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Background: The use of magnetic resonance imaging (MRI) in diagnosis of neonatal

acute bilirubin encephalopathy (ABE) in newborns has been limited by its difficulty in

differentiating confounding image contrast changes associated with normal myelination.

This study aims to demonstrate the feasibility of building a machine learning prediction

model based on radiomics features derived from MRI to better characterize and

distinguish ABE from normal myelination.

Methods: In this retrospective study, we included 32 neonates with clinically confirmed

ABE and 29 age-matched controls with normal myelination. Radiomics features were

extracted from themanually segmented region of interest (ROI) on T1-weighted spin echo

images, followed by the feature selection using two-sample independent t-test, least

absolute shrinkage and selection operator (Lasso) regression, and Pearson’s correlation

matrix. Additional feature quantifying the relative mean intensity of ROI was defined and

calculated. A prediction model based on the selected features was built to classify ABE

and normal myelination using multiple machine learning classifiers and a leave-one-out

cross-validation scheme. Receiver operating characteristics (ROC) analysis was used to

evaluate the prediction performance with the area under the curve (AUC) and feature

importance ranked based on the Fisher score.

Results: Among 1319 radiomics features, one radiologist-defined intensity-based

feature and 12 texture features were selected as the most discriminative features.

Based on these features, decision trees had the best classification performance with

the largest AUC of 0.946, followed by support vector machine (SVM), tree-bagger,

logistic regression, Naïve Bayes, discriminant analysis, and k-nearest neighborhood

(KNN), which have an AUC of 0.931, 0.925, 0.905, 0.891, 0.883, and 0.817, respectively.

The relative mean intensity outperformed other 12 texture features in differentiating ABE

from controls.
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Conclusions: The results from this study demonstrated a new strategy of characterizing

ABE-induced intensity and morphological changes in MRI, which are difficult to be

recognized, interpreted, or quantified by the routine experience and visual-based reading

strategy. With more quantitative and objective measurements, the reported machine

learning assisted radiomics features-based approach can improve the diagnosis and

support clinical decision-making.

Keywords: magnetic resonance imaging, neonate, bilirubin encephalopathy, myelination, machine learning,

radiomics

INTRODUCTION

Neonatal jaundice is one of the most prominent clinical
concerns during the neonatal period. It is mainly caused
by the accumulation of neurotoxic unconjugated bilirubin
from the breakdown of old red blood cells that cannot be
cleared effectively by newborns (1). Based on a nationwide
survey on hospitalized neonates in China, 49.1% developed
various degrees of neonatal jaundice and 8–9% developed
severe hyperbilirubinemia with as high as 0.9% (357/4,141,535)
ended up developing bilirubin encephalopathy due to lack of
appropriate diagnosis and prediction of its development or
delayed treatment (2). Kernicterus, the brain damage specifically
caused by hyperbilirubinemia, is characterized by the intense
yellow staining of bilirubin at some specific regions of the
brain, which is consistent across the term, preterm, and
rare adult with kernicterus (3). Before kernicterus (chronic
bilirubin encephalopathy, CBE), a permanent neurological
sequela induced by bilirubin toxicity, hyperbilirubinemia and
acute bilirubin encephalopathy (ABE) can be reversed with safe
and effective treatments (4). Therefore, identifying neonates
with a high risk of ABE early to apply the treatment timely
is the key to minimize the incidence of permanent bilirubin-
induced neurological dysfunction (BIND) and kernicterus (5).
However, early detection of jaundiced neonates with the risk of
brain damage in the acute stage is challenging in the current
clinical practice.

The evaluation of neonatal jaundice is typically done with
the standard clinical laboratory test by measuring the total
serum bilirubin (TSB) concentration. Because it is not a direct
measurement of the actual bilirubin level in the brain, TSB
measurement leads to considerably high false-positive and false-
negative rates when used as a predictor of ABE (6). Including
other serum parameters, such as unconjugated or “free” bilirubin,
albumin level, and bilirubin-albumin binding capacity, does not
significantly improve the overall prediction power (7, 8). As for

Abbreviations: CBE, chronic bilirubin encephalopathy; ABE, acute bilirubin

encephalopathy; BIND, bilirubin-induced neurological dysfunction; FLAIR, fluid-

attenuated inversion recovery; DWI, diffusion-weighted imaging; ADC, apparent

diffusion coefficients; FOV, field of view; TE, echo time; TR, repetition time; ROI,

region of interest; Lasso, least absolute shrinkage and selection operator; KNN,

k-nearest neighborhood; SVM, support vector machine; AUC, area under the

curve; ROC, receiver operating characteristics; GLCM, gray level co-occurrence

matrix; GLRLM, gray level run length matrix, NGTDM, neighborhood gray-tone

difference matrix; IMC 1 and 2, information measure of correlation 1 and 2.

clinical manifestations, the early neurological symptoms induced
by ABE could be absent, subtle, or non-specific in most cases (9).
When a clinical sign of the classic tetrad syndrome caused by
CBE appears, the bilirubin toxicity-induced neural injuries have
already become permanent and irreversible. Moreover, several
comorbidities, such as hemolytic diseases, prematurity, asphyxia,
or infection, can all pose neonates with jaundice to a higher risk
of ABE, which further compromise the predictive performance of
serummeasurements and clinical manifestations (10). Therefore,
there is a great need in non-invasive and direct detection of
bilirubin-induced subtle change in the infant brain to assess the
risk of brain damage in ABE.

Magnetic resonance imaging (MRI), as a non-radiation and
non-invasive imaging technique, offers superb resolution and soft
tissue contrast for visualizing brain structures and abnormalities.
Thus, it is well suited for safe and direct imaging of the
neonatal brain affected by bilirubin toxicity. It not only can
provide brain region-specific evidence for ABE but also enables
to exclude hypoxic–ischemic encephalopathy, the most common
neonatal encephalopathy (11). During the days to weeks of
ABE, MRI shows “classic” T1-signal hyperintensity in various
degrees on T1-weighted spin echo images in the globus pallidus
and subthalamic nuclei, hippocampus, and cerebellum in the
neonatal brain accompanied by an unremarkable or subtle
signal increase on T2-weighted images (12–14). However, normal
myelination in newborns within the same age span can also lead
to slightly increased signal intensity on T1-weighted images in
the same regions similar to the bilirubin-induced hyperintensity
in the neonates with ABE (15). Therefore, it is difficult for the
conventional signal intensity change-based reading strategy that
is commonly used in radiology reading and evaluations to yield
accurate diagnosis.

With emerging radiomics and machine learning assisted
image analysis, various graphical features, especially those
difficult to be recognized by radiologists, can be identified and
extracted to generate a large set of data to further correlate
with pathological (16), genomic (17), molecular (18), and
clinical outcome (19) information. Thus, radiomics analysis can
expand the capability of characterizing disease-induced image
abnormalities and the underlying pathophysiology in much
greater details with parametric variables and high-throughput

quantitative measurements to improve the accuracy of diagnosis

and predicting prognosis (20, 21).
Herein, we report an initial work of applying the radiomics-

based machine learning approach to identify an ABE-specific
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radiomics pattern based on MRI contrast changes on T1-
weighted spin echo images associated with the bilirubin
deposition in neonatal brains and its induced change in tissue
properties. The distinct radiomics features were found and used
to differentiate ABE from normal myelination.

MATERIALS AND METHODS

Study Subjects
This retrospective study was approved by the Institutional
Review Board and carried out in accordance with the Declaration
of Helsinki with the written informed consent waived from
legal custodians of all subjects for this study. However, as a
part of clinical routine procedure, the written informed consent
for MRI examinations was obtained from their legal custodians
before MRI examinations. We selected 61 neonates based on
reviewing their medical records, including 32 ABE neonates
with a mean after-birth age of 6.8 ± 3.5 days and 29 age-
matched controls (11.6 ± 6.1 days), who had MRI examinations
during their hospitalization. For more accurate indication of
maturity of the newborns, we used the average equivalent
age, defined as gestational age + age after birth. The average
equivalent age is 276.1± 10.4 days for 32 neonates with suspected
ABE and 262.1 ± 22.3 days for 29 age-matched controls,
respectively. To minimize the potential age-related factor, we
only included those neonates with the age within 3 weeks after
birth, during which ABE usually develops. All 32 ABE cases
were clinically confirmed based on their medical records. To
standardize inclusion criteria, we set stringent inclusion criteria
by collecting supportive information for diagnosing ABE from
the medical records of all subjects. All ABE positive cases met
at least two of three clinical diagnosis criteria, including (1)
severe hyperbilirubinemia (peak total serum bilirubin≥20 mg/dl
or 342 µmol/L); (2) positive radiological findings suggestive
of ABE; (3) at least one of the ABE-related clinical symptoms
with bilirubin-induced neurologic dysfunction (BIND) score ≥

1 point in which 1, 2, or 3 points were assigned to mild,
moderate, or severe symptoms based on the severity of the crying
pattern defined for neonates, behavior and mental status, and
muscle tone for a total 9 points (22). Neonates with any history
of neurological abnormalities caused by perinatal asphyxia,
hypoxia–ischemia, intrauterine infection, chromosomal disease,
hereditary mitochondrial metabolic disease, carbon monoxide
poisoning, and hypermagnesemia and other related diseases were
excluded. T1-weighted images from each case were evaluated
for motion artifacts that may affect the image analysis. All cases
included have satisfactory image quality for further analysis.

All clinically confirmed ABE cases had a peak TSB level
≥20 mg/dl during hospitalization. With laboratory test and
clinical manifestations available for all 32 positive ABE cases
during interpretation, previous radiology reports showed that
radiologists diagnosed 5 out of 32 cases matching the typical
imaging findings of ABE, 18 cases highly likely to have developed
ABE, 7 cases likely but indecisive to have ABE, and 2 cases
unlikely to have ABE, but they cannot exclude the possibility in
reference to the clinical information. Of 32 ABE neonates, 26
developed explicit ABE-specific clinical symptoms with BIND

scores ranging from 1 to 6, while 6 ABE cases developed ABE-
non-specific clinical symptoms based on the available medical
records. In contrast, 29 age-matched control cases were negative
in all three criteria mentioned above.

MRI Acquisition
All images were acquired from a 1.5-T whole-body MRI scanner
(Achiva, Philips Healthcare, Best, the Netherlands) using a
routine clinical brain MRI protocol. The protocol included the
following imaging sequences: T1-weighted spin-echo imaging
in the axial and sagittal directions, and T2-weighted fast spin
echo imaging, T2-weighted fluid-attenuated inversion recovery
(FLAIR) imaging, and diffusion-weighted imaging (DWI) in
the axial direction. Because the characteristic image appearance
for ABE is elevated signal intensity in globus pallidus and
subthalamic nuclei on T1-weighted spin echo images, we only
focused on analyzing T1-weighted spin echo images in this study.
The imaging parameters for T1-weighted spin echo imaging
included the following: echo time (TE) of 17ms, repetition time
(TR) of 600ms, flip angle of 69◦, field of view (FOV) of 150× 133
× 79mm, and 18 slices with a slice thickness of 4mm to cover the
whole brain.

Image Preprocess
Images from all cases were visually examined first by the
radiologists (ZL and LW) for the image quality and artifacts. We
then used the Smallest Univalue Segment Assimilating Nucleus
(SUSAN) technique (FSL v5.0, FMRIB, Oxford, UK), a filtering
technique that preserves the structures depicted in an image by
only averaging a central voxel with neighboring voxels that have
similar intensities (23), to reduce noise. FMRIB Linear Image
Registration Tool (FLIRT) (FSL v5.0, FMRIB, Oxford, UK) (24)
was then used to align the images to correct any motion artifacts
before any analysis. Then, a histogram stretching algorithm was
used for normalizing the image intensity of all images (25).

Lesion Identification and Segmentation
The pipeline of the feature identification and analysis processes
is summarized in Figure 1. For the current study, we only
focused on the abnormalities in globus pallidus, which is one of
the earliest and most sensitive regions affected by the bilirubin
toxicity in ABE (26). An abnormal appearance of increased signal
intensity on T1-weighted spin echo images in the region is shown
in Figure 2, allowing for extracting globus pallidus from T1-
weighted images as the region of interest (ROI). In the ABE case
with characteristic imaging findings, the bilateral globus pallidus
has a sharp contrast with a well-defined margin for manual
segmentation. One radiologist (ZL) with more than 5 years of
experience in neuroimaging manually contoured the structure
of globus pallidus using open source Imaging Biomarker
Explorer Software (IBEX software, MDAnderson Cancer Center,
Houston, Texas, US) (27). When the contour of globus pallidus
was not well-defined, we referenced the cross-sectional gross
anatomy of globus pallidus and also used the silhouette of an
ABE case with typical image characteristics as the reference
(Figure 2). Instead of segmenting globus pallidus independently
in different groups, we referenced the clear silhouette of ABE
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FIGURE 1 | The workflow for the image processing and analyses in the study.

cases with typical imaging findings of ABE in order to ensure that
the segmented globus pallidi were comparable in shape between
ABE cases and controls. Similarly, we manually delineated the
boundary of globus pallidus in control cases based on the cross-
sectional neuroanatomy and the corresponding regions of ABE
cases with well-defined globus pallidus. In total, three continuous
slices containing globus pallidus on T1-weighted images for each
neonate were chosen. After initial segmentation, each ROI was
reviewed and adjusted by two radiologists (LW and YZ) with
more than 25 years of experience in neuroradiology, with any
discrepancy resolved through discussion.

Feature Extraction
Once the segmented globus pallidus was obtained, 1,318
radiomics features from ROIs were extracted using IBEX
software. All of the extracted features were then grouped into two
main categories and nine subcategories (27), including the first-
order statistics (intensity-histogram-based features): (1) intensity
histogram gauss fit-based features; (2) histogram gradient
orientation-based features; (3) intensity histogram-based
features; (4) intensity direct-based features and higher-order

statistics (texture features): (5) gray level co-occurrence matrix-
based features [GLCM, 2-Dimensions (2-D)]; (6) GLCM (3-D);
(7) gray level run length matrix-based features (GLRLM); (8)
neighborhood gray-tone difference matrix features (NGTDM,
2-D); and (9) NGTDM (3-D) (28).

To follow the conventional reading strategy and to quantify
the average intensity level of globus pallidus, we added a
“radiologist-defined feature,” i.e., the relative mean intensity of
globus pallidus, which corresponds to the average intensity of
segmented globus pallidus in the second slice of the three chosen
slices normalized by the average intensity of cerebrospinal fluid
(CSF) in the segmented region of lateral ventricle of the same
slice. Then, two histograms based on the distribution of the
relative mean intensity of ABE cases and control cases were
generated and curve-fitted by non-linear polynomial regression
using MATLAB (2018b, Mathworks, USA).

Feature Selection
To improve the accuracy and efficiency of classifications,
irrelevant and redundant features were identified and excluded.
We used three feature selection methods sequentially to select
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FIGURE 2 | Axial T1-weighted spin echo image (a) shows strikingly hyperintense signal in the globus pallidus with well-defined boundary in a neonate of 10 days old

with ABE (a–d), while T2-weighted fast spin echo image (b) and FLAIR image (c) show slightly and moderately high signal intensity, compared with the signal intensity

of the surrounding basal ganglia region, respectively. No abnormal signal intensity was detected on DWI (d). However, in cases of a 4-day-old neonate with

radiologically untypical ABE (e–h) and a case of 9-day-old ABE-alike neonate with normal myelination (i–l), imaging findings include hazy slight hyperintensity on

T1-weighted image (e,i), iso-intensity on T2-weighted image (f,j), slightly high signal intensity on T2-weighted FLAIR images (g,k), and no obvious abnormal signal

intensity on DWI (h,l) in the region of globus pallidus with referencing the signal intensity of the surrounding region of basal ganglia.

informative radiomics features from 1,318 graphic features
obtained using IBEX software. Firstly, a two-sample t-test
was used to select those features with statistically significant
difference between ABE cases and control cases (P < 0.05). To
increase the model interpretability and reduce overfitting, the
least absolute shrinkage and selection operator (Lasso) regression
algorithm (29) was then applied to the remaining features to
further reduce irrelevant features. Those features yielding to the
lambda (λ) value (a tuning parameter) with minimal deviance
were chosen as the most informative features.

Feature Correlation
To follow the principle that good features are highly correlated
with the predictive target, but remain to be independent to
each other (30), we evaluated the correlation between each
pair of the selected features. A correlation-matrix map was
generated based on the correlation between each chosen feature
to illustrate and determine the redundancy. In correlation-based
feature elimination, we did not remove all correlated features like
previous studies (31, 32). Instead, we only removed those features
with an r-value of 1 or−1, termed as linearly correlated features,

which usually are calculated using the same formula, but different
directions and offsets based on the generated matrix. Then, one
representative feature in each group of linearly correlated features
was used as the discriminative feature for further analysis, since
this feature can represent the other linearly correlated features
within the same group. The remaining features (−1< r< 1) were
put into the group of relatively independent features.

Classification
The features chosen for classifying ABE and normal myelination
conditions included the selectedmost discriminative features and
the radiologist-defined feature. Based on multiple classification
algorithms, including logistic regression, discriminant analysis,
k-nearest neighborhood (KNN), Naïve Bayes, support vector
machine (SVM), decision trees, and ensemble tree-bagger (33),
and the chosen features, a prediction model was built to
differentiate ABE from normal myelination with a leave-one-out
cross-validation scheme used to split the data into training set
and testing set randomly. To compare the overall performance
of each classifier, the value of the area under the curve (AUC)
was calculated based on receiver operating characteristics (ROC)
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analysis. Also, the accuracy was obtained from the best cutoff
point in the ROC curve for each classifier. Then, features
were ranked based on their importance contributing to the
classification performance using the Fisher score, an independent
filter model aiming to not interact with the bias of a classification
learning algorithm (34).

Statistical Analysis
MATLAB (2018b, Mathworks, USA) was used to perform all
the statistical analysis, which included calculating the relative
mean intensity of the segmented globus pallidus, generating the
histogram of relative mean intensity of globus pallidus, feature
selection using two-sample t-test, Lasso regression algorithm,
and correlation-matrix heat map generated using Pearson’s
correlation, classification using multiple classification algorithms
with ROC analysis, and features ranking based on Fisher score.
Nonparametric Mood’s median test was used to determine
whether the medians of the two independent groups (ABE
group vs. normal myelination group) from which two samples
are drawn are identical, with P < 0.05 indicating statistically
significant difference. Then, two-sample independent t-test was
used to compare clinical variables, such as birth weight and
different kinds of bilirubin level, with P < 0.05 indicating
statistically significant difference.

RESULTS

Clinical Findings and Subject
Characteristics
In 61 neonates included in this study, we found no statistically
significant difference in the average equivalent age (P = 0.063)
between neonates with ABE (n = 32, 276.1 ± 10.4 days)
and age-matched controls with normal myelination (n = 29,
262.1 ± 22.3 days). It should be noted that controls had more
preterm neonates (16/29 vs. 5/32) and slightly lower birth weight
(2686.7 ± 918.2 vs. 3027.5 ± 404.6 g) but with no statistical
difference (P = 0.107). The neonates with ABE had a much
higher mean bilirubin level than did controls as shown by
the transcutaneous bilirubin level (25.3 ± 5.5 vs. 10.9 ± 2.3
mg/dl), peak TSB (500.1 ± 78.8 vs. 139.3 ± 58.3 µmol/L),
and unconjugated serum bilirubin (482.8 ± 73.4 vs. 127.4 ±

58.3 µmol/L) (all P < 0.00001). Demographic information is
summarized in Table 1.

Figure 2 shows images of an ABE case with characteristic
imaging contrast change in the affected region, an ABE case with
ambiguous imaging findings, and a control case with normal
myelination. The neonates with radiologically typical ABE (2/32)
exhibited bilateral symmetrical pronounced hyperintensity in the
globus pallidus on T1-weighted spin echo images with a well-
defined boundary and no obvious signal abnormalities on T2-
weighted spin echo, FLAIR, and DWI (Figures 2a–d). However,
most ABE cases (30/32) did not present such sharp contrast on
T1-weighted spin echo images in the region of globus pallidus
with a well-defined boundary but showed varying degrees of
increased signal intensity compared to the signal intensity of
the surrounding structures of basal ganglia (Figures 2e–h). All
the controls also showed slight to moderate elevation of signal

TABLE 1 | Clinical characteristics of neonates with ABE and control neonates.

Neonates with ABE Control neonates P-value

Gender

(male/female)

15/17 19/10 –

Equivalent age

(days)

276.1 ± 10.4 262.1 ± 22.3 0.063

Term/preterm 27/5 13/16 –

Birth weight (g) 3027.9 ± 404.6 2686.7 ± 918.2 (2 NA) 0.106

Transcutaneous

bilirubin level

(mg/dl)

25.3 ± 5.5 (1 NA) 10.9 ± 2.3 (11 NA) <0.00001

Peak total serum

bilirubin (pTSB)

(µmol/L)

500.1 ± 78.8 139.3 ± 58.3 (2 NA) <0.00001

Unconjugated

serum bilirubin

(µmol/L)

482.8 ± 73.4 127.4 ± 58.3 (2 NA) <0.00001

NA, not available; equivalent age = gestational age + age after birth.

intensity in globus pallidus on T1-weighted spin echo images
varied in different degrees (Figures 2i–l), consistent with the
signal intensity change due to normal myelination in newborns.
Such a pattern of signal-intensity increase mimics MRI contrast
appearance of a radiologically atypical ABE. For T2-weighted
spin echo images, only 3 ABE cases (3/32) showed slightly high
signal intensity in the region of globus pallidus in contrast
to the signal intensity of the surrounding basal ganglia region
(Figure 2b), and no controls showed any obvious signal changes
(Figure 2j). Interestingly, all the ABE cases and controls with
normal myelination showed slightly high signal intensity on T2-
weighted FLAIR images in comparison to the signal intensity
of surrounding basal ganglia region (Figures 2c,g,k), suggesting
that FLAIR sequence may not be a proper imaging method
for differentiating ABE from normal myelination. For DWI, no
apparent abnormal signal intensity was found in both ABE and
control cases, suggesting no substantial effect from ABE and
normal myelination on the diffusion properties of the tissue at
this point.

Radiomics Features
The feature extraction program automatically identified 1,318
features from ROIs on T1-weighted spin echo images. Among
these, 81 features with statistically significant difference between
ABE cases and controls (P < 0.05) were selected using two-
sample t-test. After the Lasso regression algorithm was applied
for further feature reduction, 18 features were chosen based
on the corresponding lambda (λ) value with minimal deviance
(Figure S1). Figure 3 shows the correlation between each pair of
these 18 features, presented as a heat map of correlation matrix.
We found six non-redundant features (−1 < r < 1), with six
pairs of linearly correlated features (r = 1) in the remaining 12
features. After the correlation-matrix-based feature selection, one
representative feature for each linearly correlated feature group
(n = 6) and six relatively independent features were chosen
for further analysis (more details in Figure 3). The process of
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FIGURE 3 | The correlation-matrix heat map based on the correlation between each feature pair of the selected 18 features. All 18 features were calculated with

direction of 0, 45, 90, 135, 180, 225, 270, and 315◦, and offset of 1, 4, and 7, respectively. For instance, based on the matrix generated from the segmented globus

pallidus, entropy (0◦-7) was calculated with direction = 0◦ and offset = 7, while maximum probability (135◦-7) indicates that maximum probability was calculated with

direction = 135◦ and offset = 7.

the feature selection is plotted in Figure 4 with more detailed
information summarized in Table S1 with descriptions of 12
selected features provided in Table S2.

Classifications
Based on the 12 selected features and one radiologist-defined
feature, decision trees had the best classification performance
with an AUC of 0.946, followed by SVM, tree-bagger, logistic

regression, Naïve Bayes, discriminant analysis, and KNN, which
have an AUC of 0.931, 0.925, 0.905, 0.891, 0.883, and 0.817,
respectively, as shown in Figure 5A. On the other hand,
when using the misclassification rate to evaluate the accuracy
of discriminating ABE neonates and controls, the logistic
regression algorithm and tree-bagger performed better than
others with 9.38, 0% for misclassifying ABE and 13.79, 24.14%
for misclassifying the control condition, respectively. Detailed
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FIGURE 4 | Numbers of features selected after each feature selection method performed sequentially.

comparisons are presented in Figure 5B. As a whole, both logistic
regression algorithm and tree-bagger had the highest accuracy
of 88.5% to differentiate ABE from controls compared to other
machine learning classifiers.

Feature Ranking and Contribution
Thirteen features used for classification were ranked using
the Fisher score (Figure 6) according to their importance in
discriminating ABE from the normal myelination. Among them,
the relative mean intensity, which reflects the overall brightness
of segmented globus pallidus, was the most discriminative
feature. It is significantly higher in ABE cases than that in controls
(P < 0.0001). Importantly, the results from radiomics analysis
of image features provided insight into the inherited challenges
of using the conventional signal intensity-focused radiology
reading strategy to diagnose ABE. Histograms of the relative
mean intensity from the segmented globus pallidus in the ABE
and control groups shown in Figure 7 revealed the significant
overlap of similar image contrast of ABE and normal myelination
conditions that contribute to the difficulty of distinguishing ABE
from normal myelination, if it is simply based on the signal
intensity change in the images.

In addition, nine different texture features in the GLCM
category had significant contributions to the discrimination
of ABE from normal myelination. Finally, three other texture
features selected in the category of NGTDM, including
contrast computed from 2D to 3D images, respectively, and
busyness were found to be useful in the classification as
they revealed intra-lesion spatial neighbor intensity difference
of abnormalities. However, no first-order statistical feature
(i.e., intensity histogram-based feature) and feature within the
category of GLRLM were found as distinct features based on the
current criteria used in this study.

DISCUSSION

Although MRI has been increasingly used to investigate the
neuropathology induced by ABE in the neonatal clinical settings,
the conventional reading strategy solely based on overall
intensity alteration of the globus pallidus on T1-weighted images
is not sufficiently effective and accurate. The current study
applied a radiomics-based machine learning approach to extract
specific image features to discriminate neonates with ABE from
controls with normal myelination. The results suggested that this
approach improved the characterization of abnormalities and
thus achieved a better classification of these two conditions.

Clinically, most ABE cases do not show characteristic signal
abnormalities in MRI and thus are not readily distinguishable
from normal myelination. As shown in this study, only two
cases with ABE showed typical striking hyperintensity in the
region of globus pallidus, while other cases of ABE have
various degrees of hyperintense contrast that overlap with the
signal changes from normal myelination. In clinical routine, the
common reading strategy of radiologists focuses on identifying
the relatively higher signal intensity induced by ABE than that
of normal myelination on T1-weighted image, since usually,
signal abnormality tends to vary from moderately high to
very high for ABE and slightly high to moderately high
for normal myelination based on poorly quantitative visual
impression. However, depending on the experience and expertise
level of radiologists, such a subjective judgment is susceptible
to inter- and intra-observer variability in interpreting ABE.
Worth noting, the radiologist-defined feature, the relative mean
intensity of the segmented globus pallidus outperformed 12
selected texture features as the most discriminative feature
to differentiate ABE from normal myelination, suggesting the
robustness of the conventional intensity-based reading strategy
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FIGURE 5 | ROC curves with values of AUC for different classification methods using 13 discriminative features (A) and misclassification rates for normal cases and

ABE cases for different prediction models (B).

FIGURE 6 | Contributions of features in discriminating ABE and controls were

ranked based on their Fisher score. IMC 1 & 2 = information measure of

correlation 1 and 2.

used by the radiologists who have developed sufficient experience
in recognizing subtle intensity changes and differences caused
by the disease. However, compared to the experience-dependent
traditional visual-based pattern recognition, using computational
algorithms to extract fine graphical features and descriptors on

changes in image intensity and contrast in a more quantitative
manner can eliminate the inter- and intra-observer subjective
variability in interpreting ABE.

The study also showed that additional texture features
that are not readily recognized, described, or quantified by
radiologists in the clinical routine reading can be identified by
computational methods, allowing for using more quantitative
parameters to better characterize the lesion and further
enhance the discrimination of these two conditions. In our
study, we found that three NGTDM features and nine
GCLM features contributed to separating ABE from normal
myelination. NGTDM features revealed the pattern of intra-
lesion spatial intensity difference (28) of ABE associated with
tissue relaxation time change induced by bilirubin toxicity.
In contrast, GCLM features, which represent the spatial
distribution of various gray-level combinations, reveals the
regional heterogeneity of the affected tissue (35). The high
accuracy in distinguishing ABE from normal myelination based
on these morphological heterogeneity-associated texture features
demonstrated the feasibility of utilizing additional texture
features to detect, describe, and quantify the morphological
heterogeneity of the globus pallidus induced by bilirubin

accumulation. Importantly, it should be noted that this approach

can be potentially expanded to diagnosing other types of

neonatal encephalopathy that is diagnosed only based on signal
intensity change.

ABE-positive cases included in the study were clinically

confirmed with either positive serum indicators, and (or) positive

imaging findings, and (or) neurological or behavioral symptoms.
However, BIND scores cannot be obtained from some ABE
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FIGURE 7 | Histograms of the relative mean intensity distribution plots from

the groups of ABE and control with normal myelination.

cases due to either overlooked subtle neurological or behavioral
symptoms or incomplete medical records in this retrospective
study. In the future, a prospective study performing BIND score
evaluation for any neonates with suspicious ABE is needed. The
current proof-of-concept study only included a limited number
of ABE subjects due to that MRI has yet to become a clinical
standard practice for evaluating ABE and remaining technical
challenges in neonatal MRI. Therefore, we did not attempt to
follow these patients and further evaluate the possibility of using
radiomics features to sub-classify these ABE cases to determine
the severity of the conditions and difference between preterm and
term neonates. Besides, we have appliedmultiple cross-validation
methods, such as 10-, 5-fold, and leave-one-out method to reduce
overfitting. Finally, we optioned to use leave-one-out method
for its resulting relatively lower accuracy and AUC, considering
minimizing the possibility of overfitting given a relatively small
sample size. It is anticipated that training machine learning
algorithms on a large cohort with larger sample size and more
heterogeneous data acquired on an MRI scanner with higher
magnetic field and testing them on an independent cohort should
further validate the robustness of this approach to generalize a
clinical feasible predictive model.

Another limitation of the current study is that we used
manual contouring for segmentation of ROI, which is prone
to inter-observer variability. We ensured to minimize the
segmentation inaccuracy by referencing the cross-sectional
gross anatomy and the ROIs determined in the ABE cases
with typical imaging findings via double-blinded reading by
the experienced radiologists. Although manual delineation is
time-consuming and subject to introducing the bias from
interpreters, it is currently considered as a “gold standard”
for segmentation (36). A semiautomatic method, combining
expert-based manual delineation and automatic segmentation
algorithm, might improve the segmentation accuracy and thus

further improve the accuracy of downstream classification in the
future. Furthermore, the current study only focused on extracting
radiomics features from T1-weighted images, attempting to
follow the conventional reading strategy of interpreting ABE for
comparison. It is expected that the classification performance of
the reported approach will be further improved by incorporating
features extracted from multi-parametric MRI, including those
features associated with tissue microenvironment alterations,
such as relaxation time change (T1-mapping), cellularity (DWI),
integrity and maturity of white matter tract (diffusion tensor
imaging), and metabolism (magnetic resonance spectroscopy).

CONCLUSION

The current study demonstrated the feasibility of using
a radiomics-based machine learning approach to analyze
overlapped hyperintense signal patterns of globus pallidus on
T1-weighted spin echo images between neonates with ABE and
normal myelination to improve the differentiation of these two
conditions. Compared to the experience-dependent visual-based
conventional reading strategy, incorporating radiomics features
improved the lesion characterizations with more descriptors and
more quantitative and objective measurements for ABE-induced
intensity change and morphological heterogeneity. The results
support the potential utility of such an approach to assist the
clinical prediction on the risk and development of neurological
damages in neonates with hyperbilirubinemia.
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