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This minireview discusses our current understanding of the olfactory dysfunction that

is frequently observed in sporadic and familial forms of Parkinson’s disease and

parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction

in these conditions, discussing its prevalence and characteristics, how neuronal

processes and circuits are altered in Parkinson’s disease, and what is assessed by

clinically used measures of olfactory function. We highlight how studies of monogenic

Parkinson’s disease and investigations in ethnically diverse populations have contributed

to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we

discuss how imaging and system-level approaches have been used to understand the

pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in

understanding the basis of olfactory dysfunction in neurodegeneration. We propose

that insights could be obtained by following longitudinal cohorts with familial forms

of Parkinson’s disease using a combination of approaches: a multifaceted longitudinal

assessment of olfactory function during disease progression is essential to identify not

only how dysfunction arises, but also to address its relationship to motor and non-motor

Parkinson’s disease symptoms. An assessment of cohorts having monogenic forms of

Parkinson’s disease, available within the Genetic Epidemiology of Parkinson’s Disease

(GEoPD), as well as other international consortia, will have heuristic value in addressing

the complexity of olfactory dysfunction in the context of the neurodegenerative process.

This will inform our understanding of Parkinson’s disease as a multisystem disorder

and facilitate the more effective use of olfactory dysfunction assessment in identifying

prodromal Parkinson’s disease and understanding disease progression.

Keywords: olfactory dysfunction, genetics, idiopathic Parkinson’s disease, longitudinal studies, biomarker,

cognition, monogenic Parkinson’s disease, neurodegeneration

INTRODUCTION

Since Ansari and Johnson (1) first reported that olfactory dysfunction (OD) occurs in Parkinson’s
disease (PD), OD has been evaluated using tests of odor identification, odor discrimination,
odor-threshold detection and electrophysiology (2–4). OD is not PD-specific and is prevalent in
aging and other diseases, particularly in neurodegenerative disorders such as Alzheimer’s disease,
Huntington’s disease, and rapid-eye-movement sleep-behavior disorder (5–12). OD can severely
impact the quality of life, affecting interpersonal and eating habits, patient safety, and nutritional
intake (13–15). Because OD is prominent in PD (16, 17) and its onset may signal prodromal PD,
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it is important to understand how and when OD arises, the
mechanisms underlying its association with PD progression, and
identify interventions for OD.

OD PREVALENCE IN PD

Cross-sectional studies revealed that OD occurs in sporadic
PD prior to the initiation of dopaminergic therapy [reviews:
(3, 4, 18–20)]. The reported prevalence of OD in sporadic PD
varies substantially: 45–50% (1, 21, 22), 70–80% (2, 23), and 90–
97% (24, 25). This may reflect challenges in PD diagnosis, OD
measurement, sample size, normative group selection, and age.
Prevalence of OD generally decreases when adjusted for age-
related norms, as the prevalence of OD is over 50% past age 65
and 62–80% past age 80 (26, 27).

Interestingly, OD in monogenic PD exhibits variable
penetrance and expressivity. In manifesting carriers with
GBA (β-glucosylceramidase), SNCA (α-synuclein, point or
gene-multiplication), LRRK2 (leucine-rich repeat kinase
2), PINK1 (PTEN-induced kinase 1), or DJ1 (PARK7:
Parkinsonism-associated deglycase) mutations, and in MAPT
(microtubule-associated protein tau)-associated frontotemporal
dementia and parkinsonism, OD-penetrance overlaps with that
in sporadic PD [(28–64); reviews: (3, 65–68)]. While different
studies report varying, sex- or allele-differential OD prevalence
in mutation carriers relative to sporadic PD controls [tabulated
in Doty (3)], two key OD features seen in sporadic PD persist
in many monogenic forms. First, while many carriers are
hyposmic when they phenoconvert to show motor symptoms,
some carriers have mostly preserved olfaction (28, 40). Second,
the distribution of OD in monogenic PD cohorts is similar
to sporadic PD (Figure 1). The striking exception is PRKN
(parkin RBR E3-ubiquitin protein ligase) and VPS35 (VPS35
retromer-complex component) manifesting carriers, who have
normal olfaction or only mild OD (70–75). As discussed below,
the preserved olfaction in PRKN carriers and possibly some
subsets of LRRK2 carriers appears related to an absence of
Lewy bodies (LBs) in the olfactory bulb and/or the olfactory
system (76–78).

Mutations in LRRK2, PINK1, GBA, SNCA, and PRKN have
similar effects on OD across ethnically and geographically diverse
populations. Hence, if a mutation causes OD, its effect-size
on OD-related neurodegenerative processes is large relative to
genetic background and environmental exposure. Since these
mutations increase substantially PD risk, targeted investigations
of non-manifesting mutation carriers of LRRK2, PINK1, GBA,
and SNCA provide a unique opportunity to understand OD
in PD.

OD CHARACTERISTICS IN PD

Though many fundamental questions about OD in PD have been
raised for some time (24, 79, 80) and studied in diverse patient
cohorts and contexts, consensus answers are not always available,
as described below. Sometimes, conflicting findings reflect the
tests used or their interpretation. As discussed more fully by

FIGURE 1 | Univariate density estimates of scores on the University of

Pennsylvania Smell Identification Test (UPSIT) in five PPMI cohorts (69).

Cohorts: 198 healthy controls (HC, black) age-matched with 491 sporadic

Parkinson’s disease patients (SPD, blue, ≥2 of resting tremor, bradykinesia, or

rigidity, with resting tremor or bradykinesia required, or either asymmetric

resting tremor or asymmetric bradykinesia; PD diagnosis ≤2 years; Hoehn and

Yahr stage I–II; scan-confirmed dopaminergic deficit; ≥30 years at diagnosis;

no dopaminergic medications ≥6 months after baseline assessment), 310

asymptomatic genetic Parkinson’s disease patients who have a mutation, or

are a first-degree relative of an individual having a mutation, in LRRK2, SNCA,

or GBA (GENUN, gold), 220 symptomatic genetic Parkinson’s disease patients

who have a mutation in LRRK2, SNCA, or GBA (GENPD, red), and 61

individuals selected for REM-behavior sleep disorder and/or hyposmia (PROD,

cyan). Shading in the table cells indicates the P-value (white: P ≥ 0.05, black:

P < 0.001) obtained from pairwise non-parametric bootstrap tests of equal

densities using 1,000 permutations.

Doty (81), while the results on psychophysical tests of OD (tests
of odor identification, odor discrimination, or odor-threshold
detection) are strongly correlated, they vary in reliability and
sensitivity and assess different neurophysiological, neurological,
and/or psychological aspects. Most often, OD is evaluated using
tests of odor identification. Using those tests, variable OD
is seen in all studies of sporadic PD and those monogenic
PD forms resembling sporadic PD (SNCA, GBA, LRRK2),
including at motor-symptom onset. Figure 1 (69) illustrates
this using univariate density estimates of odor-identification-
test scores obtained from the Parkinson’s Progression Marker
Initiative (PPMI). While the score distributions of early-stage,
dopamine-transporter-scan positive, dopaminergic-treatment
naïve sporadic PD (blue), and age-matched healthy controls
(black) are distinct, both groups have normosmic, hyposmic,
and anosmic membership. This is also observed in manifesting
SNCA, GBA, and LRRK2 carriers (red line), which here have a
score distribution like sporadic PD. Indeed, anosmia is not always
seen in manifesting carriers in nuclear families with monogenic
PD (28, 52). Hence, like PD motor symptoms, OD has variable
penetrance in sporadic and some monogenic PD. Unlike them,
OD is frequently seen in otherwise healthy aging and other
neurodegenerative diseases, suggesting that OD can result from
a confluence of processes.
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ThoughOD in PDpresents non-uniformly, community-based
prospective studies demonstrated that it can appear up to 4 years
before motor-symptom onset (79, 80); in MAPT carriers it can
appear 2 years before symptom onset (52). Consequently, OD
has been used in biomarker panels for predicting risk and/or
progression of PD [(59, 82–88); reviews: (18, 19, 89–91)]. For
this purpose, it is important to elucidate: (1) whether OD in PD
is distinguishable from OD in other diseases and aging; (2) how
its onset and progression relates to motor-symptom onset and
progression; (3) whether OD severity is associated with disease
stage, duration, or predicts disease progression; and (4) what
clinical tests of OD measure in the context of the disease process.
Well-designed studies of OD in monogenic PD can address
each issue.

DISTINGUISHING FEATURES OF OD IN PD

Central to understanding whether the etiology of OD in PD is
shared with that in the elderly or other neurodegenerative
diseases is identifying whether OD has PD-specific
characteristics. PD does affect supra-threshold estimates of
perceived odor intensity, which appears spared in Alzheimer’s
disease, schizophrenia, and the elderly (92), but does not affect
the trigeminal system (93). Combined with imaging, it can
help distinguish disorders whose initial presentation overlaps
with PD, such as progressive supranuclear palsy, cortico-basal
degeneration, or multiple system atrophy [(94–96); reviews:
(20, 97)].

Many studies have identified a set of odors or pattern of OD
that best evaluates OD in their cohort (98–107). Most often
however, the odor sets are dissimilar in different PD populations
(108). This likely reflects odor identification being influenced
strongly by prior exposure and population variation in odorant-
receptor alleles. Multiple analyses have indicated that there is
not odor-selective hyposmia in PD. Highly compelling is an
odor-item analysis indicating that the discriminatory power
of odor subsets is not shared across independently selected
groups (109). Additional support comes from longitudinally
evaluating hyposmia in subjects with sporadic PD, subjects
without neurodegenerative disease, and in MAPT-mutation
carriers. They reveal odor-identification irreproducibility as a
general feature of OD: subjects do not misidentify the same
odors on replicate odor-identification tests (52). In a longitudinal
study of sporadic or monogenic PD subjects recruited from
ethnically diverse populations, comparison of results across
populations would be facilitated by using a universal olfactory
test that is independent of odor-specific insensitivity or prior
experience (110).

HOW IS OD RELATED TO DISEASE ONSET
AND PROGRESSION?

The etiological mechanisms underlying the variable presentation
of both PD motor symptoms and OD remain unclear. The
olfactory epithelium in PD appears normal (111), but it is
unknown whether PD impacts its neurogenic niche (112), the

functional integration of axons from differentiating olfactory-
receptor neurons into the olfactory bulb, and how either process
impacts OD. α-Synuclein deposits are found in the olfactory bulb
and anterior olfactory nucleus at Braak stage I (113–115), and
glomerular volume is reduced by half in PD (116). Since the
olfactory bulb plays a critical role in the spatiotemporal coding of
smell, OD early in disease might reflect the incomplete inhibition
of olfactory inputs at the level of the olfactory bulb (117) and the
reported increase in dopaminergic neurons (118, 119). Studies
of OD in monogenic PD offer a compelling hypothesis for the
variable expressivity of OD: early OD reflects LB development in
the olfactory bulb. LBs are prominent neuropathological features
in monogenic PD forms with OD (SNCA,GBA, PINK1, andDJ1),
but not in PRKN-related PD where olfaction is preserved (28–
64, 70–77). Progressive OD is also seen in mice expressing forms
of human α-synuclein exhibiting olfactory-bulb Lewy pathology
(78, 120, 121). ATP13A2 (ATPase cation transporting 13A2)
carriers exhibit OD (65) but not LB (122), but show atypical
PD. Since LB and olfactory dysfunction are not always seen in
LRRK2 carriers, and some LRRK2 alleles have fewer LB (40–
49, 76, 77, 123), additional support for this hypothesis would
come if the relatively preserved olfaction in a subgroup of LRRK2
carriers were also associated with fewer olfactory-bulb LB. If
this hypothesis is correct, screening hyposmic individuals using
PET ligands under development to image LB in the olfactory
bulb (124)1 would help identify those having increased risk of
developing PD-motor symptoms.

Early olfactory deficits are consistent with the olfactory vector
hypothesis for PD pathogenesis and the caudo-rostral spread
of LB pathology (113–115). It is interesting however, that some
individuals with normal olfaction lack olfactory bulbs (125). This
suggests that the establishment and maintenance of olfactory
circuits has considerable functional plasticity. The projections
of the olfactory tract form circuits spanning multiple cortical
areas, including the entorhinal and orbitofrontal cortices and
utilize multiple neurotransmitter systems (Figure 2). Therefore,
olfactory-bulb pathology may not be the sole determinant of
OD. As discussed below, early OD associated with olfactory bulb
LB can be followed by later cholinergic denervation (126, 127).
It will be important to address the extent to which OD in
PD is associated with a loss of functional plasticity, whether
it reflects the differential progression of the neurodegenerative
process in one or multiple anatomical regions, the contributions
of degenerative or compensatory changes in dopaminergic,
or other neurotransmitter systems, including substance P and
acetylcholine (128, 129), and how these associations relate to later
motor-symptom onset and progression.

OD has significant, moderate to strong associations with
nigrostriatal degeneration (105, 130, 131). In one study,
98.7% of PD subjects with imaging evidence of nigrostriatal
dopaminergic denervation had OD (130). There, however,
most still retained some olfactory function: 24.6% were
anosmic and 73.2% were hyposmic [N = 183, motor-disease
duration = 6.4 ± 4.3 year, Hoehn and Yahr (H&Y) stage 1–5].

1https://www.michaeljfox.org/grant/18f-labeled-alpha-synuclein-ligands-pet-
imaging-lewy-bodies
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FIGURE 2 | Simplified schematic representation of central nervous system structures and connections involved in olfaction, memory, and motor control. The figure

aims to illustrate the complexity of the connections of the olfactory system, associative cortices, thalamus, and the basal ganglia that may be differentially affected at

different stages of Parkinson’s disease. While the arrows represent anatomical and functional connectivity, not all known interconnections are included in this

schematic representation. Differential neuronal loss and associated decrease in key neurotransmitter (acetylcholine, dopamine, etc.) levels at any of these structures

has the potential to differentially affect their function and connectivity, thus directly and indirectly contributing to olfactory dysfunction. While in PD LB preferentially

involve the brainstem at disease onset, their distribution in the olfactory and cortical areas depends on disease stage (113, 114). OE, olfactory epithelium; OB,

olfactory bulb; AON, anterior olfactory nucleus; PRC, perirhinal cortex; ERC, entorhinal cortex; AM, amygdala; FC, frontal cortex; TC, temporal cortex; PFC, prefrontal

cortex; OFC, orbitofrontal cortex; HP, hippocampus; TH, thalamus; MC, motor cortex; STR, striatum; SNC, substantia nigra pars compacta; GPi/SNr, globus pallidus

interna/substantia nigra pars reticulata; GPe, globus pallidus externa; STN, subthalamic nucleus; BS, brainstem.

Consistent with these findings, screens for hyposmia increase
the likelihood of identifying subjects with abnormal dopamine
transporter binding (91). This may be a causal association or
reflect coincident processes. Deficits in cholinergic transmission
are a common element in OD in different diseases (132),
and neurodegeneration affecting cholinergic circuits is found
even early in PD [Figure 2, (133–136)]. Indeed, cholinergic
denervation of the limbic archicortex in PD subjects at H&Y 2.5
± 0.5 is a more robust determinant of poor odor-identification
test scores than nigrostriatal dopaminergic denervation (126).
When groups of PD patients having mild motor deficits and
varying degrees of OD were compared, there was a more
significant reduction of a putative cholinergic marker (i.e., short
latency afferent inhibition of the motor cortex) when olfactory
event-related potentials (a direct measure of the processing of
olfactory information) were absent, than when only their latency
and/or amplitude was altered (137). Curiously, a history of
smoking (cholinergic stimulation) is also associated with better
olfaction in PD (138).

The use of shared neural substrates in the premotor frontal
and orbitofrontal cortex by olfaction and cognition (Figure 2),

and the contribution of cholinergic deficits to OD provides a
potential mechanism for why greater OD appears to identify
the subset of sporadic and monogenic PD patients at greater
risk of future cognitive impairment [(59, 107, 139–149); reviews:
(27, 150)]. Thus, genome-wide screens in PD subjects for
variants that influence risk of severe OD or protect from
developing OD may identify genetic factors that increase risk
of, or offer protection from, cognitive impairment in PD.
PD-associated changes to central brain networks, brain-region
specific structural integrity, and functional connectivity also are
associated with OD (151–161). The importance of functional
connectivity is highlighted by theta-specific phase coupling
between the piriform cortex and hippocampus in the rapid
differentiation of odor stimuli (162), and the ability of anosmic
subjects having diminished functional connectivity to activate
an olfaction-related functional network (163). A possible partial
restoration of functional connectivity may explain why deep-
brain stimulation of the subthalamic nucleus (DBS-STN) leads
to modest odor-identification test score improvement (164–166).
To obtain mechanistic insights into the variable presentation
of OD, its relationship to motor symptom presentation and
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later cognitive dysfunction, it would be fruitful to longitudinally
study carriers of monogenic PD mutations utilizing functional
imaging to evaluate how functional connectivity is altered during
prodromal PD and disease progression.

Since olfactory system LB increase with advancing
neuropathological PD stage (113–115) and many non-motor
PD symptoms such as cognitive and autonomic dysfunction
often increase in severity with disease progression, it is unclear
why the severity of hyposmia is not consistently associated with
motor signs, disease stage, or duration. This is especially striking
because the density of synuclein-pathology in the olfactory
bulb is positively correlated with motor scores (165). Some
cross-sectional studies reveal that diminished scores on olfactory-
function tests are associated with increased disease duration
(167, 168), while others do not (22, 23, 25, 117, 148, 169, 170).
Some studies have reported associations with more severe
disease (22, 148, 168, 169, 171, 172) but others have not
(24, 25, 117, 170, 173–175), even though hyposmia severity is
associated with lower dopamine transporter activity (168). While
OD does not always develop in parallel with other non-motor
symptoms in either sporadic or monogenic PD (65), resolving
whether it does develop in parallel with motor symptoms has
implications for management. In one study of PD subjects with
similar striatal dopamine transporter activities, normosmic
individuals had lower levodopa-equivalent dose requirements
than did hyposmic individuals at 2.5 years of follow-up (22),
suggesting that a relative lack of OD may be associated with a
clinically more benign disease course.

The conflicting results about whether OD relates to disease
progression might be explained if OD does not appear gradually,
but rather in a stepwise irreversible manner. Variability in the
occurrence of LB within the olfactory bulb could be related
to the degree of inhibition of olfactory inputs (117) and/or
increase in dopaminergic neurons (118). This could contribute
to variable expressivity in initial OD that remains relatively stable
over time, possibly due to functional plasticity. Stepwise onset
could arise from the convergence of multiple failing processes.
While a primary early contributor is almost certainly the loss
of functionality within the olfactory bulb, later contributions
could derive from other olfactory-system regions. These could
include the asynchronous stepwise failure of compensatory
mechanisms and/or the onset of dysfunction in circuits involved
in associative processing and interpretation of smell. Joining
the gradual loss of functionality in the olfactory bulb to either
of these processes would lead to a stepwise onset of OD in
PD. In this scenario, different levels of OD would be observed
upon breaching different functional lintels. A continuous scaled-
test score distribution would be observed in a population, but
longitudinally followed individuals would show stepwise score
decline. Since many newly diagnosed cases are normosmic or
hyposmic, whether or not an association is observed between
OD and motor function in a cross-sectional study would depend
strongly on the cohort’s initial constitution.

Whether OD shows stepwise progression could be addressed
by obtaining longitudinal data on OD in large PD cohorts.
To date, most studies (e.g., PPMI) assess OD only at baseline.
Hyposmia can be stable over periods of 2–6 years in sporadic

PD (24, 117), MAPT mutation carriers (52), and GBA mutation
carriers (50). Therefore, to assess the progression of OD
accurately, follow-up longer than 5 years will be necessary. A
more efficient approach is to assess the progression of OD in non-
manifesting carriers from monogenic PD cohorts where disease
risk is substantially increased, and the genetic cause is known. A
longitudinal study using imaging methodologies able to evaluate
when LB appear, the integrity of multiple neurotransmitter
systems, and functional connectivity would help address the
relative contribution of each to the onset and progression of OD
and motor symptoms.

WHAT DO OLFACTORY-FUNCTION TESTS
ASSESS ABOUT THE DISEASE PROCESS?

The stability of measurements of OD in PD suggests that it may
be challenging to use them to directly assess the prodromal and
symptomatic disease process outside of monogenic PD cohorts.
Intriguingly, PD subjects often subjectively assess their olfactory
ability as better than evaluated by validated clinical measures
(13, 24, 176–178). One study (176) found 91% hyposmic subjects
using the UPSIT, an objective odor-identification test, vs. 55%
using a subject’s subjective assessment. Lower scores on clinical
tests have implications for a patient’s quality of life. Patients
unaware of their olfactory deficit may be at greater risk of harm
because they may be unable to detect smoke or spoiled foods
(178). However, this concern may be tempered if the perception
of the patient is not fully captured by the objective assessment.

An explanation for the discrepancy between the objective
and subjective assessments comes from finding that a loss
of awareness of hyposmia is associated with mild cognitive
impairment in PD (177). PD patients who overrate their sense
of smell or are aware of their hyposmia have worse executive
function than those who are objectively and subjectively
normosmic (13). Memory is strongly related to olfaction, and
deficits in olfaction and verbal learning/memory in PD are
associated (107, 126, 179–182). Deficits in cognitive processes
also indirectly contribute to lower scores on forced-choice
odor-identification tests (69). Consequently, discrepancies in
the metacognitive knowledge of hyposmic individuals—self-
awareness of their olfactory ability—and objectively measured
OD may reflect testing-related cognitive challenges in memory
or decision making. This lack of metacognitive knowledge may
be a sensitive biomarker of early cognitive decline (13). A lack
of metacognitive knowledge may also identify individuals whose
olfactory system can have functionality restored. If a subject’s
perceptual reality is better than their objectively assessed ability,
some of the neural substrates used for processing olfactory
information should be preserved. Assessing metacognitive
knowledge within longitudinal studies of monogenic PD could
help identify the neural substrates preserved when metacognitive
knowledge does not match objective measurements, and which
are lost when individuals self-perceive anosmia. This has
pragmatic considerations for managing cognitive decline.

Identifying individuals whose olfactory system could have
functionality restored also identifies candidates for potential
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OD therapy. While motor symptom treatment is a primary
concern in PD, improving non-motor symptoms like OD will
improve patient quality of life (13, 183). Simple strategies to
improve OD are lacking presently. While DBS-STN modestly
improves OD (163–166), DBS-STN is currently used to treat
motor complications of levodopa therapy in patients with
an at-least 4 year disease duration. It will be informative to
assess if other treatments currently under development, such
as α-synuclein antibody therapy, gene-editing therapy or other
molecular treatments specific to monogenic forms of PD, also
have a beneficial effect on OD.

CONCLUSION

Elucidation of the mechanisms underlying OD in PD and
their relationship to the onset and progression of motor and
cognitive symptoms will contribute to comprehensive measures
of OD being used to better understand, identify and manage
PD. Well-characterized monogenic cohorts identified within the

GEoPD and other international consortia (184) can serve as the
ideal substrate for multifaceted longitudinal studies needed for
this purpose.
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