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Background: In order to develop a new screening test of cognitive impairment, we

studied whether cognitive function can be estimated from basic blood test data by

applying deep learning models. This model was constructed based on the effects of

systemic metabolic disorders on cognitive function.

Methods: We employed a deep neural network (DNN) to predict cognitive function

based on subject’s age and blood test items (23 items). We included 202 patients (73.48

± 13.1 years) with various systemic metabolic disorders for training of the DNN model,

and the following groups for validation of the model: (1) Patient group, 65 patients (73.6

± 11.0 years) who were hospitalized for rehabilitation after stroke; (2) Healthy group,

37 subjects (62.0 ± 8.6 years); (3) Health examination group, 165 subjects (54.0 ± 8.6

years) admitted for a health examination. The subjects underwent the Mini-Mental State

Examination (MMSE).

Results: There were significant positive correlations between the predicted MMSE

scores and ground truth scores in the Patient and Healthy groups (r = 0.66, p < 0.001).

There were no significant differences between the predicted MMSE scores and ground

truth scores in the Patient group (p > 0.05); however, in the Healthy group, the predicted

MMSE scores were slightly, but significantly, lower than the ground truth scores (p <

0.05). In the Health examination group, the DNN model classified 94 subjects as normal

(MMSE = 27–30), 67 subjects as having mild cognitive impairment (24–26), and four

subjects as having dementia (≤23). In 37 subjects in the Health examination group, the

predicted MMSE scores were slightly lower than the ground truth MMSE (p < 0.05). In

contrast, in the subjects with neurological disorders, such as subarachnoid hemorrhage,

the ground truth MMSE scores were lower than the predicted scores.

Conclusions: The DNN model could predict cognitive function accurately. The

predicted MMSE scores were significantly lower than the ground truth scores in the

Healthy and Health examination groups, while there was no significant difference in the
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Patient group. We suggest that the difference between the predicted and ground truth

MMSE scores was caused by changes in atherosclerosis with aging, and that applying

the DNN model to younger subjects may predict future cognitive impairment after the

onset of atherosclerosis.

Keywords: Alzheimer’s disease, artificial intelligence, deep leaning, dementia, Mini Mental State Examination,

screening test, vascular cognitive impairment

INTRODUCTION

As the world’s population ages rapidly, dementia is becoming
a major global health problem. Currently, emphasis is being
placed on early diagnosis and intervention to prevent dementia
onset (1). Therefore, a screening test for cognitive dysfunction
is important for early diagnosis. At present, the Mini Mental
State Examination (MMSE) is the most commonly used test for
cognitive function evaluation (2, 3). The MMSE is an accurate
and cost-effective screening test. However, it is impractical to
screen a large number of subjects over a short time span. The
reasons being that it is subjective in nature and conducted on a
one-to-one basis between the inspector and subject. Moreover, it
is difficult administering the test to subjects with disorders such
as visual and hearing impairments.

Peripheral biomarkers such as amyloid β are used as
biomarkers of Alzheimer’s disease (AD) (4). However, these
biomarkers originate from cerebrospinal fluid and are not
suitable for mass screening because they require an invasive
lumbar puncture. Although a number of studies investigating
AD-related biomarkers in blood samples have been conducted,
the results are still inconclusive (5). In addition, amyloid alone
is not sufficient to account for the dementia syndrome; clearance
of amyloid plaques in AD by immunization with Aβ42 did not
prevent progressive neurodegeneration (6). Consequently, there
is a growing demand for alternative peripheral biomarkers in a
more readily accessible sample material for screening tests.

In order to develop a new screening test for dementia,
we focused on the relationship between systemic disorders
and cognitive impairment. For example, vascular cognitive
impairment (VCI), which is caused by arteriosclerosis based on
lifestyle-related diseases, plays an important role in cognitive
disorders ranging from mild cognitive impairment (MCI)
to severe dementia (7–9). Importantly, vascular pathology
is believed to contribute not only to vascular dementia,
but also to AD; magnetic resonance imaging (MRI) has
demonstrated that small-vessel cerebrovascular disease (i.e.,
white matter hyperintensities) caused by atherosclerosis
contributes to the presentation of AD and is necessary for
the its clinical manifestation (10). Other systemic disorders
that could affect cognitive function are metabolic disorders,
including malnutrition (11), anemia (12), lipid metabolism (13),
purine metabolism (14), and renal function impairment (15).
Importantly, these systemic disorders can be detected via basic
blood tests of health examination.

In the present study, in order to develop a new screening test
of cognitive impairment, we studied whether cognitive function
can be estimated from basic blood test data by applying deep

learning models. This model was constructed based on the effects
of systemic metabolic disorders on cognitive function. To analyze
the complex non-linear relationships between blood test data
and cognitive function, we used a deep neural network (DNN),
which allows the analysis of regularity and relevance from a
large amount of data to make judgments and predictions (16).
In the field of life sciences, DNNs have been applied to various
medical fields, such as imaging diagnosis (17–19). In the field of
dementia, DL was applied to the computer-aided diagnosis of
AD based on MRI images (20). However, MRI is not suitable
for mass dementia screening. In the next step, we validated
the prediction accuracy of the DNN model using a leave-one-
out cross-validation (LOOCV) in the training group. Then, we
validated the accuracy in subjects that were not used for training
the DNN model. Finally, we evaluated the clinical usefulness of
the DNN model as a screening test of dementia by applying
the algorithm.

SUBJECTS AND METHODS

Subjects
We included a total of 202 patients (87 men, 115 women;
mean age ± SD, 73.48 ± 13.1 years) who were admitted to
the Southern Tohoku Kasuga Rehabilitation Hospital (Sukagawa
City, Japan) for training the DNN model of cognitive function;
all subjects received various hospitalization treatments, including
rehabilitation and medication of lifestyle diseases. Table 1 shows
the clinical profiles of the patients: 142 patients (68.8%) had
cerebrovascular diseases (cerebral infarction, 79 cases; cerebral
hemorrhage, 41 cases; subarachnoid hemorrhage, 21), while 174
patients (94.6%) had at least one life-style disease.

In order to validate the accuracy of the DNN model, we
studied a total of 267 subjects who were not used for training the
DNN model. The subjects included the following three groups:
(1) Patient group, 65 patients (32 men, 33 women; 73.6 ±

11.0 years) who were hospitalized for rehabilitation after stroke
in Southern Tohoku Kasuga Rehabilitation Hospital (Sukagawa
City, Japan) (Table 1). (2) Healthy group: 37 healthy subjects
(six men, 31 women; 62.0 ± 8.6 years) who were members of
a sports gym (Sakura) attached to Southern Tohoku Kasuga
Rehabilitation Hospital (Sukagawa City, Japan). (3) Health
examination group: 165 subjects (83 men, 82 women, 54.0 ± 8.6
years) who visited the outpatient clinic of dementia prevention
(K.S. the doctor in charge) at the Tokyo Clinic (Tokyo, Tokyo).

The present study was approved by the Life Science Research
Ethics and Safety of the University of Tokyo (Approval
Number: 19-318).
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TABLE 1 | Clinical profiles of the patients.

Types of lifestyle diseases Total

HT DM HL HT, DM DM, HL HT, HL HT, G HL, G HT, HL

DM

HT, HL

DM, G

HT, DM

G

HT, HL,

G

None

CH 18 (7) 1 (0) 0 (0) 6 (5) 0 (1) 6 (1) 0 (1) 0 (0) 6 (0) 1 (0) 0 (0) 0 (0) 3 (1) 41 (16)

CI 16 (7) 3 (2) 6 (2) 12 (2) 0 (4) 10 (3) 2 (0) 2 (1) 14 (1) 1 (0) 1 (1) 5 (1) 7 (5) 79 (29)

SAH 9 (2) 0 (0) 4 (0) 1 (0) 0 (0) 3 (2) 0 (0) 0 (0) 3 (0) 0 (0) 0 (0) 0 (0) 1 (2) 21 (6)

HI 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 3 (0)

BF 16 (2) 1 (0) 0 (0) 4 (0) 0 (0) 4 (1) 0 (0) 0 (0) 2 (0) 0 (0) 0 (0) 0 (0) 12 (2) 39 (5)

Others 7 (1) 0 (0) 0 (1) 4 (0) 0 (0) 0 (2) 0 (0) 0 (0) 1 (1) 0 (0) 1 (0) 1 (0) 5 (4) 19 (9)

Total 69 (19) 5 (2) 10 (3) 27 (7) 0 (5) 23 (9) 2 (1) 2 (1) 26 (2) 2 (0) 2 (1) 6 (1) 31 (14) 202 (65)

HT, hypertension; DM, diabetes mellitus; HL, hyperlipidemia; G, gout; CH, cerebral hemorrhage; SAH, subarachnoid hemorrhage; CI, cerebral infarction; HI, head injury; BF, born fracture.

Numbers indicate the number of patients for the training of DNN model while numbers in parentheses patients indicate for validation of the accuracy of the DNN model.

TABLE 2 | Blood test items for the prediction of cognitive function.

Complete blood count General biochemical examination

WBC count Total protein BUN

RBC count Albumin Creatinine

Hemoglobin A/G ratio Uric Acid

Hematocrit AST (GOT) Glucose

MCV ALT (GPT) Na

MCH r-GTP K

MCHC Total Cholesterol CI

Platelet count Triglyceride

MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean

corpuscular hemoglobin concentration; BUN, blood urea nitrogen.

Blood Test
We performed a blood test in all the subjects, including a
complete blood count and basic metabolic panel, at the time of
the experiment. The blood test items are shown in Table 2. The
blood test data were put into the input layer of the DNNmodel.

Assessment of Cognitive Function
We assessed the cognitive dysfunction of the subjects using the
Mini Mental State Examination-Japanese (MMSE-J) (21). The
MMSE scores were put into the output layer of the DNNmodel as
the ground truth data. In order to select patients with suspected
cognitive impairment or dementia, we used a cut-off value of
23/24 (22). By applying the cut-off value to the DNN model’s
output, we derived a binary classification model to predict the
presence or absence of cognitive impairment.

Magnetic Resonance Imaging
In order to evaluate the relationship between the blood test
data and changes in anatomical structure, 40 subjects (23
subjects in the Inpatient group and 17 subjects in the Health
examination group) underwent a magnetic resonance imaging
(MRI) scan using a 1.5-T Vision Plus imager (Siemens, Erlangen,
Germany). One hundred and forty 3D sections of a T1-
weighted magnetization-prepared rapid acquisition of gradient

echo sequence were obtained in the sagittal orientation with 1.2-
mm thick sections (field of view = 23, repetition time = 9.7ms,
echo time= 4ms, flip angle= 12◦, and inversion time= 300ms,
with no intersection gaps).

We analyzed morphological changes in the brain using a
voxel-based specific regional analysis system for Alzheimer’s
disease (VSRAD), a diagnosis-aiding program that runs on
Windows, for voxel-based morphometry based on statistical
parametric mapping (SPM8) and diffeomorphic anatomical
registration using the exponentiated lie (DARTEL) (23). VSRAD
is widely used in current clinical practice for the treatment of
AD (24).

VSRAD generates the following scores (23): (1) Severity, the
severity of atrophy obtained from the averaged positive z-score
in the target volume of interest (VOI) (i.e., hippocampus and its
surroundings); (2) Extent (%), the extent of a region showing
significant atrophy in the target VOI—i.e., the percentage of
coordinates with a z-value exceeding the threshold value of 2
in the target VOI; (3) Ratio, the extent of a region showing
significant atrophy in the whole brain—i.e., the percentage of
coordinates with a z-value exceeding the threshold value of 2
in the whole brain; (4) Whole Brain Extent (%), the ratio of
the extent of a region showing significant atrophy in the target
VOI to the extent of a region showing significant atrophy in the
whole brain.

Data Analysis
First, we measured the Pearson correlations between MMSE
scores and individual blood test items in the training set.
We likewise measured the correlation between subject age and
MMSE score.

Second, we employed multivariate regression analysis to
evaluate the factors (i.e., age, sex, and blood test items) that
correlated with cognitive function. In addition, we assessed the
risk factors of cognitive impairment using logistic regression
analysis. Finally, based on the two-class classification of normal
subjects (MMSE ≥24) and subjects with cognitive impairment
(MMSE ≤23), we evaluated the accuracy of the MMSE scores
predicted by logistic regression analysis.
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Third, employing deep neural networks (DNNs) as deep
learning algorithm, we analyzed the relationship between blood
data (input) and the ground truth MMSE scores in the subjects
(output). To implement the DNN, we used the H2O open source

machine learning library (25, 26). H2O allows the configuration
of multilayer feedforward neural networks. Input to the DNN in
this study consisted of 25 variables, including subject age plus 23
blood test items in the input layer (Figure 1). The DNN has two

FIGURE 1 | Schematic drawing of the DNN model for predicting MMSE scores. Input vectors include subject age and blood examination data. The output vector is a

regression to estimate the MMSE score. The hidden layer contains no backward connections from the downstream layers.

FIGURE 2 | Scatter plots of Mini-Mental State Examination (MMSE) scores and subjects’ ages (A), albumin level and A/G ratio (B), RBC count and Hb level (C), and

sodium (Na) and chloride (Cl) levels (D). The subjects’ age exhibited a significant negative correlation with MMSE scores (A). The blood test items exhibited weak but

significant positive correlations with MMSE scores (B–D). The horizontal axes indicate MMSE scores, while the vertical axes indicate age (A) and concentrations

(B-albumin, C,D).
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hidden layers with 400 neurons each. The weighted combination
α =

∑n
i=1 wixi + b aggregates the input signals xi in each layer

to activate an output signal f (α) to the connected neuron in the
next layer. The function f represents the non-linear activation
function used throughout the network, and the bias b accounts
for the neuron’s activation threshold. The output signal f (α) in
each layer is thus determined by the weighted combination with
the input signals xi from the higher layers of the DNN. In the
output layer, a loss function L

(

W,B | j
)

is measured using the
mean square error between the estimated value and the actual
MMSE score. The learning process updates the weights W and
biases B until the loss function L

(

W,B | j
)

is minimized. We use
W to denote the collection{Wi}1 : N−1, where Wi denotes the
weight matrix connecting layers i and i + 1 for a network of N
layers. Similarly, B denotes the collection

{

bi
}

1 : N−1
, where bi

denotes the column vector of biases for layer i+1. The algorithm
was validated by LOOCV.

Finally, the DNN and the logistic regression analysis were
compared for predictive accuracy of the two-class classification
of MMSE scores (i.e., the cut-off value of 23/24).

RESULTS

Pearson Correlations Between MMSE
Scores and Blood Test Data
We observed the following correlations between subject age,
blood test data, and cognitive function measured by MMSE.
Subject age exhibited a significant negative correlation with
MMSE scores (r = −0.50, p < 0.01) (Figure 2A). Albumin
(r = 0.35, p < 0.01) and the A/G ratio exhibited significant
positive correlations with MMSE scores (Figure 2B). In addition,
red blood cell count (RBC) (r = 0.23, p < 0.05), hemoglobin
concentrations (Hb) (r = 0.22, p < 0.05), and hematocrit (Ht)
(r = 0.24, p < 0.05) were significantly positively correlated with
MMSE scores (Figure 2C). Furthermore, sodium (Na) (r = 0.32,
p< 0.01) and chloride (Cl) (r= 0.22, p< 0.05) showed significant
positive correlations with MMSE scores (Figure 2D). Finally,
triglyceride (TG) (r = 0.24, p < 0.05) and uric acid (UA) (r
= 0.22, p < 0.05) were significantly positively correlated with
MMSE scores.

Multivariate Regression Analysis and
Logistic Regression Analysis
Employing multivariate regression analysis, we evaluated the
factors (i.e., age, sex, and blood test items) that correlated with
cognitive function (Table 3). We found that cognitive function
expressed by the MMSE score decreased with increasing age;
the partial regression coefficient was −0.17 (p < 0.001). In
addition, cognitive function increased as PLT, total protein, and
CI increased; partial regression coefficients were 0.179 (p< 0.01),
1.803 (p < 0.05), and 0.523 (p < 0.001), respectively.

Table 4 shows the risk factors of cognitive impairment
evaluated by logistic regression analysis. The risk of cognitive
impairment increased with age, with an odds ratio of 1.104 (p <

0.001). The risk of cognitive impairment decreased with increases

TABLE 3 | Multiple regression analysis of variables with regard to

cognitive function.

Variable Coefficient Confidence interval Std. error P-value

2.5% 97.5%

Age −0.170 −0.232 −0.109 0.031 0.000 ***

WBC 0.000 −0.001 0.000 0.000 0.140

RBC 0.013 −0.001 0.028 0.007 0.076

PLT 0.179 0.061 0.298 0.060 0.003 **

Total protein 1.803 0.419 3.188 0.702 0.011 *

CI 0.528 0.309 0.747 0.111 0.000 ***

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 4 | Risk factors of cognitive impairment evaluated by logistic

regression analysis.

Variable Coefficient Std.

error

Odds

ratio

Confidence interval P-value

2.5% 97.5%

Age 0.099 0.020 1.104 1.061 1.149 0.000 ***

PLT −0.094 0.031 0.910 0.857 0.967 0.002 **

Total protein −0.793 0.392 0.453 0.210 0.977 0.043 *

Albumin −0.888 0.539 0.412 0.143 1.182 0.099

K −0.517 0.386 0.596 0.280 1.271 0.180

CI −0.245 0.068 0.783 0.685 0.894 0.000 ***

Glucose 0.014 0.010 1.014 0.994 1.035 0.171

*p < 0.05, **p < 0.01, ***p < 0.001.

in PLT, total protein, and CI; the odds ratios were 0.91 (p< 0.01),
0.453 (p < 0.05), and 0.783 (p < 0.001), respectively.

Based on the two-class classification of normal subjects
(MMSE ≥24) and subjects with cognitive impairment (MMSE
≦ 23), we evaluated the accuracy of the MMSE scores predicted
by logistic regression analysis. We found that the prediction
accuracy for cognitive impairment (MMSE ≤ 23) was 74.16%,
for normal cognitive function (MMSE≧ 24) was 78.64%, and the
estimation rate was approximately 76.56%.

Prediction of MMSE Scores Using the DNN
Model
In order to validate the DNN model, we compared the ground
truth MMSE scores with those predicted by the DNN model
using LOOCV in the training group. The predictedMMSE scores
exhibited a significant positive correlation with the ground truth
MMSE scores (r = 0.85, p < 0.001) (Figure 3A). The mean
absolute error was 2.02, while the root mean square error was
2.02, as compared to the raw scores, which ranged from zero
to 30.

Effects of Aging on Predicted MMSE
Scores Using the DNN Model
Since subject age exhibited the highest correlation coefficient,
the MMSE scores predicted using the DNN might be strongly
influenced by the age of the subject. Therefore, in order to
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FIGURE 3 | Scatter plots of the measured and predicted MMSE scores by DNN with age (A) and without age (B). The horizontal axes indicate the measured MMSE

scores, while the vertical axes indicate the predicted MMSE scores by DNN.

FIGURE 4 | Scatter plot of the predicted MMSE scores and ground truth

MMSE scores in the Inpatient and Heathy groups. The horizontal axis

represents the measured MMSE score, while the vertical axis indicates the

MMSE score predicted by the DL-based screening test.

evaluate the degree of influence of age on the DNN prediction,
we compared the ground truth MMSE scores to the predicted
MMSE scores using a second DNN, trained without the age

parameter (Figure 3B). While the correlation coefficient of the
second DNN’s output compared with the ground truth MMSE
scores decreased slightly from 0.85 to 0.75 (as expected), the
correlation was still statistically significant (p < 0.001).

Prediction Accuracy of the Deep Neural
Network Model in the Binary Classification
of MMSE
We then validated the DNN model as a binary classifier to
detect the presence or absence of cognitive dysfunction using
the MMSE threshold (a cut-off value of 23/24). The DNN model
exhibited a high prediction accuracy for binary classification,
with a sensitivity of 90% and specificity of 90%.

Variable Importance Vis-à-vis the
Prediction of MMSE Scores
We evaluated the variable importance vis-à-vis the prediction
of MMSE scores. Table 5 shows the variable importance in
DNN prediction. Interestingly, the variable with the highest
importance “age,” also showed the highest correlation coefficient
in Spearman’s rank-order correlation. In addition, albumin, Hb,
and RBC exhibited high importance in DNN prediction.

Validation of Prediction Accuracy of DNN
Model
In order to validate the prediction accuracy of the DNN model,
we compared the predicted MMSE scores and ground truth
MMSE scores in the Patient and Heathy groups. Figure 4 shows
the scatter plots of the ground truth MMSE scores and those
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FIGURE 5 | Comparison of the ground truth and predicted MMSE scores in the Patient and Healthy groups. Note that the predicted MMSE scores were lower than

the ground truth MMSE scores in the healthy group.

FIGURE 6 | Distribution of the classification of cognitive function based on predicted MMSE scores. Class A (MMSE scores 27–30) = normal, B (MMSE scores

24–26) = suspected MCI, C (MMSE scores ≤23) = suspected dementia.
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predicted by the DNN model. The predicted MMSE scores
exhibited a significant positive correlation with the ground truth
MMSE scores (r = 0.66, p < 0.001). The MAE was 3.43 with a
standard deviation of 2.59.

Figure 5 compares the ground truth and predicted MMSE
scores in the Inpatient and Heathy Groups. The ground truth
MMSE scores (22.4± 5.4) in the Patient group were significantly
lower than those in the healthy group (29.4± 1.3) (p< 0.05). The
predicted MMSE scores (22.0 ± 3.9) in the Patient group were
significantly lower than those in the Healthy group (27.6 ± 2.2)
(p < 0.05), which was consistent with the relationship observed
in the ground truth MMSE scores. There was no significant
difference between the predicted (22.4 ± 5.4) and ground truth
MMSE scores (22.4 ± 5.4) in the Patient group (p > 0.05).
However, in the healthy group, the predicted MMSE scores (27.6
± 2.2) were significantly lower than the ground truth scores (29.4
± 1.3) (p < 0.05).

We evaluated the prediction accuracy of the DNN model in
the two-class classification of MMSE (normal, MMSE scores ≥
24; cognitive impairment, MMSE scores, ≤ 23). We observed a
high prediction accuracy with a sensitivity of 75% and specificity
of 87%.

Clinical Experience Using the DNN Model
A total of 165 subjects chose the optional DNN-based dementia
risk test at the time of their health examination; most subjects
had a normal working life and attended the clinic as a regular
health check imposed by the employer on the worker. Figure 6
shows the distribution of the classification of cognitive function

based on the MMSE predicted by the DNN model. A total of
94 subjects were classified as Class A (normal), while 67 subjects
were classified as Class B (suspected MCI). Only four cases were
classified as Class C (suspected dementia).

Thirty out of the 165 subjects (mean age, 56.3 ± 9.4
years) were readmitted to the dementia prevention outpatient
clinic at the clinic and underwent a detailed examination of
cognitive dysfunction involving various neuropsychological tests,
including the MMSE, and imaging-based diagnosis using MRI.
Most readmitted patients were classified as class B (suspected
MCI) or lower. The predicted MMSE scores (26.2 ± 1.1) were
significantly lower than the ground truth MMSE scores (28.2 ±

1.8, p <0 0.05) (Figure 7).
However, in four cases, the predicted MMSE scores (26.9 ±

1.1) exceeded the ground truth MMSE scores (25.3 ± 0.5); the
average difference in the MMSE score was −1.7 ± 0.8. Two of
the subjects had a neurological disease, such as subarachnoid
hemorrhage (SAH). One patient (male, 66 years old) had SAH
due to cerebral aneurysm rupture 2 years before the DNN-based
dementia risk test; MRA showed an aneurysm of the anterior
communicating artery. The patient had undergone endovascular
coiling. At the time of examination, there was nomotor paralysis,
but mild cognitive decline was observed (MMSE score= 25). The
blood test data were within the normal range, and the predicted
MMSE score was 27.5.

Relationship Between Blood Data and MRI
Table 6 shows the correlations between blood data
and the variables on VSRAD, which is an MRI-based

FIGURE 7 | Comparison of the ground truth and predicted MMSE scores in the Health examination group. Note that the predicted MMSE scores were lower than the

ground truth MMSE scores.
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TABLE 5 | Variable importance in deep learning prediction.

Rank Variable Relative importance

1 Age 1

2 Alb 0.59

3 PLT 0.55

4 Ht 0.54

5 Hb 0.53

6 K 0.53

7 BUN 0.49

8 RBC 0.48

9 MCV 0.45

10 UA 0.44

MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean

corpuscular hemoglobin concentration; BUN, blood urea nitrogen.

brain atrophy index. We found that total protein, A/G
ratio, and Cl significantly correlated with the variables
on VSRAD.

DISCUSSION

Prediction Accuracy of DNN Model
Originally inspired by biological neural networks, a DNN
is capable of learning functional approximations to a wide
variety of problems, including regression and classification.
In many cases, a DNN model can be trained to predict
with extremely high accuracy (16). Indeed, the present study
demonstrated that the DNN-based screening method was able
to predict the cognitive function expressed by MMSE scores
with high accuracy based on basic blood test data for health
examination. At first, we evaluated the prediction accuracy
by LOOCV and found a significant correlation between the
ground truth and predicted MMSE scores. It should be noted
that the accuracy of the MMSE scores predicted by the DNN
model was higher than that predicted by the logistic regression
analysis in the two-class classification of normal and cognitive
impairment (Tables 5, 6). In addition, the predictive accuracy
of the DNN model was validated in subjects who were not
included in the training of the DNN model. There was a
significant positive correlation between the ground truth and
predicted MMSE scores (r = 0.66, p < 0.001). Moreover, the
binary classification based on MMSE scores showed a high
prediction accuracy with a sensitivity of 75% and specificity
of 87%. These results suggest that the DNN model allows
us to predict cognitive dysfunction expressed by MMSE in
elderly individuals with high accuracy based on basic blood
test data, which does not include AD-related biomarkers such
as amyloid β. Although the prediction accuracies were slightly
lower than those in the LOOCV with the training group data,
we believe that the DNN model can predict MMSE scores with
high accuracy and can be applied in clinical screening tests of
cognitive impairment.

TABLE 6 | Correlation between blood data and MRI findings.

Blood data VSRAD

Severity Brain Extent (%) Extent Ratio

(%)

Total protein r = 0.423** ns r = 0.412* r = 0.368*

A/G ratio r = 0.453* r = 0.564** r = 0.456* r = 0.415*

CL −0.43* ns r = −0.425* r = −0.467*

*p < 0.05, **p < 0.01.

Mechanisms of Prediction of Cognitive
Impairment Based on Basic Blood Test
It is not yet clear why the DNN model could predict cognitive
function based on basic blood test data; however, the following
two pathophysiological mechanisms should be considered. First,
the vascular factor (i.e., vascular cognitive impairment, VCI)
plays an important role in the underlying mechanism of the
cognitive impairment in the subjects for training of the DNN
model (7–9). The VCI is based on atherosclerosis which is caused
by lifestyle diseases. Therefore, basic blood data may predict the
degree of atherosclerosis based on the basic blood data which
reflect lifestyle diseases. Another possible mechanism is systemic
metabolic disorders which could affect cognitive function. Recent
studies demonstrated that cognitive function could be affected
by various systemic disorders, including malnutrition (11) and
anemia (12). Indeed, we observed that albumin and A/G ratio
exhibited significant positive correlations with the MMSE scores;
albumin also showed a high importance in the prediction of
MMSE scores by the DNN model. In addition, RBC and Hb
showed significant positive correlations with the MMSE scores,
and Ht and MCV showed high importance in the prediction
by the DNN model. In addition, it has been reported that
the following systemic disorders could affect cognitive function;
liver dysfunction (27), abnormal lipid metabolism (13), renal
dysfunction (15), abnormal purine metabolism (14), abnormal
electrolytes (Na, Cl) (28), and platelets (29). These systemic
disorders were consistent with the blood test items that correlated
with MMSE scores and/or were the important variables in the
prediction by the DNNmodel.

Mechanisms of Cognitive Dysfunction in
Elderly People
Based on the reported studies and present study, we suggest
that cognitive dysfunction in elderly people may be caused by
a joint action of systemic metabolic disorders (e.g., energy and
oxygen metabolism disorders) and cerebral circulation disorder
due to arteriosclerosis based on lifestyle diseases (Figure 8).
This paradigm suggests that the dementia of elderly individuals
with lifestyle diseases and metabolic disorders could be regarded
as a systemic disease rather than a brain disease localized to
the central nervous system. Currently, it is difficult to treat
the brain disorders of dementia. However, systemic metabolic
disorders including lifestyle diseases can be treated, which leads
to prevention or delay of the onset of cognitive disorders in the
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FIGURE 8 | Mechanisms of cognitive dysfunction in the elderly with systemic metabolic disorders and arteriosclerosis based on lifestyle diseases. The systemic

disorders can be prevented and treated, which leads to the prevention and improvement of cognitive impairment in elderly people.

elderly. It should be emphasized that vascular factors are not
limited to vascular dementia, but also play a role in the onset of
AD (10). Therefore, treatments of vascular factors could reduce
the onset of both vascular dementia and AD.

Effects of Aging on Prediction by DNN
Model
The predicted MMSE scores were lower than the ground truth
MMSE scores in the Healthy group (p < 0.05), while there
was no such difference in the Patient group. There were the
following differences in the background of the subjects between
the two groups. First, the average age of the Healthy group (62.0
± 8.6 years) was significantly lower than that of the Patient
group (73.6 ± 11.0 years, p < 0.05). Second, the subjects in the
Healthy group less commonly had lifestyle diseases than those in
the Inpatient group. Finally, the subjects in the Healthy group
regularly exercised at the sports gym; similar behavior was not
seen in the patient group. These differences suggest that subjects
in the Healthy group might be less affected by atherosclerosis
than those in the Patient group. Similar discrepancies between

the predicted and ground truth MMSE scores were observed
in the Health examination group. It should be noted that the
subjects in the Health examination group were younger (56.3 ±

9.4 years) than those in the Inpatient group (73.6 ± 11.0 years),
suggesting that a larger proportion of subjects in the Health
examination group might not have atherosclerosis than that in
the Patient group.

Based on these observations, we suggest that the difference

between the predicted and ground truth MMSE scores was
caused by the training group of the DNN model. The DNN

model in the present study was trained in elderly patients
with cerebrovascular diseases due to atherosclerosis. When the
DNN model was applied to younger subjects with less advanced
arteriosclerosis, the DNN model might predict the same MMSE
score as the elderly who were used for training of the DNN
model, if the blood data were the same, resulting in lower
predicted MMSE scores than the ground truth in younger
subjects. Therefore, applying the DNNmodel to younger subjects
(e.g., 40–60 years old) may predict future cognitive impairment
after the onset of atherosclerosis.
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Relationship Between Blood Data and MRI
Interestingly, there were significant correlations between the
blood data (e.g., total protein, A/G ratio, and Cl) and the variables
on VSRAD, which is an MRI index of brain atrophy (23, 24).
Although the underlying mechanisms are not yet clear, these
observations suggest that systemic metabolic disorders could
affect the anatomical structure of the brain. In addition, the
correlation between the blood data and VSRAD suggests that
DNN may be able to predict changes in the anatomical structure
of the brain detected by MRI based on basic blood test data.
If MRI findings such as VSRAD can be predicted from the
general blood test data, unnecessary MRI examinations will
be less frequently performed, which will provide medical and
economic advantages. Further studies are necessary to clarify
whether deep learning can predict MRI findings based on basic
blood test data.

Advantages of DNN-Based Screening Test
When applying the DNN model to a screening test for cognitive
impairment, the following advantages may be considered. First,
one of the advantages is that only blood data values are used
for the DNN-based screening test. Therefore, this test can be
used as an inexpensive mass screening test for dementia. In
addition, by entering blood data values into the smartphone, it
is possible to use the smartphone for personal risk assessment
of cognitive impairment. These advantages may contribute to
the early diagnosis of MCI and dementia. Second, as discussed
above, when this method is applied to middle-aged subjects,
the result may be able to predict cognitive impairment when
they become older in the future. Finally, this method may
contribute not only to screening tests for dementia, but also to
personalized care for the prevention of dementia. That is, the
blood test data reflect systemic metabolic abnormalities in each

FIGURE 9 | Medical examination procedure using the DNN-based screening test.
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individual; thus, it is possible to improve their lifestyle based
on the abnormal blood data (11–15, 25–27). Personalized care
not only increases the effectiveness of interventions but also
enhances lifestyle incentives. Lifestyle improvement is not long-
lasting for the purpose of improving lifestyle-related diseases, but
long-lasting for the purpose of reducing the risk of dementia.

Clinical Application of DNN Model to
Medical Care of Dementia
Figure 9 shows the consultation procedure at the Tokyo Clinic
using the DNN-based screening test. First, the test is optionally
performed in general health examination. Those classified as
Class A will receive general life guidance, while those assessed as
Class B (suspected MCI) or Class C (suspected dementia) will be
advised to visit the outpatient clinic for further consultation. In
the outpatient clinic, the MMSE and other neuropsychological
tests will be performed on these patients. If their cognitive
function is not impaired or MCI, their systemic metabolic
disorders that are risk factors for dementia will be treated by a
general practitioner. If there is an apparent cognitive impairment,
MRI, and other imaging modalities will be performed. Patients
diagnosed with dementia will be treated by a dementia specialist.

Limitations of DNN-Based Screening Test
Finally, the limitations of the present study should be discussed.
First, most of the patients for training of the DNN model
had received medical treatments for their lifestyle diseases and
cerebrovascular diseases at the time of this study. Therefore,
the blood data tended to exhibit normal values or only small
abnormalities, resulting in poor correlations with MMSE scores
and less variable importance in the DNN model. Second, the
DNN model may miss cognitive impairment in subjects whose
cause is limited to the brain. Therefore, patients with the juvenile
form of Alzheimer’s disease who have no systemic disorders
may be overlooked by this method. The use of functional brain
monitoring such as near-infrared spectroscopy (NIRS) may be
useful to avoid such misdiagnosis (29–31). Further evaluation
is needed to validate the DNN model for clinical application.
In particular, the false-positive/false-negative ratio should be
assessed more accurately using a large number of subjects.
Finally, the input layer of the DNN model primarily uses only
blood data and subject’s age, but does not include physical
findings (body mass index, blood pressure, etc.) or medical
history. The prediction accuracy may be improved by increasing

the input layer items. In order to establish the present method as
a mass screening test for dementia, further studies are needed to
resolve these limitations.

Summary
We have developed a DNN model which allows to predict
cognitive impairment expressed by MMSE scores. This method
is based on the idea that cognitive impairment in the elderly is
caused by systemic metabolic disorders such as lifestyle diseases,
and thus, uses basic blood test data of health examinations that
do not include biomarkers for dementia such as amyloid β.
Therefore, it can be applied to mass screening tests for dementia
and can be used to test for dementia with a smartphone. This

method may contribute not only to early detection of cognitive
decline such as MCI, but also to personalized care for the
prevention of dementia based on the abnormal blood data that
reflect individual risk factors for cognitive impairment. Finally, it
should be emphasized that the combination of the DNN-based
screening test and behavioral changes may contribute to the
prevention of dementia and health economics in the elderly.
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