AUTHOR=Ruonala Verneri , Pekkonen Eero , Airaksinen Olavi , Kankaanpää Markku , Karjalainen Pasi A , Rissanen Saara M TITLE=Levodopa-Induced Changes in Electromyographic Patterns in Patients with Advanced Parkinson’s Disease JOURNAL=Frontiers in Neurology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00035 DOI=10.3389/fneur.2018.00035 ISSN=1664-2295 ABSTRACT=
Levodopa medication is the most efficient treatment for motor symptoms of Parkinson’s disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients’ eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion–extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion–extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients’ personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson’s disease.