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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by

specific loss of motor neurons in the spinal cord and brain stem. Currently, there are

limited options for treating ALS and further investigation of the disease etiology and

ALS disease progression need to be completed. There is an urgent need to identify

biomarkers to detect and study disease progression in ALS. Glial fibrillary acidic protein

(GFAP) is an intermediate filament protein that is expressed by a number of cells related

to the central nervous system including glial cells and ependymal cells. Recent studies

indicated that significant levels of GFAP protein were detected in peripheral tissues, such

as skeletal muscle. In this study, we hypothesized that levels of GFAP in blood represent

a biomarker of disease progression in ALS. To test this specific hypothesis, we used

a rat model of familial ALS (SOD1G93A transgenic), which has been extensively used to

understand the complexity of this devastating disease. Disease progression in a cohort of

male and female SOD1G93A transgenic rats was monitored by motor function, and blood

samples were collected when these animals reached disease end-stage. We measured

GFAP protein levels by ELISA and found no correlation between GFAP concentration

and disease progression in either serum and plasma samples of SOD1G93A transgenic.

Further investigation would be required in order to implicate blood GFAP as a potential

biomarker for ALS.

Keywords: glial fibrillary acidic protein (GFAP), amyotrophic lateral sclerosis, a rat model of familial ALS, ELISA,

Biomarkers

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a debilitating neuromuscular disease caused by the loss
of motor neurons in the brain and spinal cord (1, 2). Approximately, 90% of all ALS patients
are considered as sporadic while the remaining 10% are caused by a familial/hereditary genetic
etiology. There are a number of genes in which ALS-causing mutations have been characterized,
such as SOD1, TARDPB, FUS, and C9ORF72 (2). While the exact mechanism of pathology
remains unknown, multiple pathologies have been involved in ALS; abnormal protein misfolding
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and aggregation (3), axonal transport defects, glutamate
excitotoxicity (4), oxidative stress (5), mitochondrial dysfunction
(6), neuroinflammation (7, 8), and astrocyte activation (9, 10).
To date, there are limited options for treating ALS and further
investigation of the disease etiology and ALS disease progression
need to be completed. Identification of novel biomarkers has
the potential of greatly contributing necessary information
that could aid in understanding the disease progression
of ALS.

In recent studies, glial fibrillary acidic protein (GFAP) has
been proposed as a potential biomarker in patients with specific
disease conditions associated with acute and chronic neurological
diseases (11–15). GFAP is an intermediate filament protein
that is expressed by a number of cells related to the central
nervous system including glial cells and ependymal cells (16).
Particularly, the expression of GFAP is commonly used as a
marker for a subgroup of astrocytes (17). Increased levels of
GFAP protein has been identified in the blood samples of patients
suffering from neurological diseases, such as Parkinson’s disease
(13), intracerebral hemorrhage (14, 18), traumatic spinal cord
injury (19), and multiple sclerosis (15). GFAP levels were also
high in serum samples from the patients that exhibit motor
and sensory neurological pathologies (11). In the case of ALS,
GFAP has been shown to be increased in the cerebrospinal
fluid from patients (20). This is reasonable based on the fact
that astrocyte activation is one of the critical hallmarks that
occur during the process of motor neuron degeneration in
ALS (21, 22).

GFAP expression is not limited to the central nervous system
and also found in the peripheral nervous system in specific
neurological diseases including ALS (23, 24). Furthermore, we
recently reported that an overall increase of GFAP expression
following disease progression was determined in the limb muscle
of a rat model of familial ALS (SOD1G93A transgenic) (24). All
together, these observations led us to hypothesize that blood
GFAP concentration would be influenced by disease conditions
in ALS. To test this hypothesis, we measured blood GFAP
concentration in endpoint SOD1G93A transgenic rats by ELISA
(enzyme-linked immunosorbent assay).

MATERIALS AND METHODS

SOD1G93A Transgenic Rats
We used a transgenic rat model that over-expresses a mutant
form of superoxide dismutase 1 (SOD1) (25–27). SOD1G93A

transgenic male rats were bred with wild-type female Sprague
Dawley rats in order to maintain the colony. Both strains of
rats were obtained from Taconic (Hudson, NY). Heterozygous
SOD1G93A progeny were identified with polymerase chain
reaction (PCR) using tail DNA with primers specific for the
human SOD1 gene. They were maintained in a room with
controlled illumination (lights on 0500–1900 h) and temperature
(23 ± 1◦C), and given free access to laboratory chow and tap
water. The animal experiments in this study were performed in
accordance with the animal care guidelines and regulations from
the University of Wisconsin-Madison and National Institutes of
Health.

Blood Sample Collection
Serum and plasma samples were collected from end-stage
SOD1G93A transgenic rats. Humane end-stage was determined by
using at least one of two criteria; the animal is unable to right itself
within 30 seconds and/or a 20% loss of maximum body weight
is reached (26, 28). Age-matched wildtype littermates were used
as non-transgenic controls. For plasma preparation, whole blood
was collected in blood collection tubes (EDTA-plasma tubes). In
regards to serum preparation, the clotted blood was centrifuged
and serum was carefully separated.

ELISA (Enzyme-Linked Immunosorbent
Assay)
GFAP protein levels were determined using a GFAP ELISA
Kit (NS830, Millipore, Temecula, CA) while following the
manufacturer’s instructions. The samples and standard controls
were applied to the 96-well plate pre-coated with anti-GFAP
antibody (capture antibody) and incubated at room temperature
for 2 hours on an orbital shaker. After incubation, the wells
were washed with the washing buffer, biotinylated ant-GFAP
detection antibody was added, and then the wells were incubated
at room temperature for 1 h. The wells were then washed and
incubated with streptavidin conjugated horseradish peroxidase
for 30min. After washing the wells, immobilized antibody-
enzyme complexes were quantified by monitoring horseradish
peroxidase activity in the presence of the substrate 3,3′,5,5′-
tetramethylbenzidine. The absorbance of each sample and
standard was read at 450 nm using a Chromate 4300 microplate
reader (Awareness Technology, Palm City, FL).

Statistical Analysis
The GraphPad Prism software (La Jolla, CA, USA) was used
for statistical analysis. The data was presented as mean ±

SEM. Unpaired two-tailed Student’s t-test was performed to
compare two groups. Differences were considered significant
when P<0.05.

RESULTS

In order to determine serum GFAP levels in ALS model rats,
16 SOD1G93A transgenic rats (11 males and 5 females) were
compared to 17 age-matched wild-type littermate controls (11
males and 6 females). GFAPmeasurement by ELISA revealed that
there was no significant difference in serumGFAP concentrations
(Figure 1A). As we previously found sexual dimorphism in
disease progression in SOD1G93A transgenic rats (25, 26), we
compared GFAP levels in male and female rats. There was no
significant difference in serum GFAP concentration when we
compared sexes in wild-type and SOD1G93A rats (Figure 2A). It
should be noted, however, that we observed high GFAP levels in
two wild-type females (Figure 2A). Further, there was a trend of
increased serum GFAP levels in SOD1G93A males, although the
difference did not reach statistical significance (P = 0.07). In this
experiment, the survival period of female SOD1G93A rats (175
± 8.0 days of age, median = 176 days) was longer than male
SOD1G93A rats (168± 5.1 days of age, median= 162 days), which
was consistent with our previous observations (25, 26).
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FIGURE 1 | Blood GFAP concentration in SOD1G93A transgenic and wild-type

rats. A cohort of SOD1G93A transgenic rats was monitored for disease

progression until end-stage. Serum (A) and plasma (B) samples were then

collected from SOD1G93A transgenic rats and age-matched non-transgenic

(wild-type, WT) littermates. GFAP protein levels were measured by ELISA.

FIGURE 2 | No sexual difference in serum (A) and plasma (B) GFAP levels in

wild-type (WT) control and SOD1G93A transgenic rats.

Similarly, we measured plasma GFAP levels in another
cohort of SOD1G93A rats. There was no difference in plasma
GFAP concentrations between SOD1G93A transgenic rats
(5.2 ± 1.1 ng/ml, n = 18) and wild-type controls (8.2
± 2.4 ng/ml, n = 11; Figure 1B). Further, there was no
sex difference in the plasma samples from SOD1G93A

transgenic rats (5.0 ± 1.1 ng/ml in male, n = 9; 5.4 ±

2.0 ng/ml in female, n = 9) and wild-type controls (9.6

± 3.5 ng/ml in male, n = 6; 3.7 ± 0.5 ng/ml in female,
n = 5; Figure 2B). Together, we conclude that there is no
correlation between blood GFAP levels and disease progression
in ALS.

DISCUSSION

Being that there are limited effective therapies for ALS,
it is imperative to investigate the mechanisms that control
disease progression. Identifying potential biomarkers will aid
in the further understanding of these mechanisms during ALS
pathology. As ALS is a late-onset and progressive disease, a new
development of objective biomarkers is critical for early diagnosis
or therapeutic monitoring (29). For instance, cerebrospinal fluid
(CSF) levels of specific molecules, such as neurofilament proteins
and Cystatin C, have been proposed as possible biomarkers in
ALS. Interestingly, a recent study examined GFAP concentration
in a small cohort of ALS patients, suggesting that GFAP might
serve as a potential biomarker (20).

As we already described in the Introduction above, a number
of previous studies support that GFAP is correlated to specific
conditions in patients with various neurodegenerative diseases
(11–15, 18, 19, 30). Additionally, GFAP levels considerably
increased in CSF from patients suffering from Alexander disease
(30), a genetic disorder caused by mutations in the GFAP gene,
leading to myelin abnormalities in the midbrain and cerebellum
(31). These studies support the idea that GFAP could be classified
as a diagnostic biomarker in patients with neurological disease
conditions.

The specific hypothesis that drove this pilot study was
based on our recent study showing high levels of GFAP in
peripheral tissues of ALS model rats (24). We compared GFAP
levels in the skeletal muscle of SOD1G93A transgenic rats at
different time points; pre-symptomatic, symptomatic, and end-
stage.We found that GFAP levels were elevated steadily from pre-
symptomatic to endpoint stage. GFAP proteins were localized
around the pre-synaptic regions in the beginning stages of
disease. GFAP expression encompassed acetylcholine receptor-
positive endplates at the neuromuscular junctions and around
motor axons at end-stage. GFAP levels increased in end-stage
ALS rats along with the activation of inflammatory cells, such
as macrophages, this suggested that inflammation may be a
responsible factor for the increase of active glial cells in the
skeletal muscle of SOD1G93A transgenic rats. Following these
observations, we tested a specific hypothesis that increased levels
of GFAP in skeletal muscles would largely influence protein
concentration in ALS model rats. Although we were not aware
of an obvious relationship between blood GFAP levels and
disease progression in SOD1G93A rats, we should acknowledge
potential limitations of the current study. First, the mutation
in our ALS model rats only represents a small population of
ALS patients (1, 2). Therefore, a possibility still remains that
different levels of blood GFAP may be identified in the other
animal models of familial ALS with TARDPB, FUS, or C9ORF72
gene mutation. Given that only endpoint animals were used
to represent severe disease conditions, additional studies would
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need to be conducted to determine GFAP levels at different
timepoints of disease stage.

While we identified detectable levels of GFAP proteins in
blood samples, it is unknown what type of cells and tissues largely
contribute to sustain GFAP levels in the blood flow. Interestingly,
some rats showed high levels of GFAP in both serum and plasma
samples. There seems to be no specific trend in sex to have
such variations in GFAP concentration. Additionally, no obvious
correlation was identified between GFAP level and survival
period. Further studies need to address whether these variations
of GFAP concentration may represent specific physiological or
disease conditions in rats.
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