To validate our speculation that curcumin may ameliorate Alzheimer’s disease (AD) pathogenesis by regulating PI(3,5)P2 and transient receptor potential mucolipin-1 (TRPML1) expression levels.
We developed an animal model presenting AD by APP/PS1 transgenes. The mouse clonal hippocampal neuronal cell line HT-22 was treated with amyloid-β1-42 (Aβ1-42). Curcumin was administrated both
Curcumin increased cell viability, decreased the number of autophagosomes, and increased lysosomal Ca2+ levels in Aβ1-42-treated HT-22 cells. Sequencing analysis identified TRPLML1 as the most significantly upregulated gene after curcumin treatment. Western blotting results also showed that TRPML1 was upregulated and mTOR/S6K signaling pathway was activated and markers of the autophagy–lysosomal system were downregulated after curcumin use in Aβ1-42-treated HT-22 cells. Knockdown of PI (3,5)P2 or TRPML1 increased the protein levels of markers of the autophagy–lysosomal system after curcumin use in Aβ1-42-treated HT-22 cells, inhibited mTOR/S6K signaling pathway, increased the protein levels of markers of the autophagy–lysosomal system after curcumin use in APP/PS1 mice. Besides, knockdown of PI(3,5)P2 or TRPML1 reversed the protective role of curcumin on memory and recognition impairments in mice with APP/PS1 transgenes.
To some extent, it suggested that the effects of curcumin on AD pathogenesis were, at least partially, associated with PI(3,5)P2 and TRPML1 expression levels.