD
often have higher error rates and increased reaction times in
performing anti-saccade tasks (56, 57). Furthermore, patients
with melancholic depression, when compared with saccade
parameters in healthy controls and non-melancholic depressed
patients, exhibit longer latencies, reduced peak velocities,
and greater hypometricity during saccadic eye movement
tasks (58). Patients with seasonal affective disorder (SAD,
namely, winter depression) have a significantly reduced post-
illumination pupillary response (PIPR) as demonstrated by
infrared pupillometry (59, 60). These features are most likely to
associate with dysfunction of melanopsin-expressing intrinsically
photosensitive RGCs (ipRGCs), since ipRGCs often contribute to
pupillary response function, particularly during sustained-state
pupillary constriction (61, 62). However, the change in PIPR in
response to blue light stimuli only happened in SAD patients
carrying the OPN4 I394T genotype (59).

As previously outlined, different brain disorders usually have
ocular manifestations. However, those ocular features may be
either shared among multiple diseases or specific to a singular
disease, as shown in detail in Table 1. Vast psychological and
economic burdens caused by brain disorders call for more precise
analyses of those disorders. It is a good choice for analysis in
advance to combine with machine learning particularly deep-
learning algorithms.

COMPUTER VISION: WITH ADVANCED
ARTIFICIAL INTELLIGENCE

CV, as one of the most powerful tools to push AI applications
into healthcare areas, exhibits a high capability of auto-screening
diseases, such as skin cancer (66) and diabetic retinopathy (10,
67). Following a rapid development of deep learning-based AI,
CV now has an impressive resolution that is close to that of
human vision and maybe beyond sometime (9, 68). Hence, CV
is likely to drive AI to provide novel tools for brain disorders,
as machines have now been able to be trained to read human
emotional and cognitive states, especially in terms of automated
detection of facial expressions like fear and fatigue (18, 69).
Individuals with brain disorders may benefit from CV-based
AI applications in neurological healthcare, particularly to aid in
patient self-monitoring of symptoms and in conducting real-
time interventions for recovery of social and psychological
abilities (70). Furthermore, CV-based AI recognition of human
emotional and cognitive states will be more precisely achieved
with automated detection and analyses of ocular responses.

Nevertheless, currently available CV datasets on emotional
recognition—such as JAFFE, FERA, and CK+–have usually been
based on thousands of facial images captured in the laboratory,
but often neglected human eye movement and other primary
ocular parameters, which usually contain abundant information
on human affective states (16). Since Google AI applications
focused on retinal and eye features have already demonstrated
that this approach non-invasively and conveniently yields much
information of physical health (7, 10), such eye-focused CV-
based AI should be explored further for clinical neurosciences
in the future. Hence, the eye as a window into the brain
can be used to obtain health information, not only for eye
diseases but also for determining cardiovascular risk factors
(8) and even for brain disorders (Table 1). In order to achieve
reliable detection of human emotional and cognitive states for
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TABLE 1 | Multiple changes in ocular parameters via ophthalmological assessments are associated with neurological disorders.

Saccades Pupillary/blinking

response

RNFL Microvasculature ERG

Autism Decrease eye fixation at 2–6

months old (29); saccade

dysmetria (11); impaired tracking

of moving targets (33)

A longer latency of the

blink reflex in

high-functioning autism

(63)

– – Decreased rod b-wave

amplitude in flash ERG

(30)

Alzheimer’s disease Poor eye fixation (35) Delayed pupillary

constriction (36, 60)

Reduced RNFL thickness

especially in the superior

quadrant (40, 41)

Narrower retinal

venules and sparser

and more tortuous

retinal vessels (38)

Markedly decreased

contrast sensitivity (37)

Schizophrenia Performed worse in predictive,

reflexive, and antisaccade tasks

(64)

Blink rates are frequently

elevated (65)

Thinning of RNFL (47, 48) Widened retinal

venules (46)

Abnormal ERG

amplitudes including

rods, cones, bipolar

cells, and RGCs (53)

Major depression Elevated error rates and increased

reaction times (56, 57)

Reduced PIPR and a

lower PIPR percent

change in response to

blue light in patients with

SAD (59)

– – Significantly reduced

contrast sensitivity

using PERG (54, 55)

Some similar features among these diseases further indicate a requirement of more precise analyses via machine learning and deep learning. ERG, electroretinogram; PERG, pattern

electroretinogram; PIPR, post-illumination pupillary response; RNFL, retinal nerve fiber layer thickness; SAD, seasonal affective disorder.

brain disorders, a more quantitative representation of emotional
recognition via AI algorithms is necessary, which will require
more informative databases with dynamic features including
eye movements captured with the natural responses, and
furthermore, investigations to the neural mechanism involved
action units of facial expression as well (71).

DISCUSSION

Medical issues engaged in challenging human diseases are often
tightly associated with big data, and AI algorithms have been
demonstrated to leverage such big data to aid in solving these
issues (9). AI applications in medicine are only at an early
stage; however, AI-based automated diagnoses have already
contributed to the identification of several types of cancers
and retinal diseases (10, 66, 67). Some case reports on AI
practices engaged in medical diagnoses have involved image
recognition via supervised learning using deep neural networks,
which has helped in effectively interpreting cancer slides (72),
retinal images (73), and brain scans as well (74); nevertheless,
most of these applications have only been completed at the
preliminary stage.

AI performance has been frequently leveraged in
ophthalmology since retinal images are relatively easy to
obtain using fundus imaging or OCT without any invasion.
Additionally, diagnostic standards of eye diseases have become
more well-defined. Many eye diseases—including diabetic
retinopathy (75), age-related macular degeneration (76), and
congenital cataracts (77)—have already been assessed via
deep-learning neural networks, and many applications have
exhibited remarkable accuracies comparable with those of
eye specialists (9). Since the neurosensory retinas as a key
component of the vision system is a direct embryological

extension of the CNS (1), the utility of AI algorithms to detect
abnormal ocular responses associated with brain disorders is
reasonable to test for its feasibility and efficacy (2, 78). CV-
based AI algorithms for automated detection and analyses of
ocular responses is more likely to represent promising tools
for non-invasively detecting differences in ocular responses
(16), particularly those associated with different types of brain
disorders (78). Brain disorders tend to be more complicated
than other medical issues, and often lead to a greater burden
to human society, as indicated by at least 350 million people
currently suffering from major depression in the world
(79). There is a huge potential for AI to lend its power to
patients with affective disorders and the caregivers helping
these patients.

Undoubtedly, AI has begun to shed new light on brain
disorders. Cognoa applied clinical data from thousands of
children at risk for ASD to train and develop an AI
platform, whichmay provide earlier diagnostics and personalized
therapeutics for autistic children (80) and was approved by
the FDA in 2018. In terms of autoscreening depression,
Alhanai et al. used audio and text features to train a neural
network with long short-term memory, which was found
to be comparable with traditional evaluations via depression
questionnaires (81). An eye tracking-based assessment has
been already developed with video movies shown at the
monitor, in order to evaluate cognitive impairments such
as ASD and AD (82, 83). Haque et al. trained their AI
using spoken language and 3D facial expressions commonly
available in smartphones to measure depression severity (84).
A project in our team is currently running and is aimed at
developing an AI platform that utilizes ocular data to train
a model to detect brain states under natural conditions. This
AI platform is designed mainly based on real-time ocular
responses and is likely to determine brain emotional and
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cognitive states of individuals with brain disorders. This core
function will be accessed through a wearable smart glasses and
an ordinary smartphone (in Figure 1E, the related patent was
in progress).

Nevertheless, some issues regarding AI implementation in
healthcare require consideration. The first issue is how to
effectively collect big data with a high quality of valid features for
AI algorithms. In terms of AI recognition of facial expression,
high-resolution imaging is often required, especially for the
potential application of brain disorders. Multiple ocular data
should not be neglected for emotional recognition since eye
expression plays a key role in social communication (16).
Parameter patterns such as saccades, pupillary response, and
blinking rate (Table 1) contain detailed and fruitful information
on human affective states (19). Micro-expression detection
is also sometimes required for the ground truth of facial
expression (85). Some key features are unable to be shown
by one single image and, instead, require dynamic videos
with high frame rates. In addition, high-resolution imaging is
potentially beneficial for obtaining more healthcare data via
photoplethysmography (PPG) (86), such as heart rate variability
(87). Another key issue is in terms of privacy protection
when facial data are obtained to develop AI algorithms (88).
Participants need to be provided informed consent regarding
data collection. Investigators need to advise participants of their
rights, summarize what is expected for participation during
the study, and then keep the data safety continuously after
the study (88). In our pilot design, all facial or ocular data
will be obtained and stored by participants themselves through
their smartphones, and they have the right to decide if data
are shared without identifying their personal information. The
third issue is some portable or wearable devices are required
to develop for data collection of brain healthcare. It is better
for early detection of symptoms involved in brain disorders
(70), rather than diagnosing symptoms at the later and severe
stages using functional MRI for evaluating depression (89) and
computed tomography (CT) for screening head trauma (90).
The wearable smart glasses that we designed (Figure 1E) can
collect many different parameters involving ocular responses
like saccades, pupillary response, and blinking parameters.
Also, other biological data will be considered as well, such as
electroencephalography (EEG) and PPG (Figure 1E). It will be
defined as an integrated eye–brain engineering tool for human
state recognition that enables powerful detection and evaluation
of brain states in real time with machine learning. It is more likely
to benefit some patients with brain disorders, even including
stroke and bipolar disorders.

As AI is still at the early stage of being integrated into
mental healthcare, integration of human biological intelligence
(BI) and machine learning-based AI will need to be further
promoted. AI alone is known to be insufficient for detecting
brain disorders since machine learning is entirely dependent on
the availability of collected data. The quality of collected data
is vital, which will require the use of more knowledge from BI.
Current AI representation of human facial expressions is often
only achieved at a qualitative level that has been categorized into
seven basic expressions plus some composite expressions, with

an accuracy ratio of <70% (91, 92). Therefore, it requires the
improvement to a quantitative level via more BI, especially with
cognitive neuroscience and neuro-ophthalmology. Then we can
perhaps learn more clearly about the threshold values of brain
disorders distinguished from normal brain functions and learn
more about specific features of different brain disorders. More
interestingly, vision intervention with some ocular responses
also directly exhibited the benefits to rescue brain disorders, for
example, blue-enriched light therapy tomajor depression (14, 93)
and 40-Hz light flicker to attenuate AD-associated pathology
(94, 95). This type of vision-based therapy may be much
beneficial for conducting non-invasive and timely prevention
and even treatment for brain disorders in the near future. To
this aim, machine learning-based AI, especially deep-learning
neural networks, will likely be instrumental in further advances
in clinical neuroscience (96, 97).

CONCLUSION AND PERSPECTIVE

In general, brain disorders can be assessed by ocular detection,
while that certainly needs to consider the exclusion of the
eye disease situation and that well-trained AI will offer its
support again (7). After all, advanced AI will help those patients
with brain disorders directly and currently, differing from gene
therapy, which often plans to benefit for the next generation of
those patients. It can be achieved mainly through autodetection
with AI algorithms, self-evaluation with wearable sensors, and
timely intervention with brain–computer interface as well. May
the force of AI be with patients of brain disorders particularly
using an approach with ocular representation in the real time.
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