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Background: External auditory stimuli have been widely used for recovering arm function post-stroke. Rhythmic and real-time auditory stimuli have been reported to enhance motor recovery by facilitating perceptuomotor representation, cross-modal processing, and neural plasticity. However, a consensus as to their influence for recovering arm function post-stroke is still warranted because of high variability noted in research methods.

Objective: A systematic review and meta-analysis was carried out to analyze the effects of rhythmic and real-time auditory stimuli on arm recovery post stroke.

Method: Systematic identification of published literature was performed according to PRISMA guidelines, from inception until December 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale.

Results: Of 1,889 records, 23 studies which involved 585 (226 females/359 males) patients met our inclusion criteria. The meta-analysis revealed beneficial effects of training with both types of auditory inputs for Fugl-Meyer assessment (Hedge's g: 0.79), Stroke impact scale (0.95), elbow range of motion (0.37), and reduction in wolf motor function time test (−0.55). Upon further comparison, a beneficial effect of real-time auditory feedback was found over rhythmic auditory cueing for Fugl-meyer assessment (1.3 as compared to 0.6). Moreover, the findings suggest a training dosage of 30 min to 1 h for at least 3–5 sessions per week with either of the auditory stimuli.

Conclusion: This review suggests the application of external auditory stimuli for recovering arm functioning post-stroke.
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INTRODUCTION

According to World health organization, stroke accounts as the third main cause of disability across the world (1). The incidence of stroke related disability have almost doubled in the developing countries in the past decade (2, 3). The disability affects basic day to day life activities (4), which further increase dependency (5), anxiety, depression (6), social isolation (7), and promote a poor quality of life (8, 9). Moreover, the disability inflicts substantial economic burden on patients (10).

Typically, patients affected from stroke exhibit sensorimotor dysfunctions on the contralateral side of the affected brain region (11). These deficits can be exhibited focally, segmentally, unilaterally, or bilaterally (12). The symptoms are typically characterized by progressive inefficient movement synergy patterns (13), abnormal muscle tone (14), force production (15), compromised dexterity (16), poor coordination (17), and more (18). Moreover, hyper/hypokinetic movement disorders are also common [see Handley et al.,(12)]. Additionally, cognitive and sensory dysfunctions are also common in patients with stroke (19). Despite advancements in rehabilitation, poor prognosis in stroke is still prevalent, especially for recovering arm function (5, 20). Studies suggest that upper limb recovery is an important predictor for determining the health status outcome, and quality of life for stroke patients (21, 22).

The poor gross and fine motor performance in upper extremities can be due to abnormal co-contraction of antagonists/agonists (23), disruptions in force production/adaptation (24), and regulation of stretch reflex (15, 25). Besides, these musculoskeletal dysfunctions can considerably impair joint kinematics (26, 27). According to Hara et al. (28) impaired activation of motor units in terms of firing rate and synchronization might result in such deficits. Furthermore, as the disease progresses, these changes increase fatigue (29), reduce coordination (30), and with the progression of time promote development of joint contractures (31), and subluxations/dislocations (32). Likewise, discrepancies in sensory perceptions, memory, cognition, and behavior further impact the prognostic outcome of a stroke patient (33–35).

Neuroimaging studies suggest site specific lesions and silent infarcts at medial temporal lobe (36), gray (37), and white matter (38), further leading to a wide array of cognitive dysfunctions (39) [see Makin, (40) and Sperber and Karnath (41).] Similarly, deficits in corticospinal (42, 43), thalamocortical (44), superior occipito-frontal (41), and superior-longitudinal pathways (45), might overload the already impaired cognitive-motor pathways. Such a constraining impact on the impaired cognitive pathways might increase “internal” conscious monitoring by the patients to control their movements [see movement re-investment 46–48)]. This increase in attention is aimed to safeguard the stability of a movement (49, 50), it retrospectively impairs autonomic execution of a movement and promotes movement failure (46–48). Likewise, dysfunctions in sensory perception could affect perceptuomotor representations in the brain, thereby affecting motor planning and execution (35). Together, these cognitive and sensorimotor dysfunctions affect the prognosis of a stroke patient.

Common treatment strategies to curb cognitive motor dysfunctions in stroke patients include training with virtual-reality (51), mental imagery (52), biofeedback (53), physical therapy (54), exercise (55), prosthesis (56–58), dual-task priority training, and more (59). Recently studies have tried to enhance the stroke recovery by simultaneously addressing the sensory deficits with motor rehabilitation by applying external sensory stimulation as a neuro-prosthetic (59–62). Studies have analyzed the effects of different sensory stimuli in auditory, visual and tactile domain on motor performance (59, 61, 62). However, the literature predominantly supports the beneficial role of auditory stimuli (50, 63, 64). The main reasons which underlie the beneficial effects are thought to be multifaceted. Firstly, rich neuroanatomical interconnectivity has been reported between auditory and motor cortex (65–67). Here, inference can be drawn from literature evaluating auditory startle reflex on animal models (68, 69). Studies using Double-labeling experiments have revealed that cochlear root neurons in the auditory nerve can project bilaterally to sensorimotor paths, including synapsing on reticulospinal neurons (65, 68, 70). Likewise, patterns of thalamocortical and corticocortical inputs unique to auditory cortex have also been reported [for a detailed review see (71)]. In humans, neuroimaging data confirms the presence of cortico-subcortical network involving putamen, supplementary motor area, premotor cortex, and the auditory cortex especially for perceiving and processing rhythmic auditory stimuli (72–75). Secondly, the human auditory system can consistently perceive auditory cues 20–50 ms faster as compared to its visual and tactile counterparts (76–78). Thirdly, the auditory system has a strong bias to identify temporal patterns of periodicity and structure as compared to other sensory perceptual systems (78–80). For instance, auditory rhythmic perception has been reported to exist well beyond the limits of temporal resolution of visual modalities i.e., when periodicities are presented at a rate of ~300–900 ms (80, 81).

In the literature, however, rhythmic auditory cueing (67), and real-time kinematic auditory feedback (82), also termed as sonification, are the most widely studied approaches in upper limb stroke rehabilitation. Both the methods possess differential influence over neurophysiological and musculoskeletal domains. Firstly, rhythmic auditory cueing can be defined as repetitive isosynchronous stimulations applied with an aim to simultaneously synchronize motor execution (83, 84). Here, neuroimaging data for rhythmic auditory stimuli suggests facilitated activations in premotor cortex, insula, cuneus, supplementary motor area, cerebellum, and basal ganglia (73, 80, 85–87). Moreover, training with rhythmic auditory cueing has been reported to modulate neuromagnetic β oscillations (88, 89), biological motion perception (82, 90), auditory-motor imagery (91–93), shape variability in musculoskeletal activation patterns (94), cortical reorganization, neural-plasticity (95, 96), and also movement specific re-investment (97). Real-time kinematic auditory feedback on the other hand is a comparatively new approach. Such type of an intervention involves mapping of movement parameters on to the sound components, such as pitch, amplitude with a very minimal or no latency (82). The feedback has been reported to alleviate sensory perceptions like proprioception (98), by enhancing sensorimotor representation while facilitating activations in action observation system (90), and inducing neural plasticity (99). Moreover, the feedback has been reported by Effenberg et al. (82) to extend the benefits of discrete rhythmic auditory cueing stimuli. Here, the authors suggest that the continuous flow of information might allow a participant to better perceive their movement amplitudes and positioning, thereby resulting in development of both feedback and feed-forward models (82). Moreover, by allowing additional influence over the action observation system the real-time auditory stimuli might also enrich the internal stimulation of the executed movement (50, 82, 90). This methodology involves delivering action relevant auditory feedback, where the characteristics of stimuli (e.g., frequency, amplitude) are mapped to the specific joint kinematics in real-time, for an example see (98). Schmitz et al. (90) in a neuroimaging study reported that observation of a convergent audio (sonification)-visual feedback led to enhanced activations in fronto-parietal networks, action observation system i.e., superior temporal sulcus, Broadman area 44, 6, insula, precentral gyrus, cerebellum, thalamus and basal ganglia (90). The authors mentioned that the multimodal nature of the stimuli can enhance the activation in areas associated with biological motion perception and in sub-cortical structures involving striatal-thalamic frontal motor loop. This then might improve perceptual analysis of a movement thereby resulting in efficient motor planning and execution (90).

Till date, no study has analyzed the influence of real-time auditory feedback on upper limb recovery post-stroke. Moreover, no study has compared the influence of rhythmic and real-time auditory stimuli on upper limb recovery post stroke. This information might serve to be an important source of information for future research and for developing efficient rehabilitation protocols in stroke community. Only four systematic reviews have analyzed the influence of rhythmic auditory stimulations on arm recovery post stroke (100, 101–103), in which only two reviews included a statistical meta-analysis (102, 103). In these studies limitations persisted in terms of meta-analysis approach i.e., no heterogeneity analysis. Therefore, interpretation of results from the statistical analyses might indicate biasing. Therefore, the aim of the present systematic review and meta-analysis is to develop a state of knowledge where both qualitative and quantitative data for different auditory stimuli delivery methods can be interpreted for the use of stroke patients and medical practitioners alike. Moreover, a meta-analysis approach will be used to determine specific training dosage for auditory stimuli in recovering arm function post-stroke.

METHODS

This systematic review and meta-analysis was conducted according to the guidelines outlined by PRISMA statement: Preferred Reporting Items for Systematic Reviews and Meta-analysis (104).

Data Sources and Search Strategy

Academic databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane central register of controlled trials, EMBASE, and PROQUEST were searched from inception until December 2017. A sample search PICOS strategy for the review has been provided in (Table 1) (105).


Table 1. Sample search strategy EMBASE.
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Data Extraction

Upon selection for review, the following data were extracted from each article; author, date of publication, selection criteria, sample size, sample description (gender, age, health status, duration of stroke), applied intervention, characteristics of auditory stimuli i.e., rhythmic/real-time, applied dual-task (if any), outcome measures, results, and conclusions. The data were then summarized and tabulated (Table 2).


Table 2. Effects of auditory stimuli on arm function post-stroke.
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The inclusion criteria for the studies was (i) The experimental studies were either randomized controlled trials, cluster randomized controlled trials or controlled clinical trials; (ii) The included studies reported reliable and valid measures to analyse arm function, and/or kinematic parameters; (iii) The included studies analyzed subjective analysis of stroke outcome; (iv) The included studies scored ≥4 score on the PEDro methodological quality scale; (v) The experiments conducted on human participants; (vi) The included studies were published in a peer-reviewed academic journal, conference proceeding; (vii) The included studies were published in English, Hindi, Punjabi, and German languages.

Quality and Risk of Bias Assessment

The quality of the included experimental studies was assessed using the PEDro methodological quality scale (127). This scale consists of 11 items which address both external, internal validity. Moreover, its interpretation can effectively detect potential bias with fair to good reliability, and validity (127). A blinded scoring for the methodological quality was carried out by the primary reviewer (S.G). If any ambiguous issues were there concerning rating of the studies. These issues were discussed with a second reviewer (Dr. Ishan Ghai). Included studies were interpreted according to a scoring of 9–10, 6–8, and 4–5 considered as “excellent,” “good,” and “fair” quality, respectively (128).

Data Analysis

For a better interpretation of the intervention effects, a meta-analysis was included (129). The absence of presence of heterogeneity asserted the use of either fixed or random effect meta-analysis (130), respectively. A narrative synthesis of the findings structured around the intervention, population characteristics, duration of stroke, auditory signal characteristics, methodological quality, and type of outcome are provided (Table 2). A meta-analysis was conducted between pooled homogenous studies using CMA (Comprehensive meta-analysis V 2.0, USA). Heterogeneity between the pooled studies was assessed and interpreted using I2 statistics. The data in this present review was systematically distributed and pooled for each variable. Thereafter, forest plots with effect size and 95% confidence intervals were plotted. The effect sizes were weighted and reported as Hedge's g (131). Thresholds for interpretation of effect sizes are as follows; a standard mean effect size of 0 meant no intervention effect, negative effect size meant a negative intervention effect, and a positive effect size meant a positive intervention effect. Further, a mean effect size of 0.2 was interpreted as a small effect, 0.5 interpreted as a medium effect, and 0.8 interpreted as a large effect (132). Interpretation of heterogeneity made from I2 statistics was as following: 0–0, 25, 75% was interpreted as negligible, moderate, and substantial heterogeneity, respectively. The alpha level was set at 95%.

RESULTS

Characteristics of Included Studies

A detailed search criterion has been demonstrated in Figure 1. Out of 1,889 studies, only 23 studies qualified our inclusion criteria. A total of 385 studies could not be included in the manuscript due to limitations in access by University's search database. The author (S.G) made attempts to contact the respective corresponding authors for retrieving the manuscripts. Although these studies could not be included in the review, the abstracts for all the studies were individually screened by the reviewers. The reviewers did not find any counterbalancing data. Data from each included study has been summarized in (Table 2). In the included studies, 10 were randomized controlled trials, and 13 were controlled clinical trials. Interventions in all the included studies were performed by either physiotherapists or medical practitioners. However, two studies in addition to training in clinics/laboratories included a phase of self-training administered by the patients themselves, at home (108, 122). Here, in both the studies guidance was provided by the researchers to the patients via telephone.
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FIGURE 1. PRISMA flow chart for the inclusion of studies.



Participants

In total, the 23 included studies evaluated 585 participants of mixed gender population. The included studies had the gender distribution as follows: 226 females, and 359 males. Descriptive statistics concerning age (mean ± standard deviation) of the participants were tabulated across the studies. Disease duration of stroke patients has also been mentioned for better interpretation of the reader. However, five studies did not mention these details (107, 109, 111, 124, 125).

Risk of Bias

Studies scoring ≥4 on PEDro methodological scale were included in the review. Individual scores have been reported (Table 2, Supplementary Table 1). The average PEDro score for the 23 included studies was computed to be 5.3 ± 1.6 out of 10, indicating “fair” quality of the overall studies. Here, two studies scored nine (excellent quality), one study scored eight (excellent quality), three studies scored seven (good quality), six studies scored six (good quality), two studies scored five (fair quality), and 11 studies scored four (fair quality) (Table 2, Supplementary Table 1). Figure 2 illustrates risk of bias across the studies. Further, publication bias was analyzed by plotting the evaluated weighted effect size i.e., Hedge's g values against standard error (Figure 3). Here, any asymmetry concerning mean in the funnel plot might suggest the presence of publication related bias.
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FIGURE 2. Risk of bias across studies.
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FIGURE 3. Funnel plot for Hedge's g and standardized effect for each value in the meta-analysis. Each of the effect is represented in the plot as a circle. Funnel boundaries represent area where 95% of the effects are expected to lie if there were no publication biases. The vertical line represents the mean standardized effect of zero. Absence of publication bias is represented by symmetrical distribution of effect's around the mid-line.



Meta-Analysis

Outcomes

The results clearly suggest a positive influence of training with rhythmic auditory cueing and real-time auditory feedback on arm recovery post-stroke. Out of 23 included studies, significant enhancement was reported in 19 studies, three studies reported enhancements, and only one study reported significant reduction in arm function post training with auditory stimuli (Table 2).

Meta-Analysis Report

Application of a strict inclusion criterion was also meant to limit the amount of heterogeneity between the pooled studies (133). Nevertheless, despite these attempts some amount of unexplained heterogeneity was still observed. Thereafter, attempts were made to pool and analyze the studies further in sub-groups. The meta-analysis evaluated arm-functioning parameters, such as Fugl-Meyer assessment scores, Wolf motor time test, Action reach arm test, Stroke impact scale, 9-hole peg test, and elbow range of motion. The reliability and validity of these tests has been proven in the literature (134). Further, sub-group analyses were conducted to analyze specific training dosages, and to compare the effects of rhythmic auditory cueing and real-time auditory feedback. The main reasons for excluding the studies from statistical analysis was either major differences in between assessment methods, for instance considerably different auditory stimuli, disease duration, and/or lack of descriptive statistics within the manuscript. In this case, attempts were made by the primary reviewer (S.G) to contact respective corresponding authors.

Fugl Meyer Assessment Score

Fugl Meyer assessment scores for arm performance were assessed in 11 studies. Here, two studies evaluated the score on stroke patients while using real-time auditory feedback, whereas nine studies utilized rhythmic auditory cueing. The analysis of studies revealed (Figure 4) a large effect size in the positive domain (g: 0.79, 95% C.I: 0.38–1.09) and moderate heterogeneity was observed in between the studies (I2: 29.3%, p > 0.05). Further, on separating the studies for comparing the effects of rhythmic auditory cueing and real-time auditory feedback, nine studies were analyzed for their effects on rhythmic auditory cueing and three studies for real-time auditory feedback.
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FIGURE 4. Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing, and real-time auditory feedback on Fugl Meyer assessment scores on arm function amongst post stroke patients. Weighted effect sizes; Hedge's g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in Fugl Meyer scores depicting poor arm functioning; a positive effect size indicated enhancement in Fugl Meyer scores depicting better arm functioning. (r-af, Real-time auditory feedback; low, Low performance group; high, High performance group; left CVA, Left sided cerebrovascular accident; right CVA, Right sided cerebrovascular accident).



An analysis for effects of rhythmic auditory cueing on Fugl Meyer assessment revealed (Supplementary Figure 1), positive medium effect size with negligible heterogeneity (g: 0.6, 95% C.I: 0.30–0.91, I2: 10.7%, p > 0.05). An analysis for effects of real-time auditory feedback on Fugl Meyer assessment revealed (Supplementary Figure 2), a larger positive large effect size with moderate heterogeneity (g: 1.3, 95% C.I: −0.25 to 2.8, I2: 40.3%, p > 0.05).

A further sub-group analysis based on the amount of training dosage (30 min to 1 h, ≥3 sessions per week) for rhythmic auditory cueing revealed (Supplementary Figure 3), positive medium effect size with moderate heterogeneity (g: 0.54, 95% C.I: 0.3–0.78, I2: 43.8%, p = 0.06). Only one study (126), performed a training with rhythmic auditory cueing for < 30 min, and hence was not included in further analysis. For the real-time auditory feedback Supplementary Figure 2 also illustrates the effects of training dosage for 30–45 min per session, and for >10 sessions of training.

Wolf Motor Time Assessment

An analysis for effects of rhythmic and real-time auditory stimuli on Wolf motor time assessment revealed (Figure 5) a negative medium effect size with moderate heterogeneity (g: −0.52, 95% C.I: −0.86 to −0.19, I2: 33.2%, p = 0.18). Further, an analysis for only rhythmic auditory cueing revealed (Supplementary Figure 4) a similar negative medium effect size with negligible heterogeneity (g: −0.55, 95% C.I: −1.04 to −0.05, I2: 0%, p > 0.05).
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FIGURE 5. Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing, and real-time auditory feedback on Wolf motor time assessment scores for arm function amongst post stroke patients. Weighted effect sizes; Hedge's g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in Wolf motor scores depicting a better arm functioning; a positive effect size indicated enhancement in Wolf motor scores depicting poor arm functioning. (r-af, Real-time auditory feedback; low, Low performance group; high, High performance group; left CVA, Left sided cerebrovascular accident; right CVA, Right sided cerebrovascular accident).



A further sub-group analysis based on the amount of training dosage (30 min to 1 h, ≥3 sessions per week) for rhythmic auditory cueing revealed (Supplementary Figure 5), negative medium effect size with negligible heterogeneity (g: −0.34, 95% C.I: −0.71 to 0.02, I2: 0%, p > 0.05).

Elbow Range of Motion

Analysis for effects of rhythmic and real-time auditory stimuli on elbow range of motion revealed assessment revealed (Figure 6) a positive medium effect size with negligible heterogeneity (g: 0.36, 95% C.I: 0.03–0.7, I2: 0%, p > 0.05). Further, a sub-group analysis for only rhythmic auditory cueing revealed a similar positive medium effect size with negligible heterogeneity (g: 0.37, 95% C.I: 0.01–0.72, I2: 0%, p > 0.05). Further sub-group analysis was not performed because two studies did not include a training regime (112, 124), and one study analyzed the effects of real-time auditory feedback (118).
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FIGURE 6. Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing, and real-time auditory feedback on elbow range of motion among post stroke patients. Weighted effect sizes; Hedge's g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in elbow range of motion depicting poor arm functioning; a positive effect size indicated enhancement in elbow range of motion depicting better arm functioning. (r-af, Real-time auditory feedback; low, Low performance group; high, High performance group; left CVA, Left sided cerebrovascular accident; right CVA, Right sided cerebrovascular accident).



Action Reach Arm Test

Analysis for effects of rhythmic and real-time auditory inputs on Action reach arm test revealed (Supplementary Figure 6) a positive large effect size with substantial heterogeneity (g: 0.95, 95% C.I: 0.49–1.42, I2: 87%, p = 0.01). Further, a sub-group analysis for only real-time auditory feedback training (30–45 min per session, and for >10 sessions of training) revealed a similar positive large effect size with substantial heterogeneity (g: 0.91, 95% C.I: 0.26–1.55, I2: 95.6%, p = 0.001). Here, heterogeneity could be affirmed to considerable differences in the characteristics of real-time auditory feedback provided to the patients (see Table 2 for details in auditory signal characteristics).

Nine-Hole Peg Test

Analysis for effects of rhythmic and real-time auditory stimuli on Nine-hole peg test revealed (Supplementary Figure 7) a positive small effect size with substantial heterogeneity (g: 0.12, 95% C.I: −0.32 to 0.58, I2: 85.2%, p = 0.01).

Further, a sub-group analysis for only rhythmic auditory cueing training (>30 min training session, 3 sessions per week) revealed a similar positive small effect size with substantial heterogeneity (g: 0.12, 95% C.I: −0.32 to 0.58, I2: 90.15%, p = 0.001). Here, heterogeneity could be affirmed to considerable differences in the characteristics of rhythmic auditory cueing provided to the patients (Table 2).

Stroke Impact Scale

Analysis for effects of rhythmic and real-time auditory stimuli on Stroke impact scale revealed (Supplementary Figure 8) a positive large effect size with substantial heterogeneity (g: 0.95, 95% C.I: 0.49–1.42, I2: 87%, p = 0.01). Further, a sub-group analysis for only rhythmic auditory cueing (>30 min of training, 3 sessions per week) revealed a similar positive large effect size with substantial heterogeneity (g: 0.91, 95% C.I: 0.26–1.55, I2: 95.6%, p = 0.001). Here, substantial amount of heterogeneity could be due to considerable differences in the characteristics of real-time auditory feedback provided to the patients (Table 2).

DISCUSSION

The objective of this systematic review and meta-analysis was to analyze the current state of knowledge for the effects of rhythmic auditory cueing and real time kinematic auditory feedback for recovering arm function post-stroke. The current meta-analysis reports beneficial small-to-large standardized effects for both rhythmic auditory cueing and real-time kinematic auditory feedback in this aspect. Normally, patients with stroke exhibit poor spatiotemporal parameters during gross and fine motor skills performance for the upper extremities (135). Research suggests that assessment of arm function from Fugl Meyer test (136), Wolf motor assessment (137), Action reach arm test (138), 9-hole peg test (139), reliably reveal the severity of gross and fine motor function impairment post-stroke (136). In the current meta-analyses, we report beneficial effects of rhythmic auditory cueing on Fugl Meyer test (g: 0.6), Action reach arm test (g: 0.95), Wolf motor time test (g: −0.55), elbow range of motion (0.37), Nine-hole peg test (0.12), and Stroke impact scale (g: 0.91). Similarly, beneficial effects of real-time auditory feedback have also been reported for Fugl Meyer test (1.3), and action reach arm test (0.91). Therefore, indicating beneficial effects of external auditory stimuli for enhancing arm recovery, quality of life post-stroke.

Several reasons ranging from physiological, psychological and cognitive domains can be asserted for the beneficial effects of auditory stimuli on motor performance (64, 67, 83, 140, 141). Firstly, from a neurophysiological aspect, the auditory stimuli could have mediated multifaceted benefits. First and foremost, the stimuli could have facilitated or bypassed the deficit internal cueing system, often impaired in stroke patients exhibiting movement disorders (12). Here, a direct stimuli could have bypassed the deficit putamen directly to thalamus, and then from pre-motor area directly to primary motor cortex (76, 142). Secondly, the external stimuli could have modulated the oscillatory pattern of neuromagnetic β waves (a functional measure of auditory motor coupling) in auditory cortex, cerebellum, inferior frontal gyrus, somatosensory area and sensorimotor cortex (88, 143). Thirdly, enhanced neurological activation in inferior colliculi, cerebellum, brainstem, and sensorimotor cortex post training with rhythmic auditory cueing could have enhanced motor performance. In addition, enhanced neural re-organization especially in cortico-cerebellar circuits, and phase-periodic corrections (144) could have also been important reasons for enhancements in upper limb motor performance. Similarly, external auditory stimuli have also been suggested to facilitate neural plasticity (89, 96). In the present meta-analysis, we report beneficial effects of a training duration of 30 min−1 h with rhythmic and real-time auditory stimuli to result in enhanced performance measures for upper arm. According to the results of, this seems rational. The authors in their research reported enhanced electroencephalographic co-activity in the right hemispheric regions after just 20 min of audio-motor training, thereby implying a timeline for instigating plasticity (96). The authors also suggested the necessity of such time frame for establishing links between the perceptual modalities. Additionally, bilateral training could have also played an integral role in facilitating recovery observed in most of the studies (145). This training strategy has also been reported to facilitate neuroplasticity, cortical reorganization (110). Research suggest that bilateral training can facilitate plasticity by increasing bi-hemispheric activation, disinhibiting motor cortex, and upwardly regulating the descending propriospinal neurons.

In addition to these changes, the external auditory stimuli could also mediate debilitating cognitive dysfunctions commonly observed in patients with stroke (49). Published literature has often reported a direct relationship between the cognitive decline and movement failure (46, 146, 147). Masters and Maxwell (48) suggested that a cognitive decline might predispose patients to internally monitoring their movement patterns. This could then cause interferences with the autonomic functioning of the neural pathways, and might result in information overload (46), which further could lead to movement failure. Here, two explanations have been suggested in literature to counteract this cognitive overload. Firstly, the external auditory stimuli have been suggested to act as an external distractor (148). This could have allowed the patient to direct their focus away from their movements, thereby enhancing automatic control. Choi et al. (149) for instance, analyzed static and dynamic balance in chronic stroke patients during a cognitive-motor dual task. Here, the authors reported balance improvements when auditory cues were used during the dual task. The authors suggested that auditory cues might induce appropriate attention allocation i.e., engage higher attentional resources during auditory perception, which then could have facilitated motor performance. Secondly, enhanced cross modal processing between auditory and proprioceptive signals due to their high spatiotemporal proximity could have circumvented information overload in the native sensory modality by directing task-irrelevant information toward the underused sensory modality (98, 150). Here, inferences can be drawn from the Multiple resource theory (151, 152). The theory states that separate pools of attentional resources exist for different sensory channels and processes. Therefore, utilizing congruent stimuli together through different sensory modalities might reduce attentional interference by distributing the load amongst both the utilized modalities. Research analyzing the influence of cross-modal cueing between sensory modalities for instance audio-tactile domain have reported significant enhancements in performance under dual-task conditions as compared to performances under single sensory modality (150, 153) [for a detailed meta-analysis see (154)].

Moreover, recent research also suggests that in addition to mediating cognitive overload in patients with stroke, the external auditory cueing via music might facilitate, reorganize deficit cortical structures (155–157). For instance, merging the external auditory stimuli with music can allow facilitation of neural network including prefrontal, and limbic cortex this in turn has been associated with cognitive and emotional recovery post-stroke (155). Future research is strongly recommended to address this gap in literature as it might allow in developing of a rehabilitation protocol that focuses not only on motor recovery but also neural re-generation and/or organization (158).

In addition to the cognitive and motor deficits, the external auditory stimuli can also mediate lower sensory perceptual thresholds exhibited in patients in stroke (35). Here, external auditory stimuli might enhance the saliency of the perceptual modalities, which could then support the development of feedback, and feedforward models necessary for motor planning and execution (82, 159–161). Also, cross-sensory impacts between the perceptual modalities due to high spatiotemporal proximity between the sensory modalities might result in the auditory stimuli to support the deficit proprioceptive modality (98). Recent research evaluating the rhythmic auditory cueing suggests that mediating the auditory signal characteristics in terms of ecologically valid action relevant sounds might further enrich the precepted spatio-temporal information and allow extended enhancements in motor execution (142, 162) i.e., as compared to isosynchronous cueing. Patients with stroke due to their sensory impairments usually have higher thresholds for perception of sensory stimuli (35, 163). Therefore, enhancing the saliency of sensory information delivered through ecologically valid action relevant auditory stimuli such as walking on gravel, snow might be beneficial (50, 142, 164). According to Young et al. (165) action relevant auditory stimuli not only specify the temporal but also the spatial information, thereby enriching the feed-forward mechanisms to execute a motor task efficiently (166). The authors also affirmed beneficial effects of action relevant auditory stimuli on gait performance due to putative function of “sensori-motor neurons” (166). Furthermore, it can be expected that modifications in auditory signal characteristics such as modulation of timbre at a higher intensity further merged with a broad ascending melody and rich harmony might motivate a stroke patient to exert more force (50, 142, 167). This however, was not evaluated in any of the studies included in this review and should be a possible topic of research for future studies.

Moreover, research suggests the extended benefits of real-time auditory feedback with respect to rhythmic auditory stimuli. suggested that mapping the movements with real-time auditory feedback could allow a patient to better perceive their self-generated movement amplitudes. Further allowing them to compare it with the sound of a desirable auditory movement model. This could then result in development of an auditory reference framework model, which could amplify internal simulations of movements, and allow a patient to better perceive spatio-temporal parameters as compared to discrete rhythmic component (168). A contextual comparison of neuroimaging data from rhythmic (85, 86), and real-time auditory stimuli (90), suggests a large number of neurological structures having overlapped activation between both the auditory stimuli. However, enhanced activation of the areas associated with action observation such as, superior temporal sulcus, premotor cortex (169, 170), have been reported with real-time auditory feedback in one study (90). Here, the main reasons for the enhanced activation in areas associated with motion perception can be attributed to the findings of Shams and Seitz (171) and Lahav et al. (172). Here, the authors suggested that a convergent audio-visual motion would enhance accuracy of perception and motor performance due to the enhanced multimodal congruent nature (90, 171). Further, Lahav et al. (172) hypothesized that an audio-visual mirror neuron system with the premotor areas might be involved in serving as an “action listening” and “hearing & doing mirror neuron system,” with the latter being largely dependent on a person's motor repertoire. Likewise, Vinken et al. (173) demonstrated that mapping real-time auditory feedback with real life activities lead to enhanced accuracy in judgement of actions, thereby demonstrating enhanced potential for improving motor perception, control, and learning. In the present meta-analysis enhanced scores for Fugl Meyer scores with real time kinematic auditory feedback (g: 1.3) were observed as compared to rhythmic auditory cueing (0.60).

The auditory stimuli could have also influenced the musculoskeletal structure of the upper extremities. For example, research suggests that intricate neuroanatomical interconnections between the auditory and motor cortex could allow the auditory stimuli could possibly mediate the firing and recruitment rate of motor units (28). This could then result in smoothening of motor movements, further resulting in enhanced joint kinematics, and movement scaling parameters (174). Likewise, regularized muscle co-activation rate has also been documented in electromyographic studies (175–177). This was also demonstrated in our meta-analysis concerning enhancement in elbow range of motion with rhythmic auditory cueing.

Moreover, the application of these interventions can be promoted in a cost-effective manner due to their high viability (50, 142). The strategies could prove to be efficient in developing countries where higher costs of rehabilitation promote stroke associated morbidity and mortality (178, 179). Here, the medical practitioners or tele-stroke (179), helplines can promote the use of mobile applications which can be utilized by patients at their home. Few smartphone applications have been reported in published literature, however, their feasibility in terms of costs is too high (180, 181). Future studies are recommended to address this gap and develop open source applications for the use of stroke patients. Here, the global position sensors, gyroscope and accelerometers present usually in a smartphone can be utilized to direct kinematic information, which could then assist in projecting either optimal rhythmic cueing pattern or converted/mapped in real-time to produce sonified auditory feedback. Further, applications can be developed to generate different types of ecologically valid sounds.

Finally, as the current review mentions a sole author (S.G), concerns regarding biasing, methodological flaws in the study's design and outcomes could be expected (182). Here, the reader is assured that this present systematic review and meta-analysis was carried out by two authors. Dr. Ishan Ghai (I.G) acted as an additional reviewer and statistician in the current study. His role is duly mentioned in the methodological, and acknowledgment sections. Dr. Ishan Ghai has himself consented to be excluded from this study as a co-author. Moreover, to ensure transparency in the methodological parts of the current review and analyses sufficient description has been provided for reciprocating the search strategy (Table 1), and the statistical analysis. Additionally, the corresponding author is willing to share the entire data with any reader upon request.

In conclusion, this present review for the first time analyzed the effects of rhythmic and real time auditory stimuli on arm recovery in post-stroke patients. The present findings are in agreement with systematic reviews and meta-analysis carried out to analyze auditory entrainment effect on aging (50), cerebral palsy (164), stroke (183), multiple sclerosis (184), and parkinsonism (63, 185). This review strongly suggests the incorporation of rhythmic and real-time auditory stimuli with a training dosage of 30 min to 1 h of training, for >3 sessions week for enhancing arm function recovery post-stroke.
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