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Many patients with incomplete spinal cord injury (iSCI) have impaired gait and balance

capacity, which may impact daily functioning. Reduced walking speed and impaired

gait stability are considered important underlying factors for reduced daily functioning.

With conventional therapy, patients are limited in training gait stability, but this can

be trained on a treadmill in a virtual environment, such as with the Gait Real-time

Analysis Interactive Lab (GRAIL). Our objective was to evaluate the effect of 6-weeks

GRAIL-training on gait and dynamic balance in ambulatory iSCI patients. In addition,

the long-term effect was assessed. Fifteen patients with chronic iSCI participated. The

GRAIL training consisted of 12 one-hour training sessions during a 6-week period.

Patients performed 2 minute walking tests on the GRAIL in a self-paced mode at

the 2nd, and 3rd (baseline measurements) and at the 12th training session. Ten

patients performed an additional measurement after 6 months. The primary outcome

was walking speed. Secondary outcomes were stride length, stride frequency, step

width, and balance confidence. In addition, biomechanical gait stability measures based

on the position of the center of mass (CoM) or the extrapolated center of mass

(XCoM) relative to the center of pressure (CoP) or the base of support (BoS) were

derived: dynamic stability margin (DSM), XCoM-CoP distance in anterior-posterior (AP)

and medial-lateral (ML) directions, and CoM-CoP inclination angles in AP and ML

directions. The effect of GRAIL-training was tested with a one-way repeated measures

ANOVA (α = 0.05) and post-hoc paired samples t-tests (α = 0.017). Walking speed

was higher after GRAIL training (1.04 m/s) compared to both baseline measurements

(0.85 and 0.93 m/s) (p < 0.001). Significant improvements were also found for stride

length (p < 0.001) and stability measures in AP direction (XCoM-CoPAP (p < 0.001)

and CoM-CoPAP−angle (p < 0.001)). Stride frequency (p = 0.27), step width

(p = 0.19), and stability measures DSM (p = 0.06), XCoM-CoPML (p = 0.97), and

CoM-CoPML−angle (p = 0.69) did not improve. Balance confidence was increased after
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GRAIL training (p = 0.001). The effects were remained at 6 months. Increased

walking speed, stride length, AP gait stability, and balance confidence suggest that

GRAIL-training improves gait and dynamic balance in patients with chronic iSCI. In

contrast, stability measures in ML direction did not respond to GRAIL-training.

Keywords: spinal cord injury, virtual reality, gait, balance, stability, ambulatory, rehabilitation, walking

INTRODUCTION

Approximately 60% of the patients with a spinal cord injury
(SCI) suffer an incomplete lesion (1). In the chronic phase of
an incomplete SCI (iSCI) many patients will encounter deficits
at and below the level of the lesion such as muscle weakness,
spasticity, and impaired muscle coordination (2). These deficits
can impact on functional ambulation (3) and social participation
(4). For functional ambulation, walking speed is considered one
of the most important parameters (5). Generally, iSCI patients
walk at a low preferred walking speed (5) and with a deviant
walking pattern (2, 6). One of the underlying causes of the
reduced walking performance is impaired balance (7, 8). The high
incidence of falls, ranging from 39 to 75% (9, 10), supports the
impaired balance in ambulatory patients with iSCI.

Frequently, an important goal of rehabilitation is to improve
balance and walking speed. Various interventions and training
approaches aiming to improve walking performance in iSCI
patients have been introduced and all approaches show some
improvement without supremacy of one intervention over
others (11). Typical examples of balance and walking training
are individual physical therapy and (body-weight-supported)
treadmill training. However, these therapies are limited in
training patients to react to environmental circumstances
without challenging their balance capacity to individual limits.

In recent years, training in a virtual environment has
been introduced in rehabilitation (12, 13). In these virtual
environments, a simulation of challenging real life situations
(such as walking in a forest) can be presented without exposing
the user to the direct danger of falling. In this way, patients
are given the opportunity to train their gait and balance
capacities by exploring their boundaries in a challenging and safe
environment (14). Training in virtual environments will provide
patients with important prerequisites for motor rehabilitation,
such as repetitive practice, feedback about performance, and
motivation to endure practice (12). In the virtual environment
tasks involving precision stepping, obstacle avoidance, and/or
reacting to perturbations, often referred to as “gait adaptability
training,” can be performed in quick succession. Such training
is highly relevant to relearn daily activities such as walking
on uneven surfaces or in crowded places, where people
need to adapt their walking speed and walking pattern to
environmental circumstances (15–18). Previous research shows
that gait adaptability training can improve functional ambulation
by preventing falls (19) and improving gait stability in elderly,
stroke patients, and patients with Parkinson’s disease (20–23).
In iSCI patients training precision stepping has been shown
to improve walking capacity measured with the SCI functional
ambulation profile [SCI-FAP, (24)]. More recently, however, Fox

and colleagues concluded that the efficacy of gait adaptability
training on walking and balance function should be further
investigated (25).

Although walking speed is considered to be the most
important characteristic of walking performance, balance
capacity is a key element of functional ambulation as well (7, 8).
Studies that focused on balance in iSCI patients often used the
Berg Balance Scale as a primary outcome (8, 26, 27). The Berg
Balance Scale is easy to use, but it is known to have a ceiling effect
(28) and assesses balance in rather static situations. Measuring
gait stability is more complex and often requires additional
equipment such as force plates and a motion capture system.
Some virtual reality gait training devices, such as the GRAIL
(Gait Real-time Analysis Interactive Lab), can be used as both
a training and measurement device. The GRAIL consists of an
instrumented dual belt treadmill with two embedded force plates
and an eight-camera VICON motion capture system (VICON,
Oxford, United Kingdom). The self-paced mode of the GRAIL
allows patients to vary the treadmill speed during walking, which
induces a natural way of walking (29), especially when a visual
flow is presented in the virtual environment (30).When reflective
markers are adhered to the participants body, the marker data
can be captured for objective offline movement analysis. In
addition to walking speed, more complex biomechanical
measures related to gait stability can be derived. Previous studies
showed that these biomechanical gait stability measures were
able to distinguish between elderly with and without balance
problems (31, 32), between above-knee amputees and control
subjects (33), and between more and less affected stroke patients
(34). However, the responsiveness of the stability measures to
gait training is unknown.

The main objective of this study was to evaluate the effect of
6 weeks GRAIL training on gait and dynamic balance capacity
in ambulatory patients with chronic iSCI. In addition, the long-
term effect was assessed 6 months after GRAIL training. Walking
speed was used as a primary outcome, while other spatio-
temporal parameters and gait stability measures were assessed
as secondary outcome parameters. We hypothesized that GRAIL
training will result in an improved walking speed and gait
stability.

MATERIALS AND METHODS

Participants
Patients with iSCI who were referred to GRAIL training by
a rehabilitation physician in the Sint Maartenskliniek between
June 2016 and December 2017 were eligible to participate in
this study. Eligible persons were adults in the chronic phase
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(>6 months) with an iSCI [American Spinal Injury Association
Impairment Scale (AIS) C or D] who could walk independently
for 2min without assistance [Functional Ambulation Categories
(FAC) ≥3]. Patients were excluded if (i) they were not able to
walk in the self-paced mode of the GRAIL without using the
handrails, (ii) had other neurological or lower limb impairments
in addition to the iSCI, (iii) had vision problems, or (iv) had
walking and/or balance problems prior to the iSCI. The exclusion
criteria (ii), (iii), and (iv) were checked by the researcher through
questions. All participants gave written informed consent in
accordance with the Declaration of Helsinki. The study was
approved by the regional medical ethics committee of Arnhem-
Nijmegen (2016–2474) and by the internal review board of the
Sint Maartenskliniek.

Equipment
All training sessions and measurements were performed on
the GRAIL at the Sint Maartenskliniek in Nijmegen (Figure 1).
The GRAIL consisted of an instrumented dual belt treadmill
with two embedded force plates and an eight-camera VICON
motion capture system (VICON, Oxford, United Kingdom). The
platform was able to move in several directions to generate
mechanical perturbations. In front of the treadmill, virtual reality
environments were projected on a 180◦ semi-cylindrical screen.
Reflective markers were adhered to the patients to interact
with the virtual environment and to capture kinematic data.
The GRAIL system was controlled and the visual information
was matched to the treadmill speed with the D-flow software
(Motek Forcelink, Amsterdam, the Netherlands, version 3.22.1).
To assure safety, patients wore a safety harness without body
weight support.

Protocol
Intervention
The GRAIL training consisted of 12 1-h training sessions spread
over a 6-week period. Per training session one physical therapist
guided the training and a maximum of two physical therapists
were responsible for all training sessions given to one patient.
All physical therapists were certified GRAIL operators. Each
training was individualized, as the physical therapist chose the
training applications based on the specific rehabilitation goal
and current level of the patient. For instance, patients who had
problemsmaintaining their balance in stance typically performed
applications in which they had to shift their weight, whereas
patients with gait adaptability problems performed applications
in which they had to perform precision stepping or obstacle
avoidance. During the GRAIL training multiple applications
were performed and after each training session the physical
therapist documented the type and level of the performed
applications. The applications were categorized in three themes;
“gait adaptability,” “walking+,” “balance in stance” (see Table 2).
The first GRAIL training session was used for familiarization
with the GRAIL system. From the second to the last training
session, training intensity, and complexity were gradually and
individually increased.

Gait Measurements
To evaluate the effect of GRAIL training on gait and balance,
patients performed the 2 minute walking test (2MWT) at the
2nd, 3rd, and last (12th) training sessions (baseline 1, baseline 2,
and post measurement, respectively). For familiarization with the
task, the 2nd baseline measurement (at the 3rd training session)
was added to neutralize early learning (or task adaptation) effects.

FIGURE 1 | Gait Real-time Analysis Interactive Lab (GRAIL) at the Sint Maartenskliniek. Both persons have given their written and informed consent for publication of

the picture.
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FIGURE 2 | Self-paced mode on the GRAIL.

To evaluate the long-term effect of GRAIL training on gait and
balance, patients performed one additional 2MWTon the GRAIL
6 months after the last training session (follow-up). Patients
performed the 2MWT in the self-paced mode on the GRAIL,
which allowed them to walk at a self-selected speed. In the
self-paced mode, the speed of the treadmill was automatically
controlled using the anterior-posterior (AP) position of the pelvis
markers and the AP midline of the treadmill. Walking forward
or backward relative to the midline resulted in an acceleration
or deceleration of the treadmill, respectively (Figure 2). Before
measuring the 2MWT, patients received some explanation about
the self-paced mode and performed a few practice trials to reach
their preferred walking speed in a similar manner as in the study
of Plotnik and colleagues (30). During the 2MWT on the GRAIL,
patients were instructed to walk as far as possible at a comfortable
walking speed in 2min. Patients received no feedback about their
walking speed.

The self-paced mode was set at the lowest sensitivity value
of 1.0 (setting ranged between 1 and 5). The maximum
acceleration and deceleration of the treadmill was set at 0.25
m/s2. Before the start of the 2MWT, 19 reflective markers
were adhered to the following anatomical landmarks: left and
right acromion process, humeral lateral epicondyle, ulnar styloid
process, anterior superior iliac spine (ASIS), posterior superior
iliac spine (PSIS), femoral lateral epicondyle, lateral malleolus,
metatarsal II, calcaneus, and 7th cervical vertebra (Figure 3).
The data of the reflective markers was sampled at a frequency
of 100Hz and the sample frequency of the force plates was
1,000Hz. The data of the reflective markers were labeled using
VICON Nexus 2.4 and analyzed using MATLAB R2017b. A zero
lag second-order Butterworth filter with a cut-off frequency of
10Hz was used to filter the marker data. A cut-off frequency of
7Hz was used for the force data. Before the patients walked at
their preferred walking speed, the treadmill had to accelerate. To
remove the acceleration phase, the first 20 s of the 2MWT were
removed before data analysis.

Spatiotemporal parameters
The primary outcome was walking speed defined as the average
treadmill speed (m/s). Other spatiotemporal gait parameters

FIGURE 3 | Placement of the reflective markers.

(stride length, step width, and stride frequency) were used
as secondary outcome parameters. Stride length (cm) was
determined as the average AP-distance between the heel markers
at two consecutive heel strikes on the same side. Step width (cm)
was determined as the average ML-distance between the heel
markers at heel strike. Stride frequency (strides/s) was defined as
the inverse of the interval between heel strikes of the same foot.
Heel strikes were defined as the instant that the calcaneus marker
started moving backwards.

Gait stability measures
The stability measures used in the current study were based on
the position of the center of mass (CoM) or the extrapolated
center of mass (XCoM) relative to the center of pressure (CoP)
or the base of support (BoS), during a specific moment of the
gait cycle (e.g., double support or heel strike). The position of the
CoM depends on sex, body posture, and direction of the limbs.
In this study the CoM was calculated using 19 reflective markers
according to a method first described by Tisserand et al. (35). The
XCoM takes the position and velocity of the CoM into account
and is used to formulate requirements for gait stability (36). To
calculate the XCoM, the equation of Hof et al was used (36, 37):

XCoM = CoM′
+

vCoM
√

g
l

CoM’ represents the ground projection of the CoM, vCoM the
velocity of the CoM, g = 9.81 m/s2, and l the maximum height of
the CoM (36, 37). The CoP is the centroid of pressure distribution
on the plantar surface of the foot and has been used to identify
balance control during posture and gait (38). The equation of
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Sloot et al was used to calculate the CoP for both force plates (39):

CoPAP =
FAP ∗CoPV − MML

FV
&

CoPML =
FML ∗CoPV − MAP

FV

F represents the force in anterior-posterior (AP), medial-lateral
(ML), and vertical (V ) directions, M the moment of force,
and CoPV the vertical distance between the surface of the
treadmill belt and the force plates (39). During the double
support phase, the weighted average of the CoP in ML and
AP directions was calculated based on the CoP of both force
plates.

In this study the following five gait stability measures were
calculated: the dynamic margin of stability (DSM) (34), the
XCoM-CoP distance in AP and ML directions (32, 33), and
the CoM-CoP inclination angles in AP and ML directions (31).
In general, better gait stability is characterized by a position of
the XCoM far in front of the BoS in the AP direction, which
suggests that patients are confident in walking at higher speeds
with longer steps. In the ML direction, better gait stability is
characterized by a position of the XCoM closer to the boundaries
of the BoS, often accompanied by walking with a smaller step
width. The DSM was calculated as the average of the shortest
distance between the front line of the BoS (i.e., the line between
the two metatarsal II markers) and the XCoM during double
support (34) (See Figure 4A for a visual representation). A large

positive DSM represents better balance control than a negative
DSM (i.e., XCoM within the BoS) or smaller DSM. The distances
between the XCoM and CoP were calculated at each heel strike
in AP (Figure 4B) and ML directions (Figure 4C) separately
(32, 33). A larger XCoM-CoPAP distance and a smaller XCoM-
CoPML distance reflect better balance control. The CoM-CoP
inclination angles were calculated from the angle between the
position of the CoM and the vertical line through the CoP (31).
The peak inclination angles were defined as the range between the
maximum and minimum inclination angles in AP (Figure 4D)
and ML directions (Figure 4E) of each gait cycle. A larger
peak inclination angle in the AP direction and a smaller peak
inclination angle in the ML direction represent better balance
control.

Balance Confidence Assessment
Balance confidence was assessed with the activities specific
balance confidence (ABC) (0–100) scale (40, 41) at the second
training session (before the first baseline measurement), at
the last training session (after the post measurement) and at
6 months after the last training session (after the follow-up
measurement).

Statistical Analysis
Effect of GRAIL Training
The spatiotemporal gait parameters (walking speed, stride length,
step width, and stride frequency) and gait stability measures

FIGURE 4 | Gait stability measures based on the position of the center of mass (CoM), extrapolated center of mass (XCoM), center of pressure (CoP), and/or base of

support (BoS) relative to each other; (A) dynamic stability margin (DSM), (B,C) XCoM-CoP distance in anterior-posterior (AP) and medial-lateral (ML) direction, (D,E)

CoM-CoP inclination angles in AP and ML direction.
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(DSM, XCoM-CoPAP distance, XCoM-CoPML distance, CoM-
CoPAP−angle, and CoM-CoPML−angle) were analyzed using
descriptive statistics (mean and standard deviation). Differences
in the spatiotemporal gait parameters and gait stability
measures between the three measurements (baseline 1, baseline
2, and post measurement) were assessed with a one-way
(factor Time) repeated measures ANOVA (α = 0.05). If
the assumption of sphericity was violated, the degrees of
freedom were corrected using Greenhouse-Geisser correction
and the Pillai’s Trace value (V) was given. In the case
of a significant effect of Time, paired samples t-tests with
Bonferroni correction (α = 0.017) were performed to determine
which measurements were different from each other. In
case the assumption of normality was violated, median, and
ranges were calculated and a non-parametric Friedman test
(α = 0.05) with Wilcoxon signed-rank post-hoc test (α = 0.017)
was performed. The effect of GRAIL training on balance
confidence (the scores on the pre and post ABC-scale) was
tested with paired samples t-test (α = 0.05). F and t-values
were given when the repeated measures ANOVA and paired
samples t-test were used, while X2

F and T were given for
the non-parametric Friedman test and Wilcoxon signed-rank
test.

Long-Term Effect of GRAIL Training
The long-term effect of GRAIL training was evaluated by
testing the differences in spatiotemporal gait parameters (walking
speed, stride length, step width, and stride frequency) and gait
stability measures (DSM, XCoM-CoPAP distance, XCoM-CoPML

distance, CoM-CoPAP−angle, and CoM-CoPML−angle) between
the post and follow-up measurements as well as between the
baseline 2 and follow-up measurements using paired samples
t-tests (α = 0.05). When the assumption of normality was
violated, median, and ranges were calculated and a non-
parametric Wilcoxon signed-rank test (α = 0.05) was performed.
t-values were given when the paired samples t-test was used,
while T was given for the non-parametric equivalent, the
Wilcoxon signed-rank test.

RESULTS

Participants
In total 20 patients were assessed for eligibility in the study.
Three patients were ineligible because they could not walk in
the self-paced mode without using the handrails (exclusion
criteria). One patient declined to participate. Sixteen patients
were included in the study. One dropped out before completing
the post measurement, resulting in 15 patients who performed
the baseline 1, baseline 2, and post measurements (Figure 5). An
overview of the patient characteristics is given in Table 1.

Content of GRAIL Training
Two patients received 9 and 8 GRAIL training sessions
instead of the scheduled 12 training sessions. These patients
canceled some training sessions at short notice, which made
it impossible to reschedule the sessions within the training
period. The other 13 patients received 12 GRAIL training

sessions. In total 30 different applications were performed
during the GRAIL training. The themes of these applications
were categorized in “gait adaptability” (13 applications),
“walking+” (8 applications), and “balance in stance” (9
applications). On average, patients performed 3.7 ± 0.9
applications during one training session, of which 1.4 ±

0.4 were gait adaptability applications, 1.3 ± 0.4 walking+

applications, and 1.0 ± 0.5 balance in stance applications. The
most frequently practiced applications for gait adaptability were
“Microbes” (42%), for walking+ “Perturbations” (23%), and for
balance in stance “Traffic jam” (42%). An explanation of the
most frequently practiced applications per theme is depicted
in Table 2.

Effect of GRAIL Training
Spatiotemporal Parameters
The repeated measures ANOVA revealed significant Time effects
of GRAIL training on walking speed [F(2, 28) = 18.53, p < 0.001].
Post-hoc analysis showed that the mean walking speed was
significantly higher at post measurement (1.04 ± 0.38 m/s)
compared to baseline 1 (0.85± 0.41 m/s, p < 0.001) and baseline
2 (0.93 ± 0.37 m/s, p = 0.003). There was a significant effect of
GRAIL training on the stride length, [F(2, 28) = 15.76, p < 0.001].
Stride length was significantly larger at the post measurement
(112 ± 31cm) compared to baseline 1 (94 ± 39 cm, p < 0.001)
and baseline 2 (101 ± 33 cm, p = 0.002). Stride frequency
[V = 0.18, F(2, 13) = 1.45, p= 0.27] and step width [F(2, 28) = 1.76,
p = 0.19] were not significantly affected by GRAIL training. The
spatiotemporal gait parameters at the three measurements are
shown in Figure 6.

Gait Stability Measures
The repeated measures ANOVA revealed significant Time effects
on XCoM-CoPAP distance [F(2, 28) = 19.48, p< 0.001] and CoM-
CoPAP−angle [F(2, 28) = 15.90, p < 0.001]. The XCoM-CoPAP
distance was significantly higher at post measurement (491 ±

175mm) compared to baseline 1 (404± 195mm, p < 0.001) and
baseline 2 (441± 177mm, p= 0.003). The CoM-CoPAP−angle was
significantly higher at post measurement (16.6± 5.3◦) compared
to baseline 1 (14.1 ± 5.5◦, p < 0.001) and baseline 2 (14.7 ±

4.8◦, p = 0.003). The Time effect on the DSM nearly reached
significance [V = 0.36, F(2, 13) = 3.64, p = 0.06], whereas the
XCoM-CoPML distance [F(2, 28) = 0.003, p = 0.97] and CoM-
CoPML−angle [F(2, 28) = 0.38, p = 0.69] were not significantly
affected by GRAIL training. Figure 7 gives an overview of the gait
stability measures across time.

Balance Confidence
Patients’ balance confidence significantly increased after GRAIL
training (76± 18), compared to baseline (69± 18) [t(13) =−4.55,
p = 0.001]. The balance confidence scores before and after
GRAIL training are shown in Figure 8.

Long-Term Effect of GRAIL Training
The follow-up measurement was performed by 11 of the 15
patients (Figure 5). Two patients did not perform the follow-
up measurement due to medical complications, which were
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FIGURE 5 | Flow diagram of patients in the study.

TABLE 1 | Patient characteristwics.

Performed baseline 1,

baseline 2 and post

measurement (N = 15)

Completed

follow-up

(N = 10)

Sex (male/female) 11/4 9/1

Age (years), mean (SD) 59 (12) 59 (12)

Post-injury (months), mean (SD) 42 (48) 42 (46)

AIS*(C/D) 2/13 1/9

BMI**, mean (SD) 27 (2) 26 (2)

FAC***(3/4/5) 1/6/8 1/4/5

More affected side (left/ right/ no

difference)

7/3/5 5/1/4

*AIS, American Spinal Injury Association Impairment Scale.

**BMI, Body-Mass Index.

***FAC, Functional Ambulatory Category.

not related to the GRAIL training. Two other patients were
lost to follow-up, because it was impossible to schedule their
measurements. As a result of a technical error during the follow-
up measurement, the data of one additional patient was missing.
Therefore, the results of 10 patients were used for the analysis of
the long-term effect of GRAIL training (see Table 1 for patient
characteristics).

There was no significant difference in walking speed
between post (median 1.13m/s) and follow-up (median 1.30m/s)
measurement [T = 20.50, p = 0.48], nor was there a
significant difference in stride length [T = 27, p = 0.96],
step width [t(9) = 0.82, p = 0.43], or stride frequency
[t(9) = −1.04, p = 0.33] between the post measurement
and the follow-up measurement. The CoM-CoPML−angle was
significantly smaller in the follow-up (10.3 ± 1.6◦) compared
to the post measurement (11.4 ± 2.2◦), [t(9) = 2.4, p
= 0.04]. The other gait stability measures (DSM, CoM-
CoPAP−angle and XCoM-CoPAP and XCoM-CoPML distances)
and balance confidence score were not significantly different at
the follow-up measurement compared to the post measurement.
An overview of the spatiotemporal gait parameters, gait
stability measures and balance confidence are shown in
Table 3.

Walking speed (p= 0.03), stride length (p= 0.04), and CoM-
CoPAP−angle (p = 0.03) were significantly higher in the follow-
up measurement compared to the baseline 2 measurement.
The other outcome measures (step width, stride frequency,
DSM, CoM-CoPML−angle and XCoM-CoPAP and XCoM-CoPML

distances and balance confidence) were not significantly different
at the follow-up measurement compared to the baseline 2
measurement (Table 3).
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TABLE 2 | Most frequently performed applications on the GRAIL per theme.

Theme Gait adaptability Walking+ Balance in stance

Application “Microbes” “Perturbations” “Traffic jam”

Virtual environment

Task Collecting as many green

microbes by changing one’s

position on the treadmill during

gait.

Walking on the treadmill and

responding as quickly and

accurately as possible to the

perturbations.

Letting cars cross the road by lifting

the feet in stance.

Training purpose Accelerate and decelerate,

change walking direction, adapt

step length, avoid obstacles, and

perform foot clearance.

React to: sideward translation of

the treadmill, treadmill pitch

forward or backward,

acceleration or deceleration of

one treadmill belt.

Shift weight, perform foot clearance,

and initiate steps.

FIGURE 6 | The spatiotemporal gait parameters (means and standard deviations) during the 6 weeks GRAIL training. *Asterisk indicates a post-hoc significant

difference (α = 0.017).

DISCUSSION

The aim of the present study, was to assess the effects of 6
weeks GRAIL training on gait and dynamic balance capacities
in chronic iSCI patients. Walking speed was increased after
GRAIL training (1.04 m/s) compared to baseline measurements
(0.85 and 0.93m/s). Stride length was increased, but stride

frequency and step width did not change. In addition, the
stability measures in AP direction (XCoM-CoPAP and CoM-
CoPAP−angle) were improved after GRAIL training, whereas
stability measures in ML direction (XCoM-CoPML and CoM-
CoPML−angle) or combining AP and ML directions (DSM) did
not change. Patients’ confidence in balance was increased after
GRAIL training. At the 6 months follow-up measurement,
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FIGURE 7 | Gait stability (means and standard deviations) during 6 weeks GRAIL training. A visual representation of the gait stability measures is given in Figure 4.

*Asterisk indicates a post-hoc significant difference (α = 0.017).

improvements in walking speed, stride length, and the stability
measure CoM-CoPAP−angle remained increased compared to
baseline.

In patients with iSCI, restoration of ambulation is considered
the most important rehabilitation goal (42). Typically
interventions in these patients focus on improving locomotion
(43). For functional ambulation in daily life, walking speed is
considered one of the most important parameters (5). After
GRAIL training, walking speed increased by 0.19 m/s compared
to baseline 1 and by 0.11 m/s compared to baseline 2. Although
previous studies in chronic iSCI patients used more gait training
sessions (on average 45; range 24–58) due to a higher training
frequency (on average 4 sessions/week; range 3–5), and a longer

training duration (on average 12 weeks; range 8–16), these
studies showed increases in walking speed ranging from 0.01 to
0.16 m/s (24, 44–48). To our knowledge, only two interventions
in chronic iSCI patients resulted in an increase in walking speed
in the 0.11 to 0.19 m/s range (44, 47). These interventions
consisted of 48 sessions of resistance training combined with
aerobic training resulting in an increase of 0.13 m/s (47) and 39
sessions of body-weight-supported treadmill training resulting
in an increase of 0.16 m/s (44). Due to the higher number of
training session, a larger training effect can be expected. Despite
the limited number of GRAIL training sessions in the present
study, patients improved their walking speed significantly.
This improvement exceeded the reported minimal clinically
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important difference (MCID) of 0.10 m/s (49) in 10 out of
15 participants, reflecting clinical meaningful effects in these
participants. Moreover, the effect on walking speed, stride length,
and the stability measure CoM-CoPAP−angle were still present
6 months after the last training session. Therefore, randomized
controlled trials (or studies with a randomized cross-over design)
are warranted to investigate the intervention effects of GRAIL
training compared to other gait training interventions in patients
with iSCI.

The increase in walking speed, accompanied by an increase
in stride length but with a constant stride frequency, suggests
that patients learned to take larger steps because they felt
more confident after GRAIL training. Indeed, the statistically
significant increase in balance confidence score supports the
notion that patients felt more safe after the training. However,
only one participants exceeded the reported minimal detectable
change (MDC) of 14.87 (50). Therefore, the effect of GRAIL
training on balance confidence seems to be relatively small.
Nevertheless, the significant increase in balance confidence on

FIGURE 8 | Activities specific balance confidence (ABC) score (means and

standard deviations) before and after the 6-weeks GRAIL training. *Asterisk

indicates a significant difference (α = 0.05).

a group level could be due to improved gait stability. In
the current study, recently developed biomechanical stability
measures were used to assess gait stability. In previous studies,
these stability measures appeared to be significantly different
between more and less impaired stroke patients (34), above-
knee amputees and healthy subjects (33), and elderly with and
without balance problems (31, 32). To our knowledge, this is
the first study to assess these stability measures during gait
in a pre- and post-intervention design. The gait stability in
AP direction was significantly increased after 6 weeks GRAIL
training. Because a high correlation between walking speed and
AP gait stability can be expected and because we did not perform
a post measurement in which patients walked at baseline speed,
it cannot be definitively concluded whether patients walked
faster after GRAIL training because of improved gait stability
or vice versa. In the present study, the stability measures in the
ML direction did not differ between the measurements. Future
research should test the clinical value of gait stability measures in
different directions in patients with iSCI.

Various factors could be responsible for the improved walking
speed after GRAIL training. Firstly, patients performed tasks in
a complex virtual environment, in which visual and auditory
feedback were provided. Patients could make corrections and
enhance their motor performance according to the feedback
in real time (based on knowledge of performance) as well as
at the end of the application (based on knowledge of results)
(12). It is well accepted that feedback improves the rate of
motor learning (51). Feedback can be particularly beneficial
in patients with iSCI in which internal feedback (such as
from the proprioceptive system) is disturbed (52). Secondly,
different training environments can be quickly alternated
during GRAIL training. According to Hedel and colleagues,
in well-recovered iSCI patients, such as in the current study,
rehabilitation programs should train adaptive locomotion in
different environments (52). Thirdly, GRAIL training can be
personalized and the intensity and complexity of the applications
can be gradually increased. We assume that the effects found in

TABLE 3 | The spatiotemporal gait parameters, gait stability measures and balance confidence in the baseline 2, post and follow-up measurement (N=10).

Baseline 2 measurement

(mean ± SD, median

[min–max])

Post measurement

(mean ± SD, median

[min–max])

Follow-up measurement

(mean ± SD, median

[min–max])

p baseline 2 -

follow-up

p post -

follow-up

Walking speed (m/s) 0.89 [0.36–1.45] 1.13 [0.44–1.53] 1.30 [0.34–1.48] 0.03* 0.48

Stride length (cm) 103 [57–144] 118 [68–145] 128 [51–144] 0.04* 0.96

Step width (cm) 14.4 ± 4.7 13.7 ± 5.0 13.0 ± 4.4 0.19 0.43

Stride frequency (stride/s) 0.93 ± 0.13 0.96 ± 0.04 0.97 ± 0.05 0.07 0.33

DSM (mm) 54 ± 36 60 ± 32 57 ± 44 0.70 0.65

XCoM-CoPAP (mm) 431 [161–718] 511 ± 170 525 ± 201

627 [158–696]

0.07 0.62

XCoM-CoPML (mm) 121 ± 23 118 ± 26 111 ± 22 0.12 0.15

CoM-CoPAP−angle (◦) 15.1 ± 4.6 17.4 ± 5.0 17.7 ± 6.0 0.03* 0.77

CoM-CoPML−angle (◦) 10.9 ± 2.3 11.4 ± 2.2 10.3 ± 1.6 0.23 0.04*

ABC-score 70.3 ± 19.0 77.1 ± 19.3 74.5 ± 20.4 0.13 0.09

*Asterisk indicates a significant difference (α = 0.05) in the paired samples t-test (mean ± SD) or Wilcoxon signed-rank test (median [min–max]).
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the current study are partly due to the personalization of the
GRAIL training to the patients’ individual goals. Therefore, it
does not seen appropriate to standardize the GRAIL training for
each patient.

Observed improvements could have been caused by a
familiarization effect when walking on the GRAIL in the self-
pacedmode. To neutralize this effect, two baseline measurements
were performed, one at the 2nd and the other at the 3rd GRAIL
training sessions. Furthermore, a familiarization protocol with
self-paced walking on the GRAIL, similar as in the study of
Plotnik and colleagues (30), was performed before the first
baseline measurement. In the study of Plotnik and colleagues,
healthy participants reached their steady walking speed already
after ∼24m when visual flow was presented and reached a
walking speed comparable with overground walking after merely
7.5 to 17.5m (30). In the current study, an increase of 0.08
m/s was seen between the baseline 1 and 2 measurements.
This increase could be partly due to familiarization with self-
paced walking on the GRAIL. Future research should investigate
if familiarization with self-paced walking takes more time in
patients with impaired gait stability than in healthy subjects.
Important to note is that the self-paced walking was not practiced
in the subsequent GRAIL training sessions. Nevertheless, patients

further increased their walking speed significantly at the post-
measurement compared to baseline 2 by 0.11 m/s. Moreover,
at 6 months follow-up, this beneficial effect was still present,
suggesting a true effect of GRAIL training.

A limitation of the current study is that the follow-up
measurement was completed by only 10 patients and that we did
not control co-interventions during the period after the GRAIL
training. Another limitation is that we do not know how the

effect of GRAIL training has affected gait and dynamic balance
capacities during overground walking. Although previous studies
concluded that self-paced treadmill walking induces natural
gait (29) and that gait speed on a treadmill is comparable
to overground walking (30), future research should investigate
whether the effect of GRAIL training also extends to overground
walking, walking in daily life, and to social participation in
ambulatory iSCI patients.

CONCLUSION

The increased walking speed, stride length, AP gait stability,
and balance confidence suggest that GRAIL training
improves gait and dynamic balance capacity in patients with
chronic iSCI.

AUTHOR CONTRIBUTIONS

NK, BG, MV, and AG contributed conception and design of
the study. MV was responsible for the patient recruitment.
LdJ, RvD, and BG performed the measurements. LdJ organized
the database. RvD and NK processed the experimental data,
performed the analysis, drafted the manuscript, and designed the
figures. NK and BG supervised the project. All authors discussed
the results and commented on the manuscript.

FUNDING

This work is part of the research programme Wearable Robotics
with project number P16-05, which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO).

REFERENCES

1. Nijendijk JHB, Post MWM, Asbeck van FWA. Epidemiology of traumatic

spinal cord injuries in the Netherlands in 2010. Spinal Cord (2014) 52:258–63.

doi: 10.1038/sc.2013.180

2. Barbeau H, Nadeau S, Garneau C. Physical determinants, emerging concepts,

and training approaches in gait of individuals with spinal cord injury.

J Neurotrauma (2006) 23:571–85. doi: 10.1089/neu.2006.23.571

3. Hedel van HJA. Gait speed in relation to categories of functional ambulation

after cord spinal injury. Neurorehabil Neural Repair (2009) 23:343–50.

doi: 10.1177/1545968308324224

4. Lund ML, Nordlund A, Nygård L, Lexell J, Bernspång B. Perceptions

of participation and predictors of perceived problems with participation

in persons with spinal cord injury. J Rehabil Med. (2005) 37:3–8.

doi: 10.1080/16501970410031246

5. Lapointe R, Lajoie Y, Serresse O, Barbeau H. Functional community

ambulation requirements in incomplete spinal cord injured subjects. Spinal

Cord (2001) 39:327–35. doi: 10.1038/sj.sc.3101167

6. Pépin A, Norman KE, Barbeau H. Treadmill walking in incomplete spinal-

cord-injured subjects: 1. Adaptation to changes in speed. Spinal Cord (2003)

41:257–70. doi: 10.1038/sj.sc.3101452

7. Scivoletto G, Romanelli A, Mariotti A, Marinucci D, Tamburella F,

Mammone A, et al. Clinical factors that affect walking level and

performance in chronic spinal cord lesion patients. Spine (2008) 33:259–64.

doi: 10.1097/BRS.0b013e3181626ab0

8. Tamburella F, Scivoletto G, Molinari M. Balance training improves static

stability and gait in chronic incomplete spinal cord injury subjects: a pilot

study. Eur J Phys Rehabil Med. (2013) 49:353–64.

9. Brotherton SS, Krause JS, Nietert PJ. Falls in individuals with incomplete

spinal cord injury. Spinal Cord (2007) 45:37–40. doi: 10.1038/sj.sc.3101909

10. Phonthee S, Saengsuwan J, Siritaratiwat W, Amatachaya S. Incidence and

factors associated with falls in independent ambulatory individuals with spinal

cord injury: a 6-month prospective study. Phys Ther. (2013) 93:1061–72.

doi: 10.2522/ptj.20120467

11. Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal

cord injury: a systematic review. Arch Phys Med Rehabil. (2013) 94:2297–308.

doi: 10.1016/j.apmr.2013.06.023

12. Holden MK. Virtual environments for motor rehabilitation : review.

Cyberpsychol Behav. (2005) 8:187–211. doi: 10.1089/cpb.2005.8.187

13. Papegaaij S, Morang F, Steenbrink F. Virtual and augmented reality based

balance and gait training. White Paper, (February) (2017).

14. Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A. A treadmill

and motion coupled virtual reality system for gait training post-stroke.

Cyberpsychol Behav. (2006) 9:157–62. doi: 10.1089/cpb.2006.9.157

15. Geerse DJ, Coolen BH, Roerdink M. Walking-adaptability assessments

with the interactive walkway: between-systems agreement and sensitivity

to task and subject variations. Gait Posture (2017) 54:194–201.

doi: 10.1016/j.gaitpost.2017.02.021

16. Hak L, Houdijk H, Beek PJ, Van Dieën JH. Steps to take to enhance gait

stability: the effect of stride frequency, stride length, and walking speed on

local dynamic stability and margins of stability. PLoS ONE (2013) 8:e82842.

doi: 10.1371/journal.pone.0082842

17. Heeren A, Ooijen M, Geurts A, Day B, Janssen T, Beek P, et al. Step by step:

a proof of concept study of C-Mill gait adaptability training in the chronic

phase after stroke. J Rehabil Med. (2013) 45:616–22. doi: 10.2340/165019

77-1180

Frontiers in Neurology | www.frontiersin.org 11 November 2018 | Volume 9 | Article 963

https://doi.org/10.1038/sc.2013.180
https://doi.org/10.1089/neu.2006.23.571
https://doi.org/10.1177/1545968308324224
https://doi.org/10.1080/16501970410031246
https://doi.org/10.1038/sj.sc.3101167
https://doi.org/10.1038/sj.sc.3101452
https://doi.org/10.1097/BRS.0b013e3181626ab0
https://doi.org/10.1038/sj.sc.3101909
https://doi.org/10.2522/ptj.20120467
https://doi.org/10.1016/j.apmr.2013.06.023
https://doi.org/10.1089/cpb.2005.8.187
https://doi.org/10.1089/cpb.2006.9.157
https://doi.org/10.1016/j.gaitpost.2017.02.021
https://doi.org/10.1371/journal.pone.0082842
https://doi.org/10.2340/16501977-1180
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


van Dijsseldonk et al. GRAIL-Training Improves Gait and Balance

18. Houdijk H, Oijen vanMW, Kraal JJ, Wiggerts HO, PolomskiW, Janssen TWJ,

et al. Assessing gait adaptability in people with a unilateral amputation on

an instrumented treadmill with a projected visual context. Phys Ther. (2012)

92:1452–60. doi: 10.2522/ptj.20110362

19. Caetano MJD, Lord SR, Brodie MA, Schoene D, Pelicioni PHS,

Sturnieks DL, et al. Executive functioning, concern about falling and

quadriceps strength mediate the relationship between impaired gait

adaptability and fall risk in older people. Gait Posture (2018) 59:188–92.

doi: 10.1016/j.gaitpost.2017.10.017

20. Caetano MJD, Lord SR, Schoene D, Pelicioni PHS, Sturnieks DL,

Menant JC. Age-related changes in gait adaptability in response to

unpredictable obstacles and stepping targets. Gait Posture (2016) 46:35–41.

doi: 10.1016/j.gaitpost.2016.02.003

21. Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality

is more effective than standard rehabilitation for improving walking speed,

balance and mobility after stroke: a systematic review. J Physiother. (2015)

61:117–24. doi: 10.1016/j.jphys.2015.05.017

22. Galna B,Murphy AT,MorrisME. Obstacle crossing in people with Parkinson’s

disease: foot clearance and spatiotemporal deficits. Hum Move Sci. (2010)

29:843–52. doi: 10.1016/j.humov.2009.09.006

23. Mollaei N, Bicho E, Sousa N, Gago MF. Different protocols for analyzing

behavior and adaptability in obstacle crossing in Parkinson’s disease.Clin Inter

Aging (2017) 12:1843–57. doi: 10.2147/CIA.S147428

24. Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G,

Hill D, et al. Repetitive mass practice or focused precise practice

for retraining walking after incomplete spinal cord injury? A pilot

randomized clinical trial. Neurorehabil Neural Repair (2014) 28:314–24.

doi: 10.1177/1545968313508473

25. Fox EJ, Tester NJ, Butera KA, Howland DR, Spiess MR, Castro-Chapman PL,

et al. Retraining walking adaptability following incomplete spinal cord injury.

Spinal Cord Series Cases (2017) 3:17091. doi: 10.1038/s41394-017-0003-1

26. Villiger M, Bohli D, Kiper D, Pyk P, Spillmann J, Meilick B, et al. Virtual

reality-augmented neurorehabilitation improves motor function and reduces

neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil

Neural Repair (2013) 27:675–83. doi: 10.1177/1545968313490999

27. Villiger M, Liviero J, Awai L, Stoop R, Pyk P, Clijsen R, et al. Home-based

virtual reality-augmented training improves lower limb muscle strength,

balance, and functional mobility following chronic incomplete spinal cord

injury. Front Neurol. (2017) 8:635. doi: 10.3389/fneur.2017.00635

28. Lemay JF, Nadeau S. Standing balance assessment in ASIA D paraplegic and

tetraplegic participants: concurrent validity of the Berg Balance Scale. Spinal

Cord (2010) 48:245–50. doi: 10.1038/sc.2009.119

29. Sloot LH, van der KrogtMM,Harlaar J. Self-paced versus fixed speed treadmill

walking. Gait Posture (2014) 39:478–84. doi: 10.1016/j.gaitpost.2013.08.022

30. Plotnik M, Azrad T, Bondi M, Bahat Y, Gimmon Y, Zeilig G, et al. Self-selected

gait speed - over ground versus self-paced treadmill walking, a solution for a

paradox. (2015) J Neuroeng Rehabil. 12:20. doi: 10.1186/s12984-015-0002-z

31. Lee HJ, Chou LS. Detection of gait instability using the center of mass

and center of pressure inclination angles. Arch Phys Med Rehabil. (2006)

87:569–75. doi: 10.1016/j.apmr.2005.11.033

32. Lugade V, Lin V, Chou LS. Center of mass and base of support interaction

during gait.Gait Posture (2011) 33:406–11. doi: 10.1016/j.gaitpost.2010.12.013

33. Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in

walking. Experimental findings in normal subjects and above-knee amputees.

Gait Posture (2007) 25:250–8. doi: 10.1016/j.gaitpost.2006.04.013

34. Meulen van FB, Weenk D, Buurke JH, Van Beijnum BJF, Veltink PH.

Ambulatory assessment of walking balance after stroke using instrumented

shoes. (2016) J Neuroeng Rehabil. 13:48. doi: 10.1186/s12984-016-0146-5

35. Tisserand R, Robert T, Dumas R, Chèze L. A simplified marker set to define

the center of mass for stability analysis in dynamic situations. Gait Posture

(2016) 48:64–7. doi: 10.1016/j.gaitpost.2016.04.032

36. Hof AL. The “extrapolated center of mass” concept suggests a simple

control of balance in walking. Hum Mov Sci. (2008) 27:112–25.

doi: 10.1016/j.humov.2007.08.003

37. Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability.

J Biomech. (2005) 38:1–8. doi: 10.1016/j.jbiomech.2004.03.025

38. Lugade V, Kaufman K. Center of pressure trajectory during gait: a

comparison of four foot positions. Gait Posture (2014) 40:252–4.

doi: 10.1016/j.gaitpost.2013.12.023

39. Sloot LH, Houdijk H, Harlaar J. A comprehensive protocol to

test instrumented treadmills. Med Eng Phys. (2015) 37:610–6.

doi: 10.1016/j.medengphy.2015.03.018

40. Arends S, Oude Nijhuis L, Visser J, Stolwijk L, Frenken D, Bloem B. Radboud

repository: het meten van valangst bij patiënten met de ziekte van Parkinson.

Tijdschrift Voor Neurol Neurochirurgie (2007) 108:375–80. Available online at:

https://repository.ubn.ru.nl/handle/2066/52512

41. Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale.

J Gerontol A Biol Sci Med Sci. (1995) 50:M28–34.

42. Ditunno PL, Patrick M, Stineman M, Morganti B, Townson AF, Ditunno

JF. Cross-cultural differences in preference for recovery of mobility among

spinal cord injury rehabilitation professionals. Spinal Cord (2006) 44:567–75.

doi: 10.1038/sj.sc.3101876

43. Hedel van HJA, Dietz V. Rehabilitation of locomotion after spinal cord injury.

Restor Neurol Neurosci. (2010) 28:123–34. doi: 10.3233/RNN-2010-0508

44. Alexeeva N, Sames C, Jacobs PL, Hobday L, DiStasio MM, Mitchell SA, et al.

Comparison of training methods to improve walking in persons with chronic

spinal cord injury: a randomized clinical trial. J Spinal Cord Med. (2011)

34:362–79. doi: 10.1179/2045772311Y.0000000018

45. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches

for individuals with spinal cord injury: a preliminary report of

walking-related outcomes. J Neurol Phys Ther. (2005) 29:127–37.

doi: 10.1097/01.NPT.0000282245.31158.09

46. Field-Fote EC, Roach KE. Influence of a locomotor training approach

on walking speed and distance in people with chronic spinal cord

injury: a randomized clinical trial. Phys Ther. (2011) 91:48–60.

doi: 10.2522/ptj.20090359

47. Kapadia N, Masani K, Catharine Craven B, Giangregorio LM, Hitzig SL,

Richards K, et al. A randomized trial of functional electrical stimulation for

walking in incomplete spinal cord injury: effects on walking competency.

J Spinal Cord Med. (2014) 37:511–24. doi: 10.1179/2045772314Y.0000000263

48. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al.

Effectiveness of automated locomotor training in patients with chronic

incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil.

(2005) 86:672–80. doi: 10.1016/j.apmr.2004.08.004

49. Forrest GF, Hutchinson K, Lorenz DJ, Buehner JJ, VanHiel LR, Sisto SA, et al.

Are the 10 meter and 6 minute walk tests redundant in patients with spinal

cord injury? PLoS ONE (2014) 9:e94108. doi: 10.1371/journal.pone.0094108

50. Shah G, Oates AR, Arora T, Lanovaz JL, Musselman KE. Measuring balance

confidence after spinal cord injury: the reliability and validity of the activities-

specific balance confidence scale. J Spinal Cord Med. (2017) 40:768–76.

doi: 10.1080/10790268.2017.1369212

51. Bilodeau EA, Levy CM. Long-term memory as a function of retention time

and other conditions of training and recall. Psychol Rev. (1964) 71:27–41.

doi: 10.1037/h0040397

52. Hedel vanHJA,Wirth B, Dietz V. Limits of locomotor ability in subjects with a

spinal cord injury. Spinal Cord (2005) 43:593–603. doi: 10.1038/sj.sc.3101768

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 van Dijsseldonk, de Jong, Groen, Vos-van der Hulst, Geurts and

Keijsers. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 12 November 2018 | Volume 9 | Article 963

https://doi.org/10.2522/ptj.20110362
https://doi.org/10.1016/j.gaitpost.2017.10.017
https://doi.org/10.1016/j.gaitpost.2016.02.003
https://doi.org/10.1016/j.jphys.2015.05.017
https://doi.org/10.1016/j.humov.2009.09.006
https://doi.org/10.2147/CIA.S147428
https://doi.org/10.1177/1545968313508473
https://doi.org/10.1038/s41394-017-0003-1
https://doi.org/10.1177/1545968313490999
https://doi.org/10.3389/fneur.2017.00635
https://doi.org/10.1038/sc.2009.119
https://doi.org/10.1016/j.gaitpost.2013.08.022
https://doi.org/10.1186/s12984-015-0002-z
https://doi.org/10.1016/j.apmr.2005.11.033
https://doi.org/10.1016/j.gaitpost.2010.12.013
https://doi.org/10.1016/j.gaitpost.2006.04.013
https://doi.org/10.1186/s12984-016-0146-5
https://doi.org/10.1016/j.gaitpost.2016.04.032
https://doi.org/10.1016/j.humov.2007.08.003
https://doi.org/10.1016/j.jbiomech.2004.03.025
https://doi.org/10.1016/j.gaitpost.2013.12.023
https://doi.org/10.1016/j.medengphy.2015.03.018
https://repository.ubn.ru.nl/handle/2066/52512
https://doi.org/10.1038/sj.sc.3101876
https://doi.org/10.3233/RNN-2010-0508
https://doi.org/10.1179/2045772311Y.0000000018
https://doi.org/10.1097/01.NPT.0000282245.31158.09
https://doi.org/10.2522/ptj.20090359
https://doi.org/10.1179/2045772314Y.0000000263
https://doi.org/10.1016/j.apmr.2004.08.004
https://doi.org/10.1371/journal.pone.0094108
https://doi.org/10.1080/10790268.2017.1369212
https://doi.org/10.1037/h0040397
https://doi.org/10.1038/sj.sc.3101768
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Gait Stability Training in a Virtual Environment Improves Gait and Dynamic Balance Capacity in Incomplete Spinal Cord Injury Patients
	Introduction
	Materials and Methods
	Participants
	Equipment
	Protocol
	Intervention
	Gait Measurements
	Spatiotemporal parameters
	Gait stability measures

	Balance Confidence Assessment

	Statistical Analysis
	Effect of GRAIL Training
	Long-Term Effect of GRAIL Training


	Results
	Participants
	Content of GRAIL Training
	Effect of GRAIL Training
	Spatiotemporal Parameters
	Gait Stability Measures
	Balance Confidence

	Long-Term Effect of GRAIL Training

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


