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The diagnosis of dementia is challenging and early stages are rarely detected limiting the
possibilities for early intervention. Another challenge is the overlap in the clinical features
across the different dementia types leading to difficulties in the differential diagnosis. Iden-
tifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis
could provide an opportunity for timely and optimal intervention strategies. Also, such
biomarkers could help in selection and inclusion of the right patients in clinical trials of
both Alzheimer’s disease and other dementia treatment candidates. The cerebrospinal fluid
(CSF) has been the most investigated source of biomarkers and several candidate proteins
have been identified. However, looking solely at protein levels is too simplistic to provide
enough detailed information to differentiate between dementias, as there is a significant
crossover between the proteins involved in the different types of dementia. Additionally,
CSF sampling makes these biomarkers challenging for presymptomatic identification.
We need to focus on disease-specific protein fragmentation to find a fragment pattern
unique for each separate dementia type — a form of protein fragmentology. Targeting
protein fragments generated by disease-specific combinations of proteins and proteases
opposed to detecting the intact protein could reduce the overlap between diagnostic
groups as the extent of processing as well as which proteins and proteases constitute the
major hallmark of each dementia type differ. In addition, the fragments could be detectable
in blood as they may be able to cross the blood-brain barrier due to their smaller size. In this
review, the potential of the fragment-based biomarker discovery for dementia diagnosis
and prognosis is discussed, especially highlighting how the knowledge from CSF protein
biomarkers can be used to guide blood-based biomarker development.
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Introduction

Dementias are brain disorders that cause a progressive decline in mental function. In 2009,
it was estimated that 35.6 million people were suffering from dementia worldwide and this
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number is expected to be 65.7 million by 2030 and 115.4 by
2050 (1). Alzheimer’s disease (AD) is the most common cause of
dementia, and accounts for 60-70% of all cases. Other common
causes of dementia are dementia with Lewy bodies (DLB), vascu-
lar dementia (VaD), frontotemporal lobar degeneration (FTLD),
and corticobasal degeneration (CBD). In addition to this, mixed
dementias are also commonly seen (2-4).

The major risk factor for developing dementia is age, with
increasing prevalence after age 65, followed by family his-
tory, environmental factors, and mutations (4). Cognitive and
neuropsychiatric symptoms are the key clinical features of
dementia (5).

The diagnosis of dementia is challenging and early and mod-
erate stages of dementia are rarely detected thereby limiting the
potential for early intervention. Additionally, a high number of
dementia cases are left without a diagnosis (6).

It is generally accepted that there is a need for early diagnosis
of dementia and many efforts have been made to develop early
biomarkers with the ability to identify the pre-dementia stage
of the disease before the onset of cognitive decline and brain
degeneration (7, 8).

Another challenge is the differential diagnosis of dementia, as
there is an overlap in the clinical features across the different
dementia types (9-11). There is currently no single marker avail-
able that can differentiate between AD and other dementia types.
Hence, there is a need for biomarkers that can distinguish between
the dementias.

Additionally, successful development of disease-modifying
drugs and prevention therapies require biomarkers that can rec-
ognize neuropathological changes in the pre-dementia stage and
allow differential diagnosis. This would allow inclusion of the
right patients in the clinical trials, monitoring of the treatment
efficacy, and exclusion of patients that have already reached a
point-of-no-return and would not have any beneficial effect of a
given intervention (12, 13).

Unfortunately, the biomarker development has been hampered
by the fact that tracking molecular pathological changes in the
brain is a huge challenge due to the inaccessible nature of the brain.
Currently imaging and CSF biomarkers provide the best method
for diagnosing, staging, as well as predicting clinical progression
of AD and related dementias. However their use is limited by
cost, availability and by the fact that repeated brain scans and
withdrawal of CSF by lumbar punctures are not advisable (14, 15).
These aspects all underline the need for novel biomarkers which
are easily obtainable.

The Proteopathy of Dementia

Most dementias can be designated as proteopathies characterized
by aberrant processing of neuronal proteins such as fragmen-
tations, aggregations and other post-translational modifications
(PTMs) (Table 1) (3, 16).

The potential of these proteins as diagnostic and prognostic
biomarkers has been extensively studied at the protein level. How-
ever, these investigations have been limited by the fact that the role
of each of these pathological changes throughout the development
of dementia is unresolved. This is due to the intrinsic difficulty

TABLE 1 | Common types of dementia and proteins affected.

Dementia type Proteins affected Reference
Alzheimer’s disease (AD) tau, AB, ApokE, (17-19)
a-synuclein
Vascular dementia (VaD) tau (20, 21)
Corticobasal degeneration (CBD) tau (22)
Dementia with Lewy Bodies (DLB) o-synuclein (19
Parkinson’s disease dementia o-synuclein (23)
Frontotemporal lobar dementia (FTLD)
e FTLD-tau Tau (20, 22)
e FTLD-TDP43 TDP43 (24, 25)
e FTLD-FUS FUS (26, 27)

of detecting the disease before patients display symptoms, which
may be 20 years before the earliest cognitive changes are detected
(28). Another complicating factor in diagnosing and determining
progression of dementia is the significant crossover between the
proteins involved in the different types of dementia. Thus, looking
solely at protein levels is too simplistic to provide enough detailed
information to differentiate between different dementia types. An
alternative to this is the application of PTMs as biomarkers for AD.
This is not a new approach, since it has already been investigated
in the development of CSF-derived AD biomarkers AB;_4, and
phosphorylated tau (p-tau). This presents an excellent example
of how understanding the molecular pathology inflicts certain
protein fingerprints on key proteins, provides insight not only to
central disease mechanisms, but also provides an opportunity to
improve the protein’s usage in terms of diagnostic and prognostic
value for a specific dementia or even a subtype of dementia.

As we have previously proposed, AD pathology and other
dementias may give rise to blood circulating fragments of key
neuronal proteins, thereby allowing detection of disease specific
post-translationally truncated fragments in the blood (29). This
would allow easier and more frequent sampling and analysis and
provide earlier diagnosis and prognosis of dementia.

The present review will focus on addressing the potential of
disease-specific protein fragmentation for dementia diagnosis and
prognosis and how these fragments can be utilized as biomarkers
to segregate between the different types of dementia, especially
highlighting how the knowledge from CSF protein biomarkers can
be applied to investigate blood-based biomarkers.

Status of CSF Biomarkers

The pathological alterations in the brain at the molecular level are
directly reflected in the CSE, therefore this fluid has been the most
investigated source for development of biomarkers for AD and
related dementias. APy, t-tau (total tau), p-tau, and o-synuclein
are the most studied CSF biomarkers and their performance has
been evaluated in several studies (30). Other biomarkers that will
be described in this review are apolipoprotein E (ApoE), TAR
DNA-binding protein 43 (TDP-43), fused in Sarcoma protein
(FUS), and glial fibrillary acidic protein (GFAP).

A4 is the main component in the extracellular amyloid
plaques of AD and is a marker of amyloid precursor protein
(APP) processing and plaque load. In AD, a decrease in CSF
AP4 has been found, which is probably due to deposition in
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plaques (17, 31). Generation of APy, is an early event in AD, hence
measuring CSF APy, is a very relevant strategy in prodromal AD
to screen for early cases as well as monitoring disease progression.
However as it is today the strategy of measuring CSF AP4, only
provides a supplementary test to support the diagnosis once cog-
nitive dysfunction is apparent, and it gives little information on the
disease progression as this biomarker has already found a steady-
state of abnormality early in the disease progression (32, 33).
CSF Ay, is able to discriminate between AD and non-demented
controls with a sensitivity of 59-96% and a specificity of 77-89%
(17,34-36). A change in AP, levels has also been studied for other
types of dementia and shows a slight decrease in FTLD, DLB, and
VaD (32). CSF AP4, has been shown to predict the rate of cognitive
decline in patients with very mild dementia and predict AD in
subjects with mild cognitive impairment (MCI) (37, 38).

Cerebrospinal fluid t-tau is a biomarker of neuronal damage
and neuronal and axonal degeneration and several studies have
shown an increased level in AD patients compared with controls
with a sensitivity and specificity of 70-83% and 81-92%, respec-
tively (17, 34-36). However, CSF t-tau is not specific for AD and
is also increased in other dementias such as Creutzfeldt-Jakob
disease (CJD) patients and in a significant number of patients with
DLB, FTLD, VaD, and CBD (20, 32).

Cerebrospinal fluid p-tau reflects aberrant phosphorylation
and neurofibrillary tangle (NFT) burden. A strong increase in
p-tau has been found in AD using ELISA methods that detect dif-
ferent phosphorylated epitopes such as p-tau(181) or p-tau(231).
CSF p-tau differentiates between AD patients and controls with
a sensitivity of 68-86% and a specificity of 61-73% (35, 36). A
moderate increase in p-tau has also been found in CJD and DLB
(17, 20). It has been reported that the use of p-tau instead of t-tau
may improve the diagnostic sensitivity and differential diagnosis
of AD versus DLB and FTD, respectively (34). Both t-tau and p-tau
have been found to predict progression from MCI to AD (32, 39).

The combination of CSF biomarkers (t-tau/AB;-s» and
p-tau/ABi_42) has been found to increase the sensitivity and
specificity when compared to the single markers. The t-
tau/AB1_4; ratio shows a potential as a preclinical biomarker since
it discriminates between MCI patients that progress to AD and
those that do not progress, although the CSF sampling makes
it virtually useless for this purpose (36, 40, 41). Furthermore,
the ratio shows promise in prediction of dementia in cognitively
normal older individuals (42).

Another interesting CSF biomarker is o.-synuclein. Compared
to tau and AP;_4, little research has been done with respect to
CSF levels of o.-synuclein, which is the main component of Lewy
bodies of DLB patients. Studies have demonstrated decreased CSF
levels of ai-synuclein in DLB and Parkinson’s disease (PD) when
compared to controls indicating a potential diagnostic use (43,
44). In contrast to this other research groups have shown no
difference in CSF levels in DLB and PD patients compared with
controls and other dementias (45-47).

Inboth PD and DLB patients, the level of o.-synuclein oligomers
is increased compared to healthy patients and other types of
dementias (23, 48). In PD, the ratio of oligomers of o.-synuclein
to total ot-synuclein is also significant. There is an increase in
the ratio of oligomeric/total o.-synuclein when compared to other

dementias (49). Recent studies have also shown significantly ele-
vated CSF levels of a-synuclein in AD patients (50) suggesting
that a-synuclein may not be specific to DLB and PD, or again
indicating that mixed pathologies are common.

Although, several CSF biomarkers show a promising diagnos-
tic and prognostic potential, there are still important drawbacks
limiting their clinical utility (Table 2). An important limitation
is the lack of assay standardization and global cut-off values for
biomarker concentrations. The handling of CSF and use of differ-
ent technological platforms and antibodies are the major reasons
for significant differences in biomarker concentrations between
studies (51). Fortunately, international standardization initiatives
have been initiated to reduce the large variations between studies
and within laboratories (52). Another limitation of CSF biomark-
ers is the overlap between the protein profile of different types of
dementia (20). Lastly, the clinical utility of CSF biomarkers is still
hampered by sample collection, which requires a lumbar punc-
ture. Despite the fact that there is minor complications related
to lumbar puncture the procedure is still regarded as invasive in
the general population and repeated follow-up measurement is
challenging (14, 15), and hence they are not consistently applied
in clinical trials. On the other hand, the CSF proteins described
here all have a pathological link to the diseases of interest, and as
such are of quite some interest for the development of blood-based
biomarkers.

Status of Blood-Based Biomarkers

The use of blood as a source of dementia biomarkers is still
under investigation. Blood is a more feasible biomarker source
when compared to CSF due to its wide availability, low cost, time
effectiveness, and easier sampling. Several different approaches for
identification of blood biomarkers are available and these include
biomarkers of the amyloid and tau pathology, biomarkers of
inflammation, oxidative stress, mitochondrial dysfunction, neu-
ronal and microvascular injury, and biomarker panels (15, 53). So
far, the research has been hampered by two major challenges. The
first is the complexity of blood and the large variation in samples
and variation between studies. The difference in preanalytical and
analytical methods is an important reason for this variation and
these have been reviewed elsewhere (15). The second challenge
is the fact that blood is not in direct contact with the brain. This
limits the understanding of how the pathological alterations in the
brain are reflected in blood analytes, as well as the absolute level
of the analyte of interest in the blood. Additionally, the prevalent
presence of non-specific proteins in the blood is an obstacle
toward identification of disease-specific biomarkers. To overcome
these limitations, the experience from the well-characterized CSF

TABLE 2 | Advantages and drawbacks of CSF biomarkers.

Advantages Drawbacks
Diagnosis Sampling
Prognosis Standardization

Diagnostic cut-off values
False positive — false negative rates
Overlap with other dementias
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biomarkers, which in some cases are based on brain-specific
pathological alterations, i.e., p-tau, may be a starting point for
blood biomarker analysis. Pathological alterations in CSF proteins
may be reflected in blood as a consequence of absorption of CSF
into blood, by penetration due to barrier impairment in dementia
or simply by diffusion (54-58). Whether a brain-derived protein
can serve as a biomarker to be measured in blood will depend on
the concentration, the change in concentration during disease, the
molecular size and the halflife in blood (57). Hence, exploring the
dynamic range of brain proteins in the peripheral blood is of great
interest.

The CSF biomarker tau is a brain-specific protein that can
become a relevant biomarker to be measured in blood. So far,
little is known about tau levels in blood and most studies have
been hindered by the low abundance of the protein in blood (59).
Zetterberg et al. (59) found that there was no correlation between
CSF tau levels and plasma tau indicating that the clearance of tau
is differently regulated (59). In healthy blood-donors tau protein
concentration is in the range <10 and >100 pg/mL and the ratio
between CSF:serum tau is 10:1 (57). Methods for determining
tau in serum/plasma are under investigation. Few studies have
reported elevated plasma tau levels in patients with AD (59, 60).
The results from these studies are encouraging but highly sensitive
detection methods are necessary. An ultrasensitive immunoas-
say for detection of plasma tau has been introduced and similar
methods would be highly relevant (61).

Another CSF biomarker with potential to be a blood biomarker
is AP. Plasma AP species have been examined by numerous stud-
ies but the results are contradictory. Some of these studies report
high AB4> or ABs whereas others show a decrease in AD. The
overlap between patients with AD and healthy controls is also sub-
stantial. Importantly, AB is not brain-specific but is also expressed
by other cells, and as such there is an interference of the periph-
eral AP species with the brain-derived species. Additionally, the
binding of AP to plasma proteins and formation of A oligomers
may disturb the quantification by immunoassays (62, 63).

Finally, several studies have quantified plasma o-synuclein and
o-synuclein oligomers in PD and DLB. However, additional stud-
ies are needed to evaluate blood o.-synuclein as a valid biomarker
and the high levels of oi-synuclein present in red blood cells must
be considered when quantifying the protein (64).

Plasma levels of ApoE, TDP-43, and GFAP have also been
reported and the main results from these studies will be reviewed
in the next sections.

Altogether, the inconsistent findings from plasma analyses
illustrate the need for a pathology specific combination of protein
and modification of this protein in order to enhance the possibility
of generating a disease-specific biomarker, even more so in blood
specimens than CSE.

Status of Protein Fragmentation
Blood-Based Biomarkers

As mentioned identification and detection of brain-specific
proteins in blood is restricted by the blood-brain-barrier, the
substantial presence of non-specific proteins, and proteins from
co-morbidities in the circulation. The use of post-translationally

truncated protein fragments containing specific neo-epitopes as
biomarkers of dementias may overcome these complexities (29,
65). Targeting protein fragments generated by disease-specific
combinations of proteins and proteases opposed to detecting
the intact protein could diminish the overlap between diag-
nostic groups. Proteolytic fragmentation of proteins is a post-
translational process and several cleavage products have been
identified in relation to AD and other dementias. AB4>, AP,
and several other N- or C-terminally truncated A peptides all
represent examples of proteolytically cleaved protein fragments.
Cleavage of tau, ApoE, a.-synuclein, TDP-43, and GFAP has also
been reported (66-70).

Although, several of the described protein fragments have been
described in the literature and detected in CSF most of these
have not been studied in blood. Targeting protein fragmentation
by specific proteases may provide novel biomarkers for dementia
and create a specific profile of each disorder based on the frag-
ments and proteases that are involved in the pathology. Another
advantage of using fragments as blood biomarkers opposed to the
intact proteins may be the eased release from the central nervous
system (CNS) into the periphery. The fragments may easier pass
the blood-brain barrier due to their small size and be easier to
detect (71-75) (Figure 1).

In addition to applying disease-specific protein fragmentation
to identify new biomarkers for dementia, it is important to define
and validate the ability of each novel biomarker. The BIPED clas-
sification system (Burden of Disease, Investigative, Prognostic,
Efficacy of Intervention and Diagnostic) is a nomenclature first
used for osteoarthritis and offers categorization of biomarkers in
order to improve the development and validation of biomarkers
(15). The use of BIPED classification in dementia would aid in
the biomarker development process from target identification to
validation in clinical trials.

In the following sections, neuronal proteins involved in the
proteopathy of dementias will be reviewed with emphasis on
proteolytic fragmentations (Figure 2).

Amyloid Precursor Protein

Derivatives from the full-length APP are the main components of
the extracellular amyloid plaques. APPs are type 1 transmembrane

CSF Blood
)
-]
[
T = -
— -
I
Intact proteins unable to pass the BBB Fragments passing the BBB
BBB
FIGURE 1 | lllustration of how the protein fragments may be able to
cross the blood-brain barrier. Protein fragments may have the advantage
of crossing the barrier as these breakdown products have a smaller size when
compared to the intact protein. Modified from Ref. (29).
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Protein Proteases
ADAMs, BACE-1 and 2, CathepsinB,
APP y-secretase
Caspases, Calpains,
Tau thrombin, cathepsins and ||
puromycin-sensitive aminopeptidase
ApoE 7 B

a-synculein MMPs, Calpains. Cathepsins

GFAP Caspases
TDP-43 Caspases —
FUS P -

known from the literature. References can be found in the text.

— Fragments generated by cleavage at VELD>* and DLTD?%¢

FIGURE 2 | Key neuronal proteins involved in the proteopathy of different types of dementia, proteases involved in their truncation and fragments

Fragments

APy, AByo. APn-42 (n=2-11), ABl-n (n=13-20), Ap1-28,
AB1-33. Ap1-34, ABl-n (n=37-39). Apl-n (n=14-17)

Fragmentscleaved at D13, E391 and D421,
a 17 kDa fragment

A 22 kDa N-terminally fragment, C-terminally truncated
fragments

N- and C-terminally truncated fragments

Fragments of 25 and 35 kDa

?

proteins and exist in three isoforms in humans, APP695, APP751,
and APP770. The APP695 is the main isoform in neurons and
is the only isoform containing the sequence encoding AP (76,
77). In normal cells, APP is involved in kinase-based signaling,
growth regulation, neurite outgrowth, formation of synapses and
cell adhesion (33, 78). APP is cleaved by secretases and caspases at
specific sites and this leads to the formation and release of several
protein fragments (76, 78). The proteolytic processing of APP can
follow the amyloidogenic or the non-amyloidogenic pathway. The
major component of senile plaques, A, is generated in the amy-
loidogenic pathway by sequential cleavage of APP by B-secretase
and y-secretase to generate A4 and AB4. BACEL (B-site APP-
cleaving enzyme 1), BACE2 (B-site APP-cleaving enzyme 2), and
cathepsin B have been identified as [B-secretase responsible for
production of AP. The y-secretase activity belongs to a membrane-
bound protease complex (presenilin 1, presenilin 2, nicastrin,
Aph-1, and Pen-2) (76, 78). In the non-amyloidogenic processing,
APP is cleaved by o.-secretase which binds to and cleaves APP
within the AP region and prevents formation of AB. All the
identified o-secretases are from the family of disintegrin and
metalloproteases (ADAMs).

The accumulation of AP is an early process in neurodegen-
eration leading to formation of oligomers, fibrils, and even-
tually extracellular plaques. CSF APy, levels become abnormal
5-10years or more before the diagnosis (79, 80). The concen-
tration of CSF AP4, begins to increase abnormally followed by
a drastic decrease. In mutation carriers (i.e., in the APP genes,
presenilin 1, or presenilin 2), CSF APy, levels become abnormal
up to 25years before disease onset (28). Intracellular levels of
AP initiate synaptic dysfunction, formation of NFTs and loss of
neurons. The APy, is the main toxic form of AP, whereas APy
has been shown to have neuroprotective functions (78, 81).

A4z and A4 have also been detected in patients with cerebral
amyloid angiopathy (CAA), which can be a co-occurring disorder
with AD or a separate finding. CSF levels of AP and AP4o
are lower in patients with CAA and CAA-related inflammation
(CAA-ri) than controls (82-84). Furthermore, the level of CSF

anti-A autoantibodies is increased in CAA-ri which shares simi-
larities with the amyloid-related imaging abnormalities detected
in AD immunization clinical trials (84). It has been suggested
that the CSF anti-AP autoantibody concentration can be used as
a biomarker during immunization clinical trials in AD (84, 85).

The AP peptide is subjected to further truncations by different
proteases and forms peptides of various lengths. The peptides are
generated by N- or C-terminal truncation of AP and several of
these have been identified in CSE, e.g., ABy_4 (n=2-11), AB1_»
(1’1 = 13—20), ABI—Z& AB1_33, A[.))l_34, and ABl—n (1’1 = 37—39).
These peptides have been found to be elevated in CSF of AD
patients but only few are involved in plaque formation (86-89).

Recently, it was reported that some of the identified AP peptides
in CSF are generated by an alternative APP processing pathway
(90). In this pathway, APP is cleaved by o.- and B-secretase without
the involvement of y-secretase. Many of the peptides derived from
this pathway are elevated in CSF from AD suggesting an up-
regulation of this pathway in AD as a response to the increase
of the amyloidogenic pathway (90). The identified products of
the alternative pathway are APi.14, ABi-15, and APi.16. Eleven
other truncated peptides with C-terminal at residue 15 in the AP
sequence and start at the N-terminal end of the B-secretase site
have been identified in CSE The peptides contain a part of the
AP sequence but are not degradation products of AP because they
start upstream of the B-secretase cleavage site. Several of these
were found to be elevated in AD and may also be generated in
the alternative processing pathway (91).

Plasma levels of A4z, APa4o, and the ratio AB4/AB4o have
been examined in several cross-sectional studies with AD, MCI
patients, and healthy controls. The results have shown a substan-
tial overlap between diagnostic groups and the results between
studies have been contradictory (92). AB4, and AP have also
been studied in longitudinal studies to assess their association
with disease progression. Although the results are not clear
between individual studies the data show that a decreased baseline
level of AB4, predicts a greater risk of AD (92). A recent study
has quantified ABi.17 levels in plasma and has shown significant
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associations with the clinical diagnosis of AD, indicating the
potential of the AP fragments (93). The plasma levels of the
remaining AP cleavage products have only been examined in few
studies. Highly specific antibodies and robust immunoassays must
be developed and used for detection of these cleavage products of
different size.

Tau

Tau is the basic component of the intracellular insoluble filamen-
tous structures, also referred to as NFTs. The tau protein belongs
to the family of microtubule-associated proteins and binds to,
stabilizes, and promotes the assembly of microtubules. Tau is also
involved in signaling pathways and cytoskeletal organization (94).

Tau is mainly expressed in the central and peripheral nervous
system and most abundant in axons. There are six isoforms in
the adult human brain, which vary in size and have either three
or four microtubules-binding domains. The six forms each show
functional differences (95, 96). The ratio between tau containing
three and four domains is 1:1 in normal human brain but this
ratio is altered in the different tauopathies. Additionally, different
isoforms of tau are involved in the different tauopathies and
affect distinct brain regions, hence it has been suggested that the
isoform profiles can be used to classify the different tauopathies
(97, 98). Besides AD, the tauopathies include FTLD, progressive
supranuclear palsy (PSP), CBD, and prion diseases (20, 98).

In AD, the concentration of CSF t-tau and p-tau become abnor-
mal after AB4, and their levels increase progressively up to the
time of diagnosis. Thus, tau levels are higher in MCI patients
with an early conversion compared with late converters (79, 80).
Increased CSF levels of tau are increased 15 years before symptoms
in mutation carriers (28).

The conversion of soluble tau protein to insoluble inclusions
is a central event in AD and other tauopathies. Formation of
inclusions is mediated by protein aggregation and misfolding. The
aggregates have been shown to be self-propagating and spread
from one neuron to another (99). Tau aggregation and misfolding
are induced by abnormal phosphorylation and proteolytic cleav-
age. Hyperphosphorylated tau is the main component of NFTs and
several kinases and phosphatases have been associated with this. A
level of phosphorylation occurs at normal state but in disease state,
an abnormal level of phosphorylation is seen and results in a low-
binding affinity to tubulin promoting disassembly of microtubules
(94, 96).

Although the presence of t-tau and p-tau in CSF has been
investigated in several studies, the nature of the protein in CSF
is not fully known. A number of studies have suggested the
presence of different tau and p-tau fragments in CSF (94, 95)
and a recent study has reported that CSF tau and p-tau occur as
various N-terminal and mid-domain fragments (67). The level of
specific fragments were significantly elevated in AD patients when
compared to controls and showed a diagnostic potential but the
fragments still remain to be measured in other dementias (67).

Plasma levels of t-tau and tau fragments have only been assessed
in few studies. It has been demonstrated that plasma t-tau levels
are elevated in AD patients but with an overlap with control sub-
jects (59). Hence, the diagnostic utility of plasma t-tau is not clear.
Recently, the presence of protease generated fragments of tau has

been shown in serum (75, 100, 101). The fragments have been
shown to correlate with symptoms in AD patients and predict
the disease progression in early AD (100, 101), indicating the
pathological relevance of fragmentations.

It is a possibility that the assays for t-tau may also detect certain
fragments of tau and as multiple systems are in use for detecting
t-tau, this is most likely different from assay to assay depend-
ing on the antibodies used. Unless an assay is constructed as a
sandwich ELISA with antibodies detecting the N- and C-terminal
sequences, there is this possibility.

Furthermore, it must be noticed that the relative concentration
of the protein determined in the clinical studies is a result of the
specific calibrators used in the different assays.

In dementia, tau is cleaved by caspases and calpains, but other
proteases have also been detected including thrombin, cathep-
sins, and puromycin-sensitive aminopeptidase (102). It has been
found that certain proteolytic fragments of tau are specific for
the different tauopathies suggesting that different proteases may
be specific to individual tauopathies (102). Several tau fragments
have been reported and the most studied are caspase-generated
tau fragments cleaved at D13, E391, and D421 as well as a calpain-
cleaved fragment of 17 kDa which are associated with AD (66,
103). The majority of the reported fragments have only been
analyzed in vitro, in AD-affected brains or transgenic animals (94).

Apolipoprotein E

The €4 allele of ApoE is known to be associated with the risk of
developing AD. ApoE is a major transport protein of cholesterols
and other lipids in plasma and in the brain. It is most abundant
in the brain and the liver (104). In the CNS, ApoE is mainly
synthesized in astrocytes but is also present in lower concen-
tration in some neurons, activated microglia, oligodendrocytes,
and ependymal layer cells. In neurons, the synthesis of ApoE is
induced under neuronal stress and damage and has been detected
in cortical and hippocampal neurons (105). In the normal brain,
ApoE is associated with the maintenance and repair of neurons
and involved in the cholesterol homeostasis (106). ApoE is a
polymorphic protein with the main isoforms being €2, €3, and
4. The three isoforms differ by single amino acid substitutions at
positions 112 and 158 (104, 107). The ApoE 4 allele is a risk factor
for late-onset familial and sporadic AD (18, 108). Around 10-15%
of the general population has the £4 allele, whereas the prevalence
is 40-65% in AD patients. The majority of the general population
is homozygous for the ApoE €3 allele. The third common isoforms
€2 is present in 5-10% of the population. The ApoE &2 allele has
protective effects on the cognition and has been associated with
reduced AD-related disease burden (109, 110).

Homozygosity for ApoE 4 leads to a 50-90% risk of developing
AD by the age 85, whereas individuals with one copy have a
risk of 45%. For individuals with no ApoE ¢4 alleles the risk is
about 20% (18, 111). ApoE has been found to be co-localized with
amyloid plaques and NFTs (105). Several mechanisms have been
proposed for the role of ApoE €4 in the pathology of AD including
regulation of the deposition and clearance of AP and amyloid
plaques, regulation of phosphorylation and assembly of tau into
NFTs, dysfunction of the neuronal signaling pathways, induction
of AB-regulated lysosomal leakage, increased atherosclerosis and
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vascular inflammation in AD, and apoptosis in neurons (105,
112). However, its exact role in the AD pathology still remains
unclear (105). Besides AD, the 4 allele has also been associated
with CAA, hemorrhages, tauopathies, DLB, PD, and multiple
sclerosis (113-116).

The CSE ApoE levels have been determined by several
studies and some have found decreased levels in CSF of AD
patients whereas other studies have shown an increase (117).
Increased CSF levels of ApoE were also detected in DLB and PD
patients (118).

Plasma ApoE levels have also been reported but as seen with
the CSF measurements the results have been inconsistent. A
study by Taddei et al. (119) reported increased plasma ApoE
levels in AD patients compared to controls. In contrast to this,
the Australian Imaging, Biomarkers and Lifestyle (AIBL) study
showed decreased plasma levels of ApoE and ApoE €4 in AD
patients and showed a correlation with the disease level (120).
Two other studies based on the Rotterdam study and apoEurope
Study, respectively, also observed decreased ApoE levels in AD
patients compared to controls (121, 122). However, this difference
was not significant in the Rotterdam study when adjusted for
ApoE genotype, age, and gender (121). Finally, a recent study has
shown that low plasma ApoE levels are associated with the risk of
developing AD independent of the ApoE genotype, indicating the
potential of this biomarker as a preclinical marker (123).

Aberrant proteolytic cleavage of ApoE plays an important role
in the AD pathology associated with ApoE. ApoE is subjected to
intracellular proteolytic cleavage and generates neurotoxic frag-
ments. The fragments have been detected in cultured neurons and
AD brains and have been shown to induce tau phosphorylation
and formation of NFT-like aggregates in CNS neurons with p-tau
and phosphorylated neurofilaments (124, 125). In addition, the
fragments impair the function of mitochondria in neurons and
promote neurodegeneration. The level of ApoE fragments is ele-
vated in AD brains compared to cognitively normal controls (68).
Importantly, ApoE €4 is more susceptible to fragmentation than
ApoE €3 (124, 126). Among the fragments, a 22 kDa N-terminally
peptide has been detected in brain tissue and CSF. Interestingly,
the ApoE e4-derived 22 kDa fragment has been found to be more
neurotoxic than the corresponding ApoE e3-derived fragment
(68). Several C-terminally truncated ApoE fragments of different
lengths have also been detected in AD brains. One of these is
the apoE4 (A272-299) fragment which interacts with p-tau and
phosphorylated neurofilament to form inclusions (124). A neuro-
specific chymotrypsin like protease has been suggested to be
involved in the formation of these fragments but further studies
are needed (127).

So far, there are no studies on plasma levels of ApoE fragments
and their correlation with AD or other dementias.

o-Synuclein

o-synuclein is a small protein located in both the CNS and the
peripheral nervous system. It can be found specifically bound to
the membrane of pre-synaptic vesicles and very little o.-synuclein
is distributed throughout the rest of the nerve (128). o-synuclein
is also expressed in other tissues including red blood cells (64),
kidney, lung, heart, and liver (129). The specific function of

o-synuclein is unknown but it is implicated in a number of
dementias including AD, DLB, and PD. o.-synuclein aggregates to
form a component of Lewy bodies that can be found in the cyto-
plasm of neurons. These aggregates are observed in the dementias
mentioned above except for AD and are believed to be the key
step in progression of neurdegeneration in synucleionopathies.
There is, however, evidence that suggests o.-synuclein plays a role
in the aggregation of tau, which is observed in AD (130, 131).
Furthermore, increased levels of soluble o.-synuclein have been
found in AD brains in patients in absence of LBD pathology and
the levels showed a correlation with cognitive decline (132).

Cerebrospinal fluid levels of o.-synuclein and its oligomers have
been assessed in several types of dementia. The differential perfor-
mance of o-synuclein has been inconsistent in different clinical
studies. A number of studies have shown that CSF o.-synuclein
levels are lower in DLB and PD patients than those with AD and
other dementias (43, 44, 133), whereas others have concluded that
CSF oa-synuclein does not discriminate between dementias (46).
The levels of CSF a.-synuclein oligomers are increased in DLB and
PD compared with controls and AD patients (48).

The plasma levels of o-synuclein and its oligomers have been
quantified in DLB and PD patients by several studies. Increased
plasma levels of o.-synuclein and oligomers were seen in patients
with PD when compared to controls (134-137). However, contra-
dictory results were observed in other investigations (138, 139).
Similarly, the level of plasma oi-synuclein oligomers was higher in
DLB patients than controls whereas the o.-synuclein levels were
lower in DLB than AD patients and controls (134, 139).

A lot of focus has been on aggregation of the intact o.-synuclein,
however more recently studies suggest that fragmentation of -
synuclein is significant in the pathology of synucleinopathies.
Fragments of ot-synuclein have been identified in brains of PD and
DLB patients (69, 141). One protease of interest is calpain, which
has been observed to create cleavage products that can induce
aggregation of a.-synuclein in vitro. Calpain cleaves ot-synuclein in
the N- and C-terminal regions (140). MMPs also play a role in o
synuclein aggregation and therefore Lewy Body formation. Partial
cleavage with either MMP-1 or MMP-3 increases aggregation of
the protein (141) and both proteases are elevated in PD brains
(142, 143). Neurosin is another protease of interest, especially as
it is found within amyloid plaques in AD (144). Neurosin has also
been identified in CSF and has been found to be lower in patients
with synucleinopathies compared to those with AD and healthy
patients (145). Finally, cathepsins are known to be involved in
the proteolysis of o.-synuclein (146). The presence of o.-synuclein
fragments in CSF and plasma remains to be investigated.

TAR DNA-Binding Protein 43 and Fused in
Sarcoma Protein

TAR DNA-binding protein 43 is a nuclear protein that functions
in regulation of transcription and exon splicing (24, 147). TDP-
43 is known as the key protein in the pathogenesis of FTLD with
ubiquitin-positive, tau-negative inclusions. FTLD is the second
most common type of dementia after AD with an onset before
65 years of age (148) and differentiation between AD and FTLD
can be challenging as they share several clinical features (149).
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In FTLD, TDP-43 is post-translationally modified by aberrant
ubiquitination, hyperphosphorylation, and proteolytic cleavage
at the N-terminus (24, 25). In addition, TDP-43 is translocated
from the nucleus and generates cytoplasmic insoluble inclu-
sions containing ubiquitinated and aberrantly phosphorylated
TDP-43 (24).

TAR DNA-binding protein 43 neuronal and glial inclusions
have been detected in AD and several types of PD (150). TDP-
43 inclusions are found in 25-30% of all sporadic AD patients and
14% of familial AD patients. The presence of TDP-43 in AD brains
has been shown to give greater brain atrophy and more deficits
when compared to AD patients without TDP-43 inclusions (151).
In addition, caspase 3-cleaved TDP-43 has been detected in AD
brains and it is proposed to be associated with neurodegeneration
(70). This suggests that TDP-43 in combination with specific AD
biomarkers can be used to identify patients with the risk to develop
severe clinical deficits.

TAR DNA-binding protein 43 levels are detectable in CSF and
were found to be elevated in FTLD patients when compared to
controls (152, 153). TDP-43 has also been detected in plasma and
the levels were increased in FTLD and a subset of AD patients
(154, 155).

Fragmentation of TDP-43 has been observed. The N-terminal
cleavage of TDP-43 generates C-terminal fragments, but the cleav-
age sites and their function in the pathology of FTLD are not
fully known. In an in vitro study, two caspase-generated C-
terminal fragments of 25 and 35kDa were identified (156). The
25 kDa fragment of TDP-43 was found to induce the formation of
intra-cellular toxic, insoluble and ubiquitin- and phospho-positive
aggregations. Hence, protease cleavage initiates the translocation
of TDP-43 from the nucleus to cytoplasm and induces formation
of toxic insoluble inclusions (25). Caspase 3, 7, 6, and 8 have all
been associated with TDP-43 cleavage (156).

The TDP-43 fragments have not been investigated in CSF or
plasma.

TAR DNA-binding protein 43 and its fragments are potential
biomarkers for tau-negative FTLD and can be used in the differ-
ential diagnosis of dementia and aid in the separation between
tau-negative FTLD and tauopathies.

Another protein with implication for the differential diagno-
sis of dementia is the RNA-binding protein fused in sarcoma.
The FUS protein is the pathological protein in 10-20% of spo-
radic FTLD patients (FTLD-FUS), which are negative for TDP-
43 (26, 27, 157). The FUS protein binds to DNA and RNA and
is associated with several cellular processes such as cell prolif-
eration, DNA repair, transcription regulation, RNA splicing and
transport of RNA (158-162). FUS is ubiquitously expressed in
the nucleus and cytoplasm in most cell types and in neurons
and glial cells it is primarily expressed in the nucleus (163).
In FTLD, the FUS protein is mostly present in the cytoplasm
whereas the FUS levels in the nucleus are decreased indicating a
delocalization of the protein. The delocalization and accumula-
tion of FUS lead to formation of cytoplasmic inclusions that are
the characteristics of FTLD-FUS (26, 150). In addition, a mouse
model has shown that overexpression of the FUS protein results
in neurodegeneration (164).

To the best our knowledge neither the levels of FUS in CSF and
plasma nor its fragmentation have been reported.

Glial Fibrillary Acidic Protein

Glial Fibrillary Acidic Protein is a type III intermediate filament
(IF) protein constituting a part of the cytoskeleton in specific cell
types. Besides the pivotal role of GFAP in the structural properties
of these cells, it is involved in several fundamental cellular activi-
ties including motility (165), autophagy (166), synapse formation
(167), and myelination (168).

Although it was originally considered an astrocyte-specific
marker (169), GFAP has subsequently been demonstrated in glial
and non-glial cells of the periphery (170-173). GFAP has been
observed in virtually all areas of the brain but is mainly expressed
in hippocampal regions (174-176) as well as the subventricu-
lar zone and olfactory system of both non-demented elders and
patients with dementia (174-177). Multiple splice variants exist
and in human hippocampal AD tissue many of these isoforms
show differential transcript levels (176).

Differential transcript levels of GFAP isoforms may affect
cellular function and/or morphology (165) as analysis of in vitro
transfection suggests that GFAP isoforms differ in their ability
to form functioning IFs (174, 176, 178, 179). In general, little is
known about the role of GFAP in AD and other dementias. GFAP
is known to interact with proteins involved in cleavage of APP
(180, 181) as well as proteins modulating chaperone mediated
autophagy (CMA) (166). GFAP may both inhibit and promote
CMA and the phosphorylation state of GFAP is suggested to
influence this balance (166). Incomplete CMA of tau is suggested
to promote tau aggregation (182) which is a hallmark of several
tauopathies including AD (103).

Studies have shown a correlation between increased expression
levels of GFAP within brain regions involved in memory and the
neuropathological changes of AD such as AB deposits and NFTs
(183-187). Also, disease duration and progression of AD has been
shown to correlate strongly with up-regulation of GFAP in the
temporal lobe of AD patients (176, 184, 188).

In CSE, levels of GFAP have been observed to be increased in
AD patients compared to controls (189-192). Furthermore, GFAP
levels were found to increase with AD severity (189). In most
studies, increased GFAP levels were independent of age, however,
Rosengren et al. (190), observed a correlation between these two
parameters (190).

Cerebrospinal fluid GFAP levels are also increased in patients
with other neurological disorders and brain injuries such as CJD
(191, 192), stroke (193, 194), and traumatic brain injury (195,
196). Regardless of this general increase in GFAP levels observed
in these disorders and injuries, GFAP may be applied in con-
text with other biomarkers for differential diagnosis, e.g., GFAP,
together with the glial-specific S100 calcium binding protein B
(5100B) may hold the potential to distinguish between CJD and
AD (191).

In a recent study, GFAP was measured in plasma. Patients cov-
ering a broad spectrum of neurological diseases, including several
forms of dementia, were included. Plasma levels of GFAP were
found to be independent of age and evenly distributed between

Frontiers in Neurology | www.frontiersin.org

May 2015 | Volume 6 | Article 90


http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive

Inekci et al.

CSF biomarkers used as inspiration for blood-based biomarkers

genders. No disease category displayed consistently increased
levels of GFAP (197).

In vitro, GFAP is cleaved by caspase 6 at VELD225. The result is
a C-terminal fragment of GFAP unable to assemble into filaments
and an N-terminal fragment of GFAP perturbing in vitro filament
assembling and promoting inter-filament aggregation (198). Cas-
pase 3 is suggested to cleave GFAP at DLTD266. Cleaved GFAP has
been shown to co-localize with caspase 3 in apoptotic astrocytes
around blood vessels as well as plaque-rich regions of specific
areas in the human AD brain (199). Furthermore, studies have
shown calpain I-mediated cleavage products of GFAP in human
brain as well as in CSF following traumatic brain injury (200, 201).
Taken together, these data suggest that GFAP is a target of calpain
I, caspase 3, and caspase 6 and that astrocyte injury and damage
in the AD brain may involve cleavage of GFAP.
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