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Early reperfusion of occluded arteries via recombinant tissue plasminogen activator

(rtPA) administration is considered to be an effective strategy for the treatment of

acute ischemic stroke. However, delayed administration of rtPA may cause severe

hemorrhagic transformation (HT) and undesirable neurological outcomes. The current

study aims to establish a canine HT model using rtPA administration and to investigate

the potential mechanisms underlying HT. Following anesthesia, two autologous clots

were injected into the middle cerebral artery (MCA) to induce ischemic stroke. To induce

reperfusion, rtPA (2 mg/kg) was administrated intravenously 4.5 h after the establishment

of stroke. The occurrence of HT was determined by computed tomography (CT) and

by pathological assessment. Transmission electron microscopy was utilized to assess

blood-brain barrier (BBB) damage. The expression of matrix metalloprotein 9 (MMP-9)

was analyzed by enzyme linked immunosorbent assay (ELISA), immunofluorescence (IF),

and western blot. Administration of rtPA 4.5 h after stroke induced reperfusion in 73.9% of

the canines, caused evident HT, and did not improve neurological outcomes compared

to canines that did not receive rtPA. There was a significant increase in expression of

MMP-9 after rtPA administration, accompanied by BBB disruption. We have established

a canine HT model that closely mimics human HT by using rtPA administration after the

induction of middle cerebral artery occlusion (MCAO) with autologous clots. Our data

suggest that a potential mechanism underlying rtPA-caused HT may be related to BBB

dysfunction induced by an increase in MMP-9 expression.
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INTRODUCTION

Acute ischemic stroke is a leading cause of death and disability worldwide (1). Early administration
of the thrombolytic agent recombinant tissue plasminogen activator (rtPA) is the primary strategy
for the treatment of ischemic stroke (2, 3). However, in addition to its narrow therapeutic
time window (within 4.5 h for intravenous administration after stroke onset), rtPA may induce
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hemorrhagic transformation (HT). HT is a common and harmful
complication of thrombolytic treatment, and can negatively affect
neurological outcomes. It has been reported that HT occurs in
20–40% of patients that receive rtPA treatment (4, 5). Due to
these limitations, few stroke patients can truly benefit from rtPA-
mediated thrombolysis. Thus, there is an urgent need to analyze
the molecular mechanisms underlying rtPA-induced HT in order
to improve the safety of rtPA administration and advance its
clinical application.

Experimental models of cerebral infarction have significant
limitations. Many groups have utilized an intraluminal
monofilament (6), an injection of clots (7), or a photochemical
reaction with rose bengal to induce focal ischemia in rodents (8).
To induce HT, these approaches require the use of hypertensive
or hyperglycemic rodents (9, 10). Furthermore, a rodent
mechanical occlusion model, achieved via middle cerebral
artery occlusion (MCAO) by monofilament insertion, is not
appropriate to evaluate the efficacy of thrombolytic agents.
Moreover, when using a photochemical reaction to establish
MCAO, the emboli mainly consist of platelets and lack fibrin,
which is not accessible to thrombolysis with rtPA. Additionally,
though models that utilize injected clots in rodents closely
mimic the pathophysiology of human stroke patients, the
external carotid artery (ECA) must be permanently ligated
after the injection and may cause hemodynamic changes.
Lastly, although preclinical studies of HT using hypertensive
or hyperglycemic rodents are valuable to mimic specific
conditions such as hypertension or diabetes mellitus, they do not
adequately recreate the clinical presentation of HT induced by
thrombolytic treatments.

We recently described an endovascular canine stroke model
based on MCAO with autologous clots that is highly suitable for
the study of ischemic stroke (11). Using this method as a starting
point, the current study aims to establish a reproducible and
feasible canine model of HT using rtPA administration, and to
investigate the potential mechanisms linking HT and rtPA.

MATERIALS AND METHODS

Ethics
All animal-related experiments were performed according
to the National Institutes of Health guide for the care
and use of laboratory animals. The experimental protocols
were approved by the Committee on the Ethics of Animal
Experiments, Southeast University Medical School. All
experiments, documentation and reporting were in compliance
with the ARRIVE guidelines (Animal Research: Reporting
in vivo Experiments).

Animals
Forty-nine male beagle dogs (10–15 kg, 2–3 years) were
acclimatized to our animal facilities for 1 day before the initiation
of experiments. Using a table of random numbers, canines
were randomly divided into 3 groups: control (sham operation),
MCAO, and MCAO + rtPA (Figure 1). Animals from the

experimental group were treated and assed first, followed by
control group.

Canines were anesthetized with pentobarbital (30 mg/kg)
(Chemical Reagent Company, Shanghai, China) and maintained
(dose = 1/5 of induction) via administration once every 2 h.
Fentanyl (0.03 mg/kg) was used for analgesia peri-operation
and post-operation. Physiological parameters, including mean
arterial blood pressure (MABP) and blood gas were measured
before and after rtPA administration (Supplementary Table 1).
Endovascular canine MCAO was performed as previously
described (12). Briefly, common femoral artery and vein
accesses were achieved using 5-French sheaths (Terumo Medical
Corporation, Tokyo, Japan). A bolus of 2,500U of heparin
was given and an intravenous saline infusion (2-mL/min) was
maintained through femoral vein access.

Thread-like clots were prepared as previously described (11).
Plasma was mixed with thrombin in a customized glass tube
and incubated at 37◦C for 2 h. Subsequently, clots were cut into
segments ∼1.4 or 1.7mm in diameter and 5mm in length. A
5-French vertebral catheter was inserted into cerebral arteries
under fluoroscopic guidance (Axiom Artis, Siemens, Munchen,
Germany). After baseline arteriography was performed, the
catheter was inserted into the internal carotid artery (ICA). Then,
a 1.4mm diameter clot was placed into a 2-mL syringe filled with
contrast agent (Omnipaque 300; GE Healthcare, USA). After the
clot was injected into the ICA, the 2-mL syringe was replaced
with a 5-mL syringe filled with saline, which was injected into the
ICA slowly with intermittent pressure. If the distal M1 segment
of the middle cerebral artery (MCA) was occluded, then a 1.7mm
diameter clot was injected to occlude the proximal region of
the M1 segment. Angiography was performed to confirm the
occlusion of the M1 segment and to evaluate leptomeningeal
collateral recruitment. If MCAO was complete, the ipsilateral
ICA was blocked using the same catheter, which was connected
to pressurized saline for 2 h (Figure 2A).

rtPA-Induced Thrombolysis
RtPA (Actilyse, Boehringer Ingelheim, Germany) was
intravenously administrated at 2 mg/kg with a 10% bolus
injection and 90% continuous infusion for 60min at 4.5 h
post-stroke. In canines, the 2 mg/kg dose is considered to
equivalent to the clinical dose (in humans) of 0.9 mg/kg after
adjusting to the body surface area, as recommended by the
Food and Drug Administration guidelines (http://www.fda.gov/
Drugs/DrugSafety/ucm223966.htm). The MCAO and control
groups received the same volume of saline. The endovascular
procedures described above were repeated to investigate
whether an effective reperfusion of the MCA was achieved after
rtPA administration.

Computed Tomography (CT)
CT scans were performed using a 16-slice spiral CT scanner
(SOMATOM Emotion, Siemens, Germany) according to the
following parameters: kV: 120, mAs: 28, and slice thickness:
1.5mm. CT images were assessed by three blinded investigators.
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FIGURE 1 | Schematic drawing of experimental protocols. Blood samples were obtained at multiple time points: prior to MCAO; 2, 4.5 h post-stroke; 0, 0.5, 2, 4, 6,

12, and 24 h after rtPA administration. SR, spontaneous reperfusion.

FIGURE 2 | Representative digital subtraction angiography (DSA) images of intracranial arteries in canines. (A) Diagram of middle cerebral artery occlusion (MCAO).

(B) Representative cerebrovascular anatomy. (C,D) MCA trunk occlusion (arrow) after clot injection. There was no collateral flow (arrowhead) to the MCA territory. (E,F)

Recanalization of the MCA (arrow) after administration of rtPA.

Neurological Assessment
All behavioral evaluations were performed by an interventional
neuroradiologist who was blinded. A modified canine
neurobehavioural scoring system was employed to assess
motor function, consciousness, heading turning, circling, and
hemianopsia (Supplementary Table 2).

Hemorrhagic Assessment
Hemorrhagic events were scored as follows: 0 = no blood; 1
= hemorrhagic infarction type 1 (HI-1) (small petechial along
the margins of the infarction); 2 = hemorrhagic infarction
type 2 (HI-2) (confluent petechial within the infarction);

3 = parenchymal hematoma type 1 (PH-1) (blood clot < 30%
of infarction, mild space-occupying effect); 4 = parenchymal
hematoma type 2 (PH-2) (blood clot> 30% of infarction, marked
space-occupying effect).

Hematoxylin and Eosin (HE) Staining
Twenty-four hours after thrombolysis, the vertebral catheter
was inserted into contralateral ICA, and the dogs were
super selectively perfused with saline followed by 4%
paraformaldehyde through the catheter. Brains were excised and
fixed in 4% paraformaldehyde at 4◦C for 24 h, then embedded
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in paraffin and cut into 50-µm-thick serial sections. Sets of five
serial sections were stained with HE.

Transmission Electron Microscopy (TEM)
Tissue blocks ∼1 mm3 in size were excised from the peri-
infarct region, fixed in 4% glutaraldehyde at 4◦C for 24 h, and
postfixed in 1% osmium tetroxide for 2 h. Then, the samples
were dehydrated through a graded ethanol series, exchanged
through propylene oxide, and embedded in epoxy resin at
60◦C for 36 h. Ultrathin sections were obtained, stained with
0.5% uranyl acetate and 3% lead citrate, and then observed
with a transmission electron microscope (Tecnai G2 Spirit; FEI,
Hong Kong, China) at 100 kV.

ELISA
Blood samples were obtained at the following time points: prior
to MCAO; 2, 4.5 h post-stroke; 0, 0.5, 2, 4, 6, 12, and 24 h after
rtPA administration (corresponding to 0, 2, 4.5, 5.5, 6, 7.5, 9.5,
11.5, 17.5, and 29.5 h after establishment of stroke). The amount
of MMP-9 in serum was quantified using an enzyme linked
immunosorbent assay (ELISA) kit (Biofavor, Wuhan, China).
Optical density (OD) was detected on a microplate reader at
450 nm and corrected at 540 nm.

Immunofluorescence (IF)
After fixation in 4% paraformaldehyde at 4◦C for 24 h, brains
were sequentially dehydrated in 15 and 30% sucrose dissolved
in saline. The brains were then embedded in optimum cutting
temperature compound (OTC) and sliced into 6-µm-thick
coronal sections using a cryostat (Thermo, Boston, MA, USA).
Five sections from each animal were stained with anti-MMP-9
(1:100; ab38898, Abcam, Cambridge, UK), followed by staining
with secondary antibodies (1:100; BA1032, Cy3 Conjugate
Goat Anti-Rabbit IgG, Boster, Wuhan, China). Fluorescence
intensities of the different groups were detected by fluorescence
microscope (BX53, Olympus, USA).

Western Blot
Western blotting analysis was performed as described previously
(6). The following primary antibodies were used: anti-MMP-
9 (1:1000; ab38898, Abcam, Cambridge, UK) and anti-tubulin
(1:1000; A5032, Selleck, Houston, TX, USA).

Statistical Analysis
Data are presented as mean ± standard deviation (SD). To
analyse differences between multiple groups, one-way analysis
of variance (ANOVA) followed by post-hoc least significant
difference (LSD) tests was performed (SPSS software; version 22;
IBM-SPSS, Inc., Chicago, IL, USA). Results were considered to be
statistically significant for P < 0.05.

RESULTS

General Observations
Spontaneous reperfusion occurred in two beagles of the MCAO
group and three of the MCAO + rtPA group before drug
administration. The efficacy of embolization in the MCAO and
the MCAO + rtPA groups was 81.8 and 90.0%, respectively.

There were no significant difference in the mortality rate
between the MCAO (2/11) and MCAO + rtPA groups (4/27).
A total of 11 canines (five exhibited spontaneous reperfusion,
six died before CT examination) were excluded from the
experiments (Figure 1). No evidence of severe side effects
including gastrointestinal bleeding, pulmonary hemorrhage, and
genitourinary hemorrhage were observed.

Angiographic Findings
Digital subtraction angiography (DSA) clearly defined the
anatomy of the cerebrovasculature (Figure 2B). After the
injection of two autologous clots, the left MCA trunk was
immediately occluded and its territories were no longer visible
during DSA analysis (Figures 2C,D). Effective recanalization of
the MCA (Figures 2E,F) was achieved in 17 individuals out
of 23 (73.9%) in the MCAO + rtPA group after intravenous
administration of rtPA.

Computed Tomography (CT) Scanning
CT scanning was performed 24 h after rtPA administration.
Low-density areas in the cerebral cortex, a typical sign of
ischemic cerebral infarction, were observed in the MCAO group.
There were obvious high-density regions in the MCAO + rtPA
canines (9/23), which indicated the occurrence of significant HT
(Figure 3).

Pathological Findings
CT scanning is the primary strategy for the detection of
significant HT in the clinic; however, it is less sensitive for the
detection of benign HT, such as HI-1 and HI-2. To confirm the
presence of HT, pathological analysis was used. In the control
group, there was no evidence of HT assessed by the gross
pathology (Figures 4A,B) or by histological examination with
HE staining (Figures 5A,D). Gross pathological examination
revealed that mild signs of HT were present in most canines in
the MCAO group (Figures 4A,B). HI-1 was present in 11.1%,
HI-2 in 22.2%, PI-1 in 11.1%, and PI-2 in 11.1% of the canines
(Figure 4C). Mild bleeding was detected upon HE staining,
as well as neuronal pyknosis, degeneration of cell bodies, and
infiltration of inflammatory cells (Figures 5B,E).

Gross pathological assessment confirmed the occurrence of
significant HT after administration of rtPA 4.5 h post-stroke
(Figures 4A,B). Furthermore, rtPA administration increased the
incidence of HI-2, PI-1, and PI-2 while reducing that of HI-1
(Figure 4C). In addition, the hemorrhage scores of the MCAO
+ rtPA group were significantly increased compared to those of
the MCAO group (Figure 4D). HE staining revealed pyknotic
nuclei and massive blood extravasation into the parenchyma
(Figures 5C,F).

Neurological Outcomes
After recovering from anesthesia, the canines were subjected to
neurological assessment using an 11-point neurobehavioral
scoring system. There was a significant difference in
the neurological scores between the control group and
the MCAO group. All the canines in the MCAO group
showed neurobehavioral deficits including circling, reduced
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FIGURE 3 | Representative Computed Tomography (CT) images. A low-density infarct area (arrow) in the ipsilateral hemisphere after MCAO. In the MCAO + rtPA

group, a high-density region (arrow) was observed.

consciousness, inability to stand, and ipsilateral hemiparesis.
rtPA administration at 4.5 h post-stroke did not improve
the neurological outcomes observed in the MCAO group
(Figure 4E).

rtPA Administration Disrupted the BBB
BBB disruption is a central feature of acute ischemic stroke (13),
and may also play an important role in HT. Using electron
microscopy, we assessed the ultrastructure of the BBB. In the
control group, we observed that the basement membrane and
tight junctions were intact (Figures 6A,D). After MCAO, the
basement membrane was partially damaged while the tight
junctions were still visible, the adjacent neuropil displayed
cellular edema and cellular debris (Figures 6B,E). After rtPA
administration, in addition to the observation of a disintegration
of the endothelial layer, we observed the formation of vacuoles,
as well as a dramatic increase in the microvilli of endothelial cells
(Figures 6C,F).

rtPA Administration Promoted
MMP-9 Expression
Matrix metalloprotein 9 (MMP-9) is a well-recognized peptidase
that digests components of the basal lamina, and may contribute
to BBB damage (14). We analyzed MMP-9 expression in serum
at different time points using ELISA. A rapid and significant
increase in serumMMP-9 expression was observed in theMCAO
+ rtPA group compared to the MCAO group. Notably, MMP-9
expression in theMCAO+ rtPA group returned to a level similar
to that of the MCAO group approximately 2 h after thrombolysis
(Figure 7A).

Western blot analysis was utilized to assess MMP-9 protein
expression in the peri-infarct region 24 h post-thrombolysis. The
results suggested that MCAO significantly increased the MMP-
9 expression in this region compared to the control group. This

effect was significantly enhanced in the MCAO + rtPA group
(Figure 7B).

We further analyzed MMP-9 protein expression in the peri-
infarct regions by IF. MMP-9 expression was significantly
higher in the MCAO group compared to the control group. In
addition, MMP-9 expression was further increased after rtPA
administration (Figure 7C).

DISCUSSION

To date, rtPA is the only FDA-approved drug to treat
acute ischemic stroke. Unfortunately, it may cause severe
complications such HT (3, 15). The primary purpose of the
present study was to induce HT caused by rtPA administration
in an endovascular canine stroke model and to elucidate
candidate mechanisms underlying HT. Our results unequivocally
demonstrate that rtPA administration at 4.5 h post-stroke
increases the occurrence of significant HT without improving
neurological outcomes. Additionally, after rtPA administration
we observed BBB damage and detected enhanced MMP-9
expression by ELISA, IF, and western blot.

In order to better understand HT, an appropriate animal
model that reflects the pathogenesis of human HT is urgently
needed. Garcia-Yebenes et al. previously described a mouse
HT model based on in situ clot formation, which was thought
to be suitable for investigation of HT caused by rtPA (16).
However, MCA puncture, which is indispensable for this
methodology, may lead to cerebrospinal fluid leakage (CSFL).
Some biochemical parameters might be affected by CSFL,
especially those implicated in edema. Additionally, CSFL can
induce meningitis and encephalitis, which may extremely affect
the results. In a photothrombotic model, vascular endothelium
injury caused by photochemical reaction may lead to vascular
leakage (17), and the emboli are platelet-rich and lack fibrin.
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FIGURE 4 | Effect of rtPA administration on macroscopic HT and neurological outcomes. (A) General appearance and (B) coronal sections of brains from

representative experiments. (C) Hemorrhages were classified by type and extent in 5 groups: (1) no hemorrhage; (2) HI-1; (3) HI-2; (4) PH-1; (5) PH-2. (D) Hemorrhage

score and (E) neurological assessment were determined in the control, MCAO, and MCAO + rtPA groups (n = 6 in the control group, n = 9 in the MCAO group, and

n = 23 in the MCAO + rtPA group). *P < 0.05, **P < 0.01.
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FIGURE 5 | Effect of rtPA administration on microscopic HT. Representative hematoxylin-eosin (HE) staining of brain sections from the control (A,D), MCAO (B,E),

and MCAO + rtPA groups (C,F). Red blood cells appear as orange-yellow spherical cells without nuclei. Scale bars = 25µm.

FIGURE 6 | Ultrastructure of the blood–brain barrier. The basement membrane (arrow) and endothelial cells were disrupted in the MCAO group (B,E) as compared to

the control group (A,D), and the damage was exacerbated after rtPA administration (C,F) (n = 3–4 per group).
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FIGURE 7 | Expression of MMP-9 in the serum and peri-infarct regions. (A) Serum MMP-9 levels after thrombolysis (n = 6 in the control group, n = 9 in the MCAO

and MCAO + rtPA group). (B) MMP-9 protein expression after MCAO measured by western blot and (C) immunofluorescence (n = 3–4 per group). Scale bars =

25µm. *P < 0.05, **P < 0.01.

Hence, this model is suitable for studies on antiplatelet drugs
and endothelial cell protective agents, but it is problematic when
using rtPA.

In the current study, we induced MCAO in canines with
an injection of two autologous clots followed by intravenous
administration of rtPA, which closely resembles the features
of a typical clinical situation. Interestingly, nearly half of the
canines in the MCAO group presented with very mild HT
(HI-1), as detected by pathological examination, while the
rest of the MCAO group exhibited mild bleeding (classified
as HI-2, PI-1). These results suggest that MCAO itself can
lead to HT even in the absence of rtPA administration, which
is consistent with the findings of Couret et al. (10). Our
results suggest that rtPA administration at 4.5 h post stroke
remained effective for the induction of MCA recanalization, but
neurobehavioral scores were not improved. Moreover, higher
HT incidence was observed along with a significant increase
in hemorrhage scores. Since the blood pressure and blood
sugar levels were generally within the normal range, the above
mentioned HT was most likely caused by rtPA thrombolysis,
rather than hypertension or hyperglycemia. However, this is

still a safe time when it translates to humans, likely due to
species differences.

The current model presents various advantages. First, as
a large animal with a gyrencephalic brain, the vessel size,
and degree of vasospasm encountered in canines are more
similar to humans compared to rodents, and it is more
convenient to conduct imaging studies on canines because
of their compatibility with non-specialized, clinical imaging
equipment (18–20). Second, unlike laser Doppler flowmetry,
fluoroscopy can guide the injection of clots in real time and
provide direct evidence of effective thrombolysis. Third, the
endovascular procedures that we used represent a minimally
invasive technique that avoids unnecessary damage such as
craniotomy, muscle incision, and dissection of ECA. The stress
and inflammation caused by these damage may affect the results
of the study. Finally, the fibrin-rich emboli used in our model
resemble those present during cardiogenic cerebral infarction
in humans and are appropriate for the study of rtPA-mediated
thrombolysis. Using our model as a starting point, future
studies can adjust the components of the emboli to mimic
different clinical situations, such as ischemic stroke secondary
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to atherosclerosis. Since our model is able to closely mimic a
range of clinical situations, it is suitable for the study of the
adverse effects of rtPA treatment and for the investigation of the
mechanisms underlying HT.

HT is defined as the extravasation of blood into brain tissue,
and may be associated with BBB breakdown (21, 22). The
BBB plays a critical role in the maintenance of the internal
environment of the central nervous system. BBB breakdown is
thought to be a prerequisite for cerebral edema and HT (23).
In agreement with the findings of Cai et al. (24), we observed
more significant BBB damage in rtPA-treated canines compared
to those in the MCAO group.

MMP-9, a member of the matrix metalloprotein family, is a
zinc-dependent enzyme that digests the extracellular matrix. Its
substrates include collagen IV, laminin, and fibronectin (25–27).
We hypothesized that BBB dysfunction is highly related toMMP-
9 expression. To further investigate the mechanisms underlying
HT, we evaluated the expression of MMP-9. Consistent with
results from other groups (28, 29), we observed that the
levels of MMP-9 in serum were immediately increased after
rtPA administration, which suggests that rtPA can enhance the
expression of MMP-9 in peripheral blood.

Though there were no significant differences in serum MMP-
9 levels between the MCAO group and the MCAO+ rtPA group
at 29.5 h post-stroke, the IF and western blot results confirmed
an increase in MMP-9 protein levels in the peri-infarct region
in the MCAO + rtPA group at this time point. Many studies
have indicated that neutrophils are the main source of MMP-9
in peripheral blood (30–32). Accordingly, we hypothesized that
intravenous administration of rtPA may induce the expression
of MMP-9 in neutrophils in peripheral blood, which then digest
the extracellular matrix and penetrate into the cerebral tissue.
Once the neutrophils enter the brain tissue, they in turn cause
increased MMP-9 expression in resident brain cells such as
neurons, astroglia, and microglia leading to further neurological
damage. Clearly, further experiments focused on identifying the
cellular source of MMP-9 are required. Our results collectively
indicate that rtPA administration significantly increases MMP-
9 expression, causes secondary dysfunction to the BBB after
MCAO, and induces HT.

There are some limitations of the current study: (1) Due
to the high density of bleeding and the unclear infarct
boundary in CT scans, we didn’t measure infarct volume in
our research. To overcome this obstacle, we utilized an 11-
point neurological score to assess the therapeutic effects of
rtPA administration. In future studies, other methods such as
multimodality magnetic resonance imaging may be utilized to
resolve this deficiency. (2) To simulate clinical situation, we set
rtPA administration at 4.5 h post stroke. For optimization of this
model or exploration of time-dependent effects of rtPA, further
studies could chose more time points for rtPA thrombolysis. (3)
In order to prevent excessive animal deaths, the observation time
after rtPA thrombolysis is relatively short. With an increased
observation time, the occurrence HT could also increase. (4)
There is a lack of specific antibodies in canines, as is the case
with many large experimental animals. As a result, though
complicated interactions between MMPs and tissue inhibitor of

metalloproteinase have been previously described (28, 33, 34),
we cannot study these relationships. Advances in biotechnology
and antibody production will help to alleviate these problems in
the future.

CONCLUSION

In summary, we have established a reproducible and feasible
canine model of HT caused by rtPA administration. BBB
dysfunction caused by rtPA-induced MMP-9 expression is a
candidate mechanism for HT induction by rtPA.
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