AUTHOR=Maruta Jun , Spielman Lisa A. , Rajashekar Umesh , Ghajar Jamshid TITLE=Visual Tracking in Development and Aging JOURNAL=Frontiers in Neurology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2017.00640 DOI=10.3389/fneur.2017.00640 ISSN=1664-2295 ABSTRACT=

A moving target is visually tracked with a combination of smooth pursuit and saccades. Human visual tracking eye movement develops through early childhood and adolescence, and declines in senescence. However, the knowledge regarding performance changes over the life course is based on data from distinct age groups in isolation using different procedures, and thus is fragmented. We sought to describe the age-dependence of visual tracking performance across a wide age range and compare it to that of simple visuo-manual reaction time. We studied a cross-sectional sample of 143 subjects aged 7–82 years old (37% male). Eye movements were recorded using video-oculography, while subjects viewed a computer screen and tracked a small target moving along a circular trajectory at a constant speed. For simple reaction time (SRT) measures, series of key presses that subjects made in reaction to cue presentation on a computer monitor were recorded using a standard software. The positional precision and smooth pursuit velocity gain of visual tracking followed a U-shaped trend over age, with best performances achieved between the ages of 20 and 50 years old. A U-shaped trend was also found for mean reaction time in agreement with the existing literature. Inter-individual variability was evident at any age in both visual tracking and reaction time metrics. Despite the similarity in the overall developmental and aging trend, correlations were not found between visual tracking and reaction time performances after subtracting the effects of age. Furthermore, while a statistically significant difference between the sexes was found for mean SRT in the sample, a similar difference was not found for any of the visual tracking metrics. Therefore, the cognitive constructs and their neural substrates supporting visual tracking and reaction time performances appear largely independent. In summary, age is an important covariate for visual tracking performance, especially for a pediatric population. Since visual tracking performance metrics may provide signatures of abnormal neurological or cognitive states independent of reaction time-based metrics, further understanding of age-dependent variations in normal visual tracking behavior is necessary.