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Background: Elderly patients with pre-existing cognitive impairment are susceptible to

post-operative cognitive dysfunction (POCD). In this study, we investigated whether there

is pre-existing local homogeneity and functional connectivity alteration in the brain before

surgery for POCD patients as compared to that in non-POCD patients.

Methods: Eighty elderly patients undergoing major thoracic or abdominal surgeries

were recruited. Resting-state functional MRI was scanned at least 1 day before surgery.

Neuropsychological tests (NPTs) were performed before surgery and at discharge,

respectively. Pre-operative regional homogeneity (ReHo) and resting-state functional

connectivity (RSFC) were compared between POCD patients and non-POCD patients,

respectively. Partial correlation between NPTs and ReHo or RSFC was analyzed by

adjusting for confounding factors.

Results: Significant difference (P < 0.001, Gaussian Random Field (GRF)

correction which is a multiple comparisons correction method at cluster level,

cluster size > 49) in ReHo between POCD patients and non-POCD patients was

detected in right hippocampus/parahippocampus. Pre-operative RSFC between right

hippocampus/parahippocampus and right middle/inferior temporal gyrus increased in

POCD patients (P < 0.001, GRF correction for multiple comparisons) when compared

with that in non-POCD patients.RSFC significantly correlated with composite Z-score (r

= 0.46, 95% CI [0.234, 0.767], P = 0.002) or Digit Symbol Substitution Test Z-scores

(r = 0.31, 95% CI [0.068, 0.643], P = 0.046) after adjusting for confounding factors.
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Conclusions: The results suggest that premorbid alterations of spontaneous brain

activity might exist in elderly patients who develop early POCD. The neural mechanism

by which patients with pre-operative abnormal spontaneous activity are susceptible to

POCD requires further study.

Keywords: resting-state fMRI, pre-operative changes in brain, cognitive decline, early post-operative period,

functional connectivity, regional homogeneity

INTRODUCTION

The incidence of early post-operative cognitive
dysfunction (POCD) is 25.8% in those who underwent major
non-cardiac surgical procedures (1). There is accumulating
evidence suggesting that pre-existing cognitive impairment
(PreCI) is prevalent in geriatric elective surgical patients (2),
and PreCI is likely a good predictor of cognitive dysfunction
after surgery (3). Also, patients with Alzheimer’s disease
neuropathology (lower pre-operative cerebrospinal fluid Aβ1–
42) even in the absence of clinically detectable symptoms
may be susceptible to POCD (4). These findings indicate that
pre-operative asymptomatic cognitive decline or neuropathology
exists in patients who develop POCD. Numerous studies
support the assertion that cognitive function is closely related
to individual spontaneous brain activity patterns detected by
functional magnetic resonance imaging (fMRI) (5, 6). Therefore,
whether POCD patients also have different pre-operative
spontaneous brain activity is an interesting question.

In recent, it has been demonstrated that pre-operative
neuroanatomical changes, including reduced gray matter of
bilateral medial temporal lobe (MTL), white matter lesions,
and greater pre-operative volumes of leukoaraiosis/lacunae and
cerebrovascular damage are associated with POCD (7). However,
the study evaluating the predictive value of pre-operative brain
functional alterations is limited. To the best of our knowledge,
there is only one study that examined relationships between post-
operative changes in resting-state functional connectivity (RSFC)
in default mode network (DMN) regions and POCD after cardiac
surgery (8). The abnormalities in pre-operative brain function
and their relationship with POCD are still unclear.

Resting-state functional magnetic resonance imaging
(RsfMRI) is a promising tool to investigate functional alterations
of the human brain in vivo (9). Regional homogeneity or
functional connectivity are usually aberrant in patients with
cognitive impairment. Regional homogeneity (ReHo) and
RSFC are two frequently-used methods to characterize local
and global blood oxygenation level-dependent (BOLD) signal
synchronization. ReHo is proposed as a voxel-wise measure of

the synchronization of the time series of neighboring voxels

(10), which has been employed to investigate the disorders with

cognitive alterations, such as psychiatric diseases (schizophrenia,

attention deficit hyperactivity disorder) (11, 12), neurological

disorders (Alzheimer’s disease and Parkinson’s disease) and

healthy aging (13–15). RSFC is defined as the temporal

correlation of BOLD signal among spatially remote brain

areas (16). Previous studies have demonstrated the correlation

between RSFC and cognitive performance. Therefore, RSFC
alterations might serve as indicators for the gradual cognitive
dysfunction in the early stage of Alzheimer’s disease (17) and
for the reorganization of the resting-state network in healthy
aging (18).

In this study, we investigated whether there is pre-existing
local homogeneity and functional connectivity alteration in the
brain before surgery for POCD patients as compared to that
in non-POCD patients. We aimed to explore the altered brain
regions by using ReHo analysis, and then these brain regions
were selected as regions of interest (ROI) for RSFC analysis.
Our first goal was to investigate the differences in pre-operative
RsfMRI manifestations between POCD patients and non-POCD
patients. The second goal was to explore the correlation between
pre-operative spontaneous brain activity and NPTs in all patients
(both POCD and non-POCD patients).

MATERIALS AND METHODS

Protocol Approvals, Registrations, and
Patient Consents
This study has been approved by the Ethics Committee of
Huadong Hospital affiliated with Fudan University with the
Approved Number of 20150056. This study was registered
before patient enrollment at http://www.chictr.org.cn with the
identifier of ChiCTR-DCD-15006096 on 16th March 2015.
Written informed consent was obtained from every participant
after full explanation of the protocol. Authors followed the
Declaration of Helsinki principles. The flow-chart of the study
design is listed as follows (Figure 1).

Participants
Patients were recruited from 30th March 2015 to 31st May 2016.
In order to correct for practice effect, 20 community individuals,
with age and education-matched to the patient group, were
selected from the spouse of surgical inpatients as volunteers
who did NOT participate in this study. All these volunteers
were given the Mini-Mental State Examination and received a
score of 20 or higher. All of the volunteers completed the same
neuropsychological tests as those performed by the patients.

The inclusion criteria for the patient group were as follows:
(1) patients prepared to undergo major thoracic or abdominal
surgeries; (2) age >= 60 years; (3) American Society of
Anesthesiologists (ASA) Physical Status Classification wasI-II;
(4) Right handedness.

The exclusion criteria were: (1) education < 6 years; (2) pre-
operative Mini-Mental State Examination < 20; (3) pre-existing
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FIGURE 1 | Study design and flow-chart. VARS, Video-assisted

Thoracoscopic Surgery; LAAS, Laparoscopy-assisted Abdominal Surgery;

NPTs, neuropsychological tests.

mental and/or psychiatric disease; (4) Parkinson’s disease; (5)
history of cardiac and/or central nervous system vascular disease;
(6) history of cardiac and cranial surgeries; (7) taking sedatives
or antidepressants in the last year; (8) alcohol or drugs abuse;
(9) severe hepatic or renal dysfunction; (10) vision, audition
impairment or language troubles impeding communication; (11)
situations unsuitable for an MRI scan (claustrophobia); (12)
unwillingness to complete repeat NPTs.

Study Design
Patients were recruited 1–3 days before surgery. The RsfMRI
scan and the baseline NPTs were performed at least 1 day before
surgery. Post-operative NPTs were performed at discharge (19,
20) and 3-months after surgery. We gave calls to all patients and
invited them to revisit to our hospital 3-months after surgery.
All patients were encouraged to participate in this study by
giving some little gifts when the follow-ups were completed. The
healthy volunteers completed NPTs at an equivalent interval.
The performance of NPTs from healthy volunteers was used
to construct a Z-scores (21). After calculating the Z-scores
and composite Z-score, POCD was diagnosed according to the
method adopted by Moller et al. (1). Subsequently, patients
were divided into POCD group and non-POCD group. The
demographics, RsfMRI data, NPTs results, perioperative data
were collected and analyzed.

Anesthesia Protocols
General anesthesia induction consisted of propofol,
rocuronium, sufentanil through a central intravenous catheter.
Benzodiazepines were avoided because of their potential effects
on cognitive ability. Parameters of mechanical ventilation were

adjusted to maintain the end-tidal carbon dioxide of 35 ± 5
mmHg. Anesthesia maintenance was comprised of inhaled
sevoflurane or continuous infusion of propofol and remifentanil.
Intravenous rocuronium and sufentanil were administered
intermittently. Bispectral index (BIS) was kept between 60
and 40 to ensure appropriate anesthesia depth. Intravenous
patient-controlled analgesia (PCA) was used to keep the visual
analog scale (VAS) score < 3 after surgery, and the PCA formula
contained sufentanil and ketorolac tromethamine.

Neuropsychological Tests and Definition of
POCD
NPTs were performed at two time points for all patients and
healthy volunteers: (1) Baseline measurement: at least 1 day
before surgery; (2) At discharge.

The NPTs battery consisted of six tests: Mini-Mental State
Examination, Verbal Fluency Test, Digit Span (Forward and
Backward), Digit Symbol Substitution Test, and Trail Making
Test part A. Mini-Mental State Examination is an appropriate
tool for dementia screening, which can reach good diagnostic
accuracy with 0.81 sensitivity (95% CI, 0.78–0.84) and 0.89
specificity (95% CI, 0.87–0.91) (22). Verbal Fluency Test is a
semantic memory test, in which participants were asked to speak
out “vegetable” as many as possible in 60 s, and the correct
score was documented by voice recording to avoid incorrect
records. The Digit Span tests were used to measure working
memory and attention. During Digit Span tests, patients were
required to repeat a series of numbers (forward or backward) in
a randomized sequence. The Digit Symbol Substitution Test is
a paper-pencil test which examines attention, executive function
as well as working memory. During the test, patients were given
randomly ordered numbers paired with empty boxes which were
required to fill as many as possible in 90 s. The Trail Making Test
part A is designed to detect the ability of visual search speed as
well as visual-motor skills, in which the patients connected 25
numbers from 1 to 25. The amount of time consumed (seconds)
was recorded as a measure of performance. All of the NPTs were
administered to all patients and volunteers by a skilled researcher
(H. Li) in a quiet room.

A Z-scores was calculated for every single test according
to the method recommended by the International Study of
Post-operative Cognitive Dysfunction (ISPOCD1) to delineate
patients’ post-operative cognitive alteration (1). Considering
the practice effects of repeated tests, we enrolled 20 healthy
volunteers who were age- and education-matched with the
patients. Healthy volunteers completed the NPTs mentioned
above at the same interval. The difference of patients’ pre-
operative- and post-operative-score was named 1x, and the
counterpart of the volunteer group was calculated to be 1xc
(mean value for difference in the volunteer group), the standard
deviation (SD) of 1xc was computed to be SD(1xc), so the
Z-score could be built as follow:

Z =
(1x− 1xc)

SD (1xc)

A positive sign Z-score represented deterioration in the
corresponding test; on the contrary, a negative Z-score meant

Frontiers in Neurology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1062

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Pre-operative RsfMRI Changes in POCD Patients

the improvement of cognition. A sum of a subject’s all six Z-
scores was then divided by the standard deviation for the changes
of test results in the volunteer group, SD(1Xc), in this way, a
composite Z-score can be constructed. POCD was defined as at
least two of the NPTs Z-scores were > 1.96 or the composite
Z-score was > 1.96.

MRI Scans
MRI data were acquired using a 3 Tesla MRI scanner (SIEMENS
Skyra) at Huadong Hospital affiliated to Fudan University,
Shanghai, China. During the MRI data acquisition, participants
were instructed to keep awake, relax with their eyes closed and
remain motionless as much as possible. For each patient, the MR
scanning protocol included the following sessions: (1) RsfMRI
data was acquired using an echo-planar imaging sequence: 33
axial slices, slices of thickness = 4mm with 0mm gap, TR =

3,000ms, TE = 30ms, voxel size = 3.4 × 3.4mm × 4.0mm, flip
angle= 90◦. In this scan, 120 volumes were obtained; (2) 3D high
resolution T1-weighted anatomical images were acquired using a
3D-MPRAGE sequence: 176 sagittal slice, TR = 1,900ms, TE =

3.57ms, voxel size= 1.0× 1.0× 1.0mm, flip angle= 9◦.

Data Pre-processing
RsfMRI data was processed using DPABI (23), including (1)
discarding the first five volumes of functional images to make
the longitudinal magnetization reach steady state and to let
the participant get used to the scanning noise; (2) head
motion correction; (3) spatial normalization: 3D T1 images
were aligned to individual averaged functional image and
subsequently spatially normalized to the MNI template by using
the deformation field from segmentation analysis; (4) removing
the linear trend of the time course; (5) regressing out the
head motion effect [using Friston 24 parameter (24)] from
the fMRI data; and (6) band-pass (0.01– 0.08Hz) filtering.
No participant’s head motion exceeded 3.0mm of maximal
translation (in any direction of x, y, or z) or 3.0◦ of maximal
rotation throughout scanning.

Regional Homogeneity (ReHo)
ReHo method proposed by Zang et al. was used to analyze fMRI
data (13), in which Kendall’s coefficient of concordance (KCC)
was applied to quantify the functional synchronization of the
time courses of neighboring voxels as follows:

W =

∑

(

Ri

)2
− n

(

R
)2

1
12K

2
(

n3 − n
)

where W is the KCC calculated from given voxels, ranging from
0 to 1; Ri is referred to the sum rank of the ith time point;

R =
(n+1)K

2 is the Ri’s mean value; K is the number of time series
within a measured cluster (K = 7, 19, and 27, respectively, 27 in
the current study); and n is the number of ranks. All the ReHo
maps’ results were smoothed by an isotropic Gaussian Kernel
with 6mm full width at half-maximum (FWHM).

Functional Connectivity
The clusters which obtained from group difference of ReHo
analysis were picked as the ROIs for functional connectivity
(FC) analysis. For each ROI, the Pearson correlation analysis
was calculated between the averaged time courses of the ROI
and the time course of all other voxels in the brain. The
resultant correlation coefficients were transformed to z-value
using Fisher’s transformation.

Statistical Analysis
Standard Chi-square statistics or Fisher’s exact test was used
to analyze categorical variables. Continuous-valued data were
analyzed either using two-sample t-test and were presented as
the mean and standard deviation (SD) or Mann–Whitney U-
test when a data distribution was assumed to be abnormal.
Discrete data were analyzed with the Mann-Whitney U-test and
presented as the median and interquartile range (IQR). A two-
sided P < 0.05 was considered significant. All analyses were
performed using SPSS 18.0 (IBM, Armonk, NY, USA), Matlab
2014a (Mathworks,Massachusetts, USA) or Statistical Parametric
Mapping (SPM12).

Two-sample t-test was performed to detect the differences of
ReHo or ReHo-seeded FC between the POCD group and the
non-POCD group in SPM12. In order to correct the possible
confounders including education, sex, and smoking, we set these
variables as covariates when two-sample t-test was performed
in SPM 12. The resultant T-map was threshold with P < 0.001,
corrected for multiple comparisons using the Gaussian random
field (GRF) method to minimize type I error (25).

Partial correlation analysis was used to assess the correlations
between brain functional indices (ReHo or ReHo-seeded
FC) neuropsychological scale (Mini-Mental State Examination,
Verbal Fluency Test, Digit Span Forward, Digit Span Backward,
Digit Symbol Substitution Test, and Trail Making Test part
A) scores after adjusting for potential confounding factors.
The correlations were considered significant at a threshold
of P < 0.05.

The initial sample size of our study was estimated based on
the available studies and the pragmatics of recruitment and the
necessities for examining feasibility (26). A power analysis was
performed at the end of the study and determined a statistical
power of 0.99 for the primary outcome (RSFC).

RESULTS

Demographics, Clinical Characteristics
One patient was excluded from the final analysis because
of worsening vision during the post-operative period and
subsequent failure of finishing several items of the NPTs. Forty-
five patients completed both pre-operative MRI scan and NPTs
follow-up. The demographics of the 45 patients are shown in
the Table 1. Thirteen patients were diagnosed with POCD, and
the incidence of POCD was 26.7% at discharge. The average
age of the patients was 65 ± 5 years in both the POCD and
non-POCD groups. The education duration in POCD patients
(6.0, IQR: 6.0–10.5) was significantly lower than that in non-
POCD patients (9.0, IQR: 9.0–12.0, P = 0.006). The proportion
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TABLE 1 | Demographics and clinical characteristics.

POCD (n = 13) Non-POCD

(n = 32)

P-

value

Demographics

Age (years), mean (SD) 65 (5) 65 (5) 0.69

Education, median (IQR) 6.0 (6.0–10.5) 9.0 (9.0–12.0) 0.006

BMI, median (IQR) 20.8 (18.3–26.1) 21.7 (20.5–24.4) 0.32

Gender

Female/Male 1/12 18/14 0.003

Smoking (Yes/No) 7/6 6/26 0.030

Comorbidities (Yes/No)

Cardiovascular 5/8 11/21 1.00

Anemia 4/8 8/24 0.71

Hepatorenal dysfunction 4/9 7/25 0.70

Surgical history (Yes/No) 6/7 14/17 0.95

Surgery type

(Thoracic/Abdominal)

10/3 25/7 1.00

Intraoperative conditions

Surgical duration (min),

median (IQR)

125.0

(109.5–175.0)

95.5

(66.0–143.5)

0.08

Anesthesia duration

(min), median (IQR)

161.0

(137.0–220.0)

137.5

(105.8–218.3)

0.18

Propofol (mg), median

(IQR)

200.0

(65.0–553.5)

233.5

(50.0–462.3)

0.72

Sevoflurane(MAC-

hours), median

(IQR)

1.90 (0.6–2.8)

(0.0–41.2)

1.01 (0.0–2.7)

(0.0–22.7)

0.16

Sufentanil (µg), mean

(SD)

30 (14) 27 (9) 0.36

Remifentanil (µg),

median (IQR)

1,342.0

(1,183.0–2,000.0)

1,191.5

(725.0–2,000.0)

0.40

Ringers (mL), mean (SD) 1,200 (488) 1,063 (419) 0.43

Colloid (mL), median

(IQR)

500.0

(500.0–1,000.5)

100.0

(0.0–500.0)

0.30

Urine (mL), median (IQR) 100.0 (0.0–575.0) 100.0

(100.0–300.0)

0.17

Hospital stay (days)

median (IQR) 14.0 (10.5–16.5) 12.0 (9.0–13.0) 0.21

BMI, body mass index; SD, standard deviation; IQR, interquartile range.

of male patients in the POCD group (12/1) was significantly
greater than that in the non-POCD group (14/18, P = 0.003).
There were no differences in hospital stay and intraoperative data
between the POCD group and the non-POCD group (Table 1).
Sixteen patients (34.8%) did not revisit our hospital at 3 month
after surgery.

Alterations of NPTs Performance
(Z-Scores)
There were no significant differences in the baseline NPTs
performance between the POCD group and the non-POCD
group. However, Verbal Fluency Test, Digit Span Forward, Digit
Span Backward, Digit Symbol Substitution Test, and composite
Z-scores in the post-operative period were significantly
different between POCD patients and non-POCD patients
(Supplemental Table 1).

FIGURE 2 | The ReHo difference between the POCD group and the

non-POCD group. Warm colors in (A–C) represent coronal, sagittal, and axial

view of significantly increased ReHo value in the HIP.R/PHP.R in the POCD

group (P < 0.001, GRF corrected, cluster size >49). Peak MNI coordinate: x

= 30, y = −9, z = −24, 61 voxels in total. (D) ReHo value in the POCD group

significantly increased as compared to that in the non-POCD group. ReHo,

regional homogeneity. L, left; HIP.R/PHP.R, right hippocampus and right

parahippocampus; POCD, post-operative cognitive dysfunction; GRF,

Gaussian Random Field; MNI, Montreal Neurological Institute.

ReHo Differences at the Group Level
The significant difference (P < 0.001, GRF Correction, cluster
size > 49) in ReHo was detected between the POCD group and
the non-POCD group. The ReHo value displayed in the right
hippocampus/parahippocampus in the POCD group is higher
than that in the non-POCD group (Figure 2).

RSFC Differences at a Group Level
Cluster in the right hippocampus/parahippocampus with
increased ReHo value was selected as ROI, which was
used to compute functional connectivity by comparing the
seed time series with every other voxel of the whole brain.
Right hippocampus/parahippocampus-seeded RSFC in right
middle/inferior temporal gyrus significantly increased in the
POCD group (P < 0.001, GRF correction, cluster size > 26) as
compared to that in the non-POCD group (Figure 3).

Correlations Between RSFC and NPTs
Performance
After adjusting for education duration, smoking, and sex, positive
correlations were found between RSFC and compositeZ-scores (r
= 0.46, 95% CI [0.234, 0.767], P = 0.002, Partial Correlation) or
Digit Symbol Substitution Test Z-scores (r= 0.31, 95% CI [0.068,
0.643], P = 0.046, Partial Correlation), respectively (Figure 4).

Frontiers in Neurology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 1062

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Pre-operative RsfMRI Changes in POCD Patients

FIGURE 3 | RSFC difference between the POCD group and the non-POCD

group (P < 0.001, GRF corrected, cluster size > 26). Warm colors in (A–C)

represent coronal, sagittal, and axial view of significantly increased

HIP.R/PHP.R-seeded RSFC in MTG.R/ITG.R in the POCD group, respectively.

Peak MNI coordinate: x = 48, y = 0, z = −39, 41 voxels in total. (D)

HIP.R/PHP.R-seed RSFC in MTG.R/ITG.R in the POCD group and in the

non-POCD group. RSFC, resting-state functional connectivity; MNI, Montreal

Neurological Institute; L, left; HIP.R/PHP.R, right hippocampus and right

parahippocampus; MTG.R/ITG.R, right middle temporal gyrus and right

inferior temporal gyrus; POCD, post-operative cognitive dysfunction.

DISCUSSION

The present investigation provided several new insights into
pre-operative cognition impairment in elderly patients who
developed early POCD after major non-cardiac surgery.
The key findings included: 1) POCD patients displayed
a cluster with higher pre-operative ReHo in the right
hippocampus/parahippocampus as compared with non-
POCD patients. 2) Pre-operative RSFC between right
hippocampus/parahippocampus and right middle/inferior
temporal gyrus was enhanced in POCD patients. 3) The
right hippocampus/parahippocampus-seeded RSFC in right
middle/inferior temporal gyrus positively correlated with
composite Z-scores or Digit Symbol Substitution Test Z-score.
Taken together, the present results demonstrated that pre-
existing alterations of intrinsic brain activity might exist in
elderly patients who developed early POCD.

The hippocampus/parahippocampus lies in the MTL and
belongs to limbic system. Hippocampus/parahippocampus
plays a fundamental role in extensive cognitive domains,
such as visuospatial processing, episodic memory, contextual
associations, spatial working memory, and long-term memory

(27, 28). During memory processing, encoding usually occurs in
a process with attention exploited (29), and the consolidation
can happen in sleep or a resting-state without a specific task
(30). Hippocampus/parahippocampus is also an element of
DMN (31). DMN performs a critical function not only in
spontaneous cognition (e.g., mind wandering, daydreaming),
but also in the performance of cognitively demanding tasks
(32). The hippocampus/parahippocampus is the earliest atrophic
brain region in Alzheimer’s disease pathological process even in
the presymptomatic stage. Before atrophy, patients with mild
cognitive impairment (MCI) had already revealed some resting-
state functional abnormality. As compared with cognitively
healthy subjects, increased ReHo was observed in the bilateral
hippocampus/parahippocampus in MCI patients without
lacunar infarctions (33).

The hippocampus/parahippocampus also work as parts of
MTL memory system which consist of the hippocampus,
entorhinal cortex, perirhinal, and parahippocampal cortices
(34). The MTL memory system has a complicated relationship
within its own components and with the lateral temporal
lobe (35). RSFC studies have shown that the coupling
of hippocampus/parahippocampus and right middle/inferior
temporal gyrus is of involvement in quite a few cognitive
processes, such as semantic memory, visual perception, as
well as attention and working memory (36). In healthy
subjects, the anterior hippocampus shares RSFC with the
entorhinal cortex and a lateral temporal network including
middle/inferior temporal gyrus (37). An fMRI study in patients
undergoing anterior temporal lobe resection revealed that post-
operative working memory is dependent on the functional
capacity reserve of the right hippocampus (38). These data
from both healthy subjects and patients add evidence to
the hypothesis that right hippocampus/parahippocampus and
right middle/inferior temporal gyrus work as a part of the
MTL memory system. In the present study, pre-operative
RSFC between right hippocampus/parahippocampus and right
middle/inferior temporal gyrus significantly increased in POCD
patients. The POCD patients exhibited a significant decrease
in global cognition, especially in semantic memory, working
memory and attention, which had a lot of overlap with the
function of hippocampus/parahippocampus and middle/inferior
temporal gyrus.

RSFC between right hippocampus/parahippocampus and
right middle/inferior temporal gyrus positively correlated with
Digit Symbol Substitution Test Z-scores or composite Z-scores
in the present study. The Digit Symbol Substitution Test can be
used to assess several domains of cognitive function, including
executive function, attention, and working memory (39). The
composite Z-scores represents the changes in global cognitive
dysfunction. The results suggest that patients with higher pre-
operative RSFC between right hippocampus/parahippocampus
and right middle/inferior temporal gyrus were prone to
deterioration of post-operative cognitive function. This is
consistent with previous studies about cognitive alterations
in normal aging and Alzheimer’s disease, in which increased
functional connectivity is interpreted as an attempt to maintain
cognitive performance (40). Previous studies have demonstrated

Frontiers in Neurology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 1062

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Pre-operative RsfMRI Changes in POCD Patients

FIGURE 4 | Partial correlation between RSFC and neuropsychological performance. (A) There was partial correlation between RSFC and composite Z-score.

(B) There was partial correlation between RSFC and Digit Symbol Substitution Test Z-score. RSFC, resting-state functional connectivity.

the existence of age-related compensatory mechanisms for
cognitive preservation. These age-related functional changes in
brain activation patterns allow for cognitive performance to
be preserved (41). When the damaged cognitive preservation
was challenged by a cognitive task such as increasing working
memory load, the degree centrality and local coherence in
the left dorsal posterior cingulate cortex (dPCC) increased,
which was inversely associated with global cognitive outcomes
(42). It has also been demonstrated that cognitive function
such as psychomotor speed would be improved after cerebral
arterial perfusion increased (43). Based on previous and
present results, we speculated that POCD patients might
have subtle cognitive decline and functional connectivity
alterations before surgery. These patients do not have clinically
detectable cognitive symptoms because of the existence of
compensatory mechanisms. However, cognitive symptoms may
become apparent after the stressors of surgery and anesthesia.

A major limitation to this study was the small sample size,
which was not subjected to a priori power calculation. The
difficulty of patient recruitment might contribute to a relatively
small sample size which could result in potential type II error. The
second limitation was that post-operative cognitive function was
examined at discharge without screening post-operative delirium
(POD). POD could not be completely ruled out in the present
study. Therefore, more of a caveat should be placed on the
results. Finally, because of the drop-out at 3 months after surgery,
the number of patients was not enough for analyzing fMRI
data at 3 months. The association between pre-operative brain
functional alterations and cognitive decline at 3 months requires
further investigation.

CONCLUSION

In conclusion, the present investigation demonstrates
the difference in pre-operative ReHo in the right

hippocampus/parahippocampus between POCD patients
and non-POCD patients. The pre-operative ReHo-seeded RSFC
in right middle/inferior temporal gyrus increases in POCD
patients, and positively correlates with alterations of cognitive
function. The results suggest that premorbid alterations of
regional spontaneous activity and functional connectivity
exist in elderly patients who develop early POCD after major
non-cardiac surgery. The neural mechanism that patients with
abnormal pre-operative spontaneous activity are susceptible to
POCD remains an area of further study.
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