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Editorial on the Research Topic

The Role of Glia in Alzheimer’s Disease

For decades, Alzheimer’s disease (AD) research has focused on the two pathological hallmarks of
the disease: amyloid plaques and neurofibrillary tangles. Reactive astrocytes and activatedmicroglia
decorating amyloid plaques are other long known pathological features of the AD brain (1–4), yet
only recently has the role of glia in AD gained momentum as a research topic (5). This growing
interest in glia is primarily fueled by the GWAS discovery of several risk loci in genes related
to the innate immune system (6), and by the recent involvement of microglia and astrocytes in
synaptic pruning and the modulation of synaptic activity in physiologic conditions (7–10). Indeed,
reactive glia has been correlated with both clinical expression and progression of cognitive decline
in AD (1, 11). In the 10 articles that form this Frontiers Research Topic, now edited as an eBook,
the readers will find an update on some of the most crucial aspects of astrocyte and microglia
involvement in AD pathophysiology, as well as some of the most novel and useful tools to study
both glial cell types in the context of AD.

We start with a comprehensive review on the role of reactive astrocytes in the disease,
highlighting the heterogeneity and complexity of astrocytes in the healthy brain, the molecular
signaling pathways involved in astrocyte reaction in AD, the phenotypic changes exhibited by
reactive astrocytes in the AD brain, and the consequences of this astrocyte reaction with respect
to plaques, tangles, neurons, and synapses (Perez-Nievas and Serrano-Pozo). Next, Garcia-Esparcia
et al. compare the astrocyte reaction present in AD and dementia with Lewy bodies (DLB) brains by
quantifying both protein andmRNA levels of several astrocyte markers such as glial fibrillary acidic
protein (GFAP), excitatory amino acid transporter 2 (EAAT2/GLT-1), and aldehyde dehydrogenase
1 L1 (ALDH1L1). They observed a non-significant reduction of EAAT2/GLT-1 protein levels and
a normal EAAT2/GLT-1 immunoreactivity around plaques, suggesting limited consequences of
astrocyte reaction for glutamate transport in AD.

The Frontiers Research Topic/eBook switches then gears to focus on the role of microglia in
AD. Navarro et al. summarize their recent findings comparing microglia from the hippocampus
of APP-overexpressing transgenic mice and human AD brains (12). They postulate that, while
microglia becomes uniformly activated and pro-inflammatory in the hippocampus of mouse
models of amyloid plaque deposition, a subset of microglia from the human AD hippocampus
might be dysfunctional and exhibit an attenuated inflammatory response, and even degenerate
due to the toxicity mediated by soluble tau oligomers. Zhou et al. review the physiology of
triggering receptor expressed on myeloid cell 2 (TREM2) and its implication in amyloid plaque
and tangle formation from studies on Trem2 deficient AD mouse models. They also review
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their recent finding that TREM2 enhances microglial metabolism
through the mammalian target of rapamycin (mTOR) pathway
(13), suggesting that the AD-linked TREM2 variants (14, 15)
can modulate AD pathogenesis through an aberrant microglial
metabolism. Guedes et al. review the contributions of microglial
and monocyte chemokines and their receptors (CCL2/CCR2,
CX3CL1/CX3CR1, CCL5/CCR5, CXCL10/CXCR3, and
CXCL1/CXCR2) to amyloid and tau pathologies. Thei et al.
contribute with a review of the ion channels expressed by
homeostatic microglia, their potential disruption in activated
microglia in AD, and how human inducible pluripotent stem cell
(hiPSC)-derived microglia could be a better tool than primary
microglial cultures to elucidate the role of these ion channels.
And, finally, Chun et al. summarize their experience with
novel in vitro approaches to study glia, including microfluidic
devices with human microglia exposed to Aβ to investigate
microglial chemotaxis (16), and a 3D organotypic AD brain
model (17) consisting of culturing neurons, microglia and
astrocytes from immortalized human AD neural progenitor cells
or hiPSC-derived neural progenitor cells in a 3D microfluidic
platform.

Lastly, the Frontiers Research Topic/eBook deals with the
imaging methods available to study reactive glia. Edison et al.
review the literature on PET imaging of reactive glia in both
human AD subjects and AD mouse models. PET radiotracers
targeting the translocator protein of 18 KDa (TSPO) have been
widely used for almost two decades to image activated microglia
in vivo (18), whereas [11C]deuterium-L-deprenyl ([11C]DED)—
an irreversible inhibitor of monoamine oxidase B—has recently
been introduced to image reactive astrocytes (19), which are
known to up-regulate this enzyme (20). Hierro-Bujalance et al.
provide an update on the methodology of intravital multiphoton
microscopy and its applications to image microglia in vivo in
AD mouse models. Examples of key observations using this
technique include the microglia chemotaxis toward amyloid

plaques after these are formed, its limited role in controlling
plaque growth, and its activation and participation in plaque
clearance upon treatment with anti-Aβ antibodies. Kelly et
al. address the current applications of intravital multiphoton
microscopy to image astrocytes in vivo in AD mouse models.
These include, among others, the topical use of the dye
sulforhodamine-101 (SR-101) to study astrocyte morphology
and distribution (21), and the virally-mediated expression of
genetically-encoded calcium indicators to track astrocyte calcium
dynamics as a functional read-out (e.g., calcium waves at both
intracellular and network scales) (22). Practical examples of
these functional studies include the investigation of spontaneous
calcium transients as a function of proximity to amyloid plaques
and cerebral amyloid angiopathy (CAA)-affected vessels, and
the examination of evoked calcium transients in paradigms of
functional hyperemia.

In summary, although acknowledging that the topic of glial
cells in AD is a rapidly evolving field, we believe that the present
Frontiers Research Topic/eBook will provide the interested
readers with the most recent developments on the role of reactive
astrocytes and activated microglia to AD pathophysiology, and
the latest technical advances to study and image these glial cells
in vitro and in vivo in AD patients and mouse models.
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