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Information theory, the mathematical theory of communication in the presence of noise, is 
playing an increasingly important role in modern quantitative neuroscience. It makes it possible 
to treat neural systems as stochastic communication channels and gain valuable, quantitative 
insights into their sensory coding function. These techniques provide results on how neurons 
encode stimuli in a way which is independent of any specifi c assumptions on which part of the 
neuronal response is signal and which is noise, and they can be usefully applied even to highly 
non-linear systems where traditional techniques fail. In this article, we describe our work and 
experiences using Python for information theoretic analysis. We outline some of the algorithmic, 
statistical and numerical challenges in the computation of information theoretic quantities from 
neural data. In particular, we consider the problems arising from limited sampling bias and from 
calculation of maximum entropy distributions in the presence of constraints representing the 
effects of different orders of interaction in the system. We explain how and why using Python 
has allowed us to signifi cantly improve the speed and domain of applicability of the information 
theoretic algorithms, allowing analysis of data sets characterized by larger numbers of variables. 
We also discuss how our use of Python is facilitating integration with collaborative databases 
and centralised computational resources.
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CPU and memory requirements of information  calculations for 
neural data has signifi cantly increased. This is due to a number of 
reasons. First, the improvement of the techniques to correct for 
the sampling bias problem (Panzeri et al., 2007) has allowed the 
information theoretic analysis of larger populations. Second, some 
of these bias corrections techniques are computationally intensive. 
Third, in the context of understanding whether the correlation 
structure of neural activity can be described by simple low order 
models, it has become important to compute distributions with 
maximum entropy in the presence of various sets of constraints 
(Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008). 
These calculations are particularly demanding in terms of proces-
sor and memory resources. Fourth, while most information analysis 
has been applied to spike trains, in the context of the development 
of brain machine interfaces it has become important to evaluate the 
information content of other types of brain signals, such as local 
fi eld potentials (LFPs) or Electroencephalograms (EEGs) which 
are analog in nature and must be represented at each time step 
(Belitski et al., 2008; Montemurro et al., 2008; Rubino et al., 2006; 
Waldert et al., 2008). The manipulation of these signals stretches 
computational requirements much more than using spikes, which 
due to their sparse binary nature can be represented compactly, for 
example by storing only the spike arrival times.

The increased demand on the information theoretic routines 
raises the question of whether it may be advantageous for the sci-
entifi c community to implement information theoretic algorithms 
for the analysis of neural data using platforms other than MATLAB. 
In the continuing development of these methods, we have recently 
started using Python, together with the numerical libraries NumPy 

INTRODUCTION
Information theory (Cover and Thomas, 2006; Shannon, 1948), 
the mathematical theory of communication in the presence of 
noise, is playing an increasingly important role in modern quan-
titative neuroscience, because it makes it possible to treat neural 
systems as stochastic communication channels and gain valuable, 
quantitative insights into their sensory coding function (Borst and 
Theunissen, 1999; Rieke et al., 1999; Victor, 2006). Information 
theory provides a set of fundamental mathematical quantities, such 
as entropy and mutual information, that quantify with meaningful 
numbers the reduction of uncertainty about stimuli gained from 
neural responses, without the need to make any specifi c assumption 
of what is signal and what is noise in the neuronal response.

Most laboratories (including ours) have so far implemented 
information theoretic analyses using MATLAB®1. MATLAB is a 
numerical computing environment and programming language 
which is used by most neurophysiosiological laboratories to store, 
preprocess and plot experimental data. In our view, the reason for 
the choice of MATLAB for the implementation of such routines 
is that it allows interactive and rapid development of algorithms, 
though at the cost of some performance overhead. Traditionally, 
information calculations have not been demanding in terms of 
memory usage or CPU time because the information calculations 
were restricted to relatively small neural populations as a conse-
quence of the limited sampling bias problem. Therefore, it has been 
convenient to perform the analysis with the tools used to obtain, 
preprocess and store the data. However, over the last few years, the 
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and SciPy. We have found several key advantages to this change 
that make it more suitable for the analysis of the datasets we are 
currently studying and for future challenges such as implementing 
these methods into computational grids and clusters.

In this article, we fi rst briefl y present the principles of informa-
tion theory and its importance to neuroscience. We then review 
some features of Python that are particularly useful for information 
theoretic analysis and consider in detail the implementation of the 
mathematical algorithms that are crucial for obtaining accurate and 
unbiased estimates of information from neural data. We also detail 
a method to compute the entropy of neural data given a number of 
plausible constraints, and we put particular emphasis on the specifi c 
advantages of Python in addressing these algorithmic challenges. 
We fi nally apply the methodology to real data recorded from the 
rat somatosensory cortex, and discuss the potential implications 
of wider use of Python in information theoretic analysis of the 
neural code.

INFORMATION THEORY FOR ANALYSIS OF NEURAL DATA
Information theory is a “mathematical theory of communication” 
developed in the 1940’s by Claude Shannon at Bell Labs (Cover and 
Thomas, 2006; Shannon, 1948). It formalises, in a mathematically 
rigorous way, a measure of “information” in a system with appli-
cations to coding and transmission of that information. While it 
was originally developed for analysis of artifi cial systems, such as 
transmission of signals along a telegraph wire, the generality of 
the formulation means it can be usefully applied to a wide range 
of problems.

Consider an experiment in which an animal is presented with a 
stimulus s selected with probability P(s) from a stimulus set S con-
sisting of S elements, and the consequent response (either of a single 
neuron or an ensemble of neurons) is recorded and quantifi ed in a 
certain post-stimulus time window. The aim of information theo-
retic analysis is to gain insight into how the neurons represent the 
stimuli. In most applications this is done by examining the informa-
tion content of different candidate neural codes. To carry out such 
an analysis, the fi rst step is to choose the neural code. In practice 
this means choosing a way to quantify the neuronal response that 
refl ects our assumption of what is most salient in it. For example, 
if we think that only spike counts (not the precise temporal pattern 
of spikes) are important, we choose a spike-count code: we defi ne 
a post-stimulus response interval and count the number of spikes 
it contains on each repetition (trial) of a stimulus. In most cases, 
the neural response is quantifi ed as a discrete, multi-dimensional 
array r = {r

1
,…, r

L
} of dimension L. For example, to quantify the 

spike count response of a population of L cells, r
i
 would be the 

number of spikes emitted by cell i on a given trial in the response 
window. Alternatively, to quantify the spike timing response of a 
single neuron, the response window is divided into L bins of width 
Δt, so that r

i
 is the number of spikes fi red in the i-th time bin (Strong 

et al., 1998). Here Δt is the assumed time precision of the code and 
can be varied parametrically to characterize the temporal precision 
of the neural code. We denote by R the set of possible values taken 
by the response array.

Having quantifi ed the response, the second step is to com-
pute how much information can be extracted from the chosen 
response quantifi cation. This allows an assessment of how good the 

 candidate neural code is. The more the response of a neuron varies 
across a set of stimuli, the greater its ability to transmit informa-
tion about those stimuli (de Ruyter van Steveninck et al., 1997). 
The fi rst step in measuring information is thus to measure the 
response variability. The most general way to do this is through 
the concept of Shannon entropy, referred to hereafter as entropy, 
which is a measure of the uncertainty associated with a random 
variable. Intuitively one can posit some desirable properties of any 
uncertainty measure. It should be continuous; that is small changes 
in the underlying probabilities should result in small changes in the 
uncertainty. It should be symmetric; that is the measure should not 
depend on the labelling or ordering of the variables and outcomes. 
The measure should take its maximum value when all outcomes 
are equally likely and for systems with uniform probabilities, the 
measure should increase with the number of outcomes. Finally, 
the measure should be additive; that is it should be independent of 
how the system is grouped or divided into parts. It can be shown 
(Cover and Thomas, 2006) that any measure of uncertainty about 
the neural responses satisfying these properties has the form

H P P( ) ( )log ( )R r r
r R

= −
∈
∑ 2

 
(1)

where P(r) is the probability of observing response r across all 
trials to all stimuli. The response entropy quantifi es how neuronal 
responses vary with the stimulus and thus sets the capacity of 
the spike train to convey information. In Eqs 1 and 2 the sum-
mation over r is over all possible neuronal responses. However, 
neurons are typically noisy; their responses to repetitions of an 
identical stimulus differ from trial to trial. H(R) refl ects both 
variation of responses to different stimuli and variation due 
to trial-to-trial noise. Thus H(R) is not a pure measure of the 
stimulus information actually transmitted by the neuron. We can 
quantify the variability specifi cally due to noise, by measuring 
the so-called noise entropy, which is the entropy conditional on 
stimulus presentation:

H P s P s P s
s

( | ) ( ) ( | ) log ( | )R S r r
S r R

= −
∈ ∈
∑ ∑ 2

 
(2)

The summation over s is over all possible stimuli. P(r|s) is the 
probability of observing a particular response r given that stimulus s 
is presented. Experimentally, P(r|s) is determined by repeating each 
stimulus on many trials, while recording the neuronal responses. 
The probability P(s) is usually chosen by the experimenter. The 
noise entropy quantifi es the irreproducibility of the neuronal 
responses at fi xed stimulus. The noisier is a neuron, the greater 
is H(R|S). The information that the neuronal response transmits 
about the stimulus is the difference between the response entropy 
and the noise entropy. This is known as the mutual information 
I(S; R) between stimuli and responses (in the following abbrevi-
ated to information).

I(S; R) = H(R) − H(R|S) (3)

Mutual information quantifi es how much of the information 
capacity provided by stimulus-evoked differences in neural activ-
ity is robust to the presence of trial-by-trial response variability 
(de Ruyter van Steveninck et al., 1997). Alternatively, it quantifi es 
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the reduction of uncertainty about the stimulus that can be gained 
from observation of a single trial of the neural response.

The mutual information has a number of important qualities 
that make it well suited to characterizing how a response is modu-
lated by the stimulus (Borst and Theunissen, 1999; Fuhrmann 
Alpert et al., 2007; Panzeri et al., 2008; Rieke et al., 1999). First, 
as outlined above, it quantifi es the stimulus discriminability 
achieved from a single observation of the response, rather than 
from averaging responses over many observations. Second, I(S; R) 
is the most general measure of correlation between the stimuli 
and the neural responses, because it automatically takes into 
account contributions of correlations at all orders. Third, comput-
ing information does not require specifying a stimulus–response 
model; it only requires computing the response probabilities in 
response to each stimulus condition. Therefore, the calculation 
of information does not require spelling out which stimulus fea-
tures (e.g., contrast, orientation, etc.) are encoded. Fourth, I(S; R) 
takes into account the full stimulus–response probabilities, which 
include all possible effects of stimulus-induced responses and 
noise. Thus, it does not require the signal to be modeled as a set 
of response functions plus noise and is applicable even to situ-
ations when such decompositions are diffi cult or dubious. The 
last three points show that information theory can, in principle, 
be applied to any type of neural signal, including responses such 
as LFPs or spikes that are clearly nonlinear and diffi cult to model 
by a set of standard functions. Fifth, it is possible to analyze and 
combine the information given by different measures of neural 
activity e.g. spike trains and LFPs. These two signals have a very 
different nature and signal to noise ratios. Therefore, a certain 
increase of the peak height of an LFP cannot be compared to a 
certain change in the spike train to understand how well LFPs or 
spikes encode stimuli. In contrast, with information theory the 
LFPs and spikes can be directly compared because information 
theory projects both signals onto a common scale that is mean-
ingful in terms of stimulus knowledge.

Information theoretic techniques have been successfully used to 
address a number of questions about sensory coding. For example, 
they have been used to address the question of whether neurons 
convey information by millisecond precision spike timing or sim-
ply by the total number of emitted spikes (the spike count). The 
application of information theory to spike train analysis has showed 
that the ms-precise timing of spikes provides important informa-
tion that cannot be extracted from spike counts (Panzeri et al., 
2001; Victor, 1999, 2006). Information theory has also been used 
to characterize the functional role of correlations in population 
activity, by investigating in which conditions correlations play a 
quantitatively important role in transmitting information about the 
stimulus (Averbeck et al., 2006; Dan et al., 1998; Hatsopoulos et al., 
1998; Latham and Nirenberg, 2005; Panzeri, 1999; Petersen et al., 
2001; Pola et al., 2003) or in constraining the dynamic range of net-
work responses (Schneidman et al., 2006). Information theory has 
also been used to characterize the amount of interactions between 
neural populations (Honey et al., 2007).

WHY PYTHON?
For many years, the de facto standard for many groups working in 
the area of neurophysiological data analysis has been MATLAB®. 

However, the Python programming language (van Rossum, 1995) 
combined with the numerical and scientifi c libraries NumPy and 
SciPy (Jones et al., 2001) provide a compelling alternative for sci-
entifi c programming. Python is a modern, fully object-oriented 
programming language that is powerful, fl exible and easy to learn. 
The NumPy library provides a multi-dimensional array object and 
associated vectorised operations, and SciPy enhances this with a 
range of scientifi c functions using the NumPy array object. The 
syntax is familiar to anyone coming from a background with 
MATLAB or another C derivative language and there are a com-
prehensive set of tools for plotting and interactive use (IPython and 
Matplotlib). Assignments are by reference rather than by copying, 
which allows fi ner grained control of memory usage, and there 
are several ways to rapidly extend the system with external code 
written in FORTRAN and C. The fl exibility and good design of 
the Python language make large projects much more manageable 
than with MATLAB, where each function must reside in a separate 
fi le and refactoring to reduce code repetition grows increasingly 
diffi cult with project size. Python is a well developed language, 
with libraries available for almost any conceivable task, such as 
GUI development, network communication, support for different 
fi le formats, etc. It is possible to read and write MATLAB binary 
fi les, and even call MATLAB commands from within the Python 
environment, which allows for a smooth transition and means 
that time invested in an existing MATLAB code base is not wasted. 
Finally, the Python tool set is open source2, rather than a propri-
etary product, which has several obvious advantages for scientifi c 
work. Its free availability allows better reproducibility of the results, 
since all interested parties are free to run the software without an 
expensive license. It is also inherently future-proof, since it will 
always be possible to obtain and use the version for which the code 
was written, whereas a commercial product may be withdrawn at 
some point in the future.

THE LIMITED SAMPLING BIAS PROBLEM
A major diffi culty when applying techniques involving information 
theoretic quantities to experimental systems, is that they require 
measurement of the full probability distributions of the variables 
involved. If we had an infi nite amount of data, we could measure 
the true stimulus-response probabilities precisely. However, any 
real experiment only yields a fi nite number of trials from which 
these probabilities must be estimated. The estimated probabilities 
are subject to statistical error and necessarily fl uctuate around their 
true values. The signifi cance of these fi nite sampling fl uctuations 
is that they lead to both statistical error (variance) and systematic 
error (called limited sampling bias) in estimates of entropies and 
information. This bias is the difference between the expected value 
of the quantity considered, computed from probability distribu-
tions estimated with N trials or samples, and its value computed 
from the true probability distribution. The bias constitutes a sig-
nifi cant practical problem, because its magnitude is often of the 
order of the information values to be evaluated, and because it 

2“Open source is a development method for software that harnesses the power of 
distributed peer review and transparency of process. The promise of open source is 
better quality, higher reliability, more fl exibility, lower cost, and an end to predatory 
vendor lock-in.” http://www.opensource.org/

http://www.opensource.org/
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cannot be alleviated simply by averaging over many neurons with 
similar characteristics.

ORIGINS OF THE BIAS
The most direct way to compute information and entropies is to esti-
mate the response probabilities as the histogram of the experimen-
tal frequency of each response across the available trials. Plugging 
in these empirical probability estimates into Eqs 1–3 results in a 
direct estimate that we refer to as the “plug-in” method.

In general, both the full output entropy H(R) and the noise 
entropy H(R|S) are biased downwards. That is, the estimated 
value is less than the true value, and the estimated value increases 
with the number of trials used, asymptotically approaching the 
true value. Intuitively, this is because fi nite sampling means it is 
less likely that the full range of responses will be included and so 
the measured responses seem less variable than they really are. In 
addition, estimates of H(R|S) are signifi cantly more biased than 
those of H(R), since the latter depends on P(r) which is calculated 
with data gathered across all stimuli and is better sampled than the 
conditional distributions, which are each sampled with data from 
a single stimulus only. The bias in the mutual information is then 
the difference between the bias of H(R) and that of H(R|S). This 
results in an upward bias in the information, since the magnitude 
of the bias of H(R|S) is greater, and its sign is reversed in Eq. 3. 
Again, this makes sense intuitively, since the fi nite sampling can 
introduce spurious stimulus-dependent differences in the response 
probabilities, which make the stimuli seem more discernible and 
hence the neuron more informative than it really is.

BIAS CORRECTION METHODS
Fortunately a number of techniques have been developed to address 
the issue of bias, and allow much more accurate estimates of infor-
mation theoretic quantities than the “plug-in” method described 
above. Panzeri et al. (2007) provide a review of such methods, a 
selection of which are briefl y outlined here. For other methods and 
approaches please see Panzeri et al. (2007) and Victor (2006).

Panzeri–Treves (PT)
In the so-called asymptotic sampling regime, when the number of 
trials is large enough that every possible response occurs many 
times, an analytical approximation for the bias (i.e. the difference 
between the true value and the plug-in estimate) of entropies and 
information can be obtained (Miller, 1955; Panzeri and Treves, 
1996).

BIAS H
N

R
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R
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s
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s  
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The value of the bias computed from the above expressions 
is then subtracted from the plug-in estimate to obtain the cor-
rected values. This requires an estimate of the number of relevant 
responses Rs. The simplest approach is to approximate Rs by the 

count of responses that are observed at least once – this is the “naive” 
count. However due to fi nite sampling this will be an underestimate 
of the true value. A Bayesian procedure (Panzeri and Treves, 1996) 
can be used to obtain a more accurate value.

Quadratic Extrapolation (QE)
In the asymptotic sampling regime, the bias of entropies and infor-
mation can be approximated as second order expansions in 1/N, 
where N is the number of trials (Strong et al., 1998; Treves and 
Panzeri, 1995). For example, for the information:

I I
a

N

b

Nplugin true( ; ) ( ; )S R S R= + +
2

 
(5)

This property can be exploited by calculating the estimates with 
subsets of the original data, with N/2 and N/4 trials and fi tting the 
resulting values to the polynomial expression above. This allows an 
estimate of the parameters a and b and hence I

true
(S; R). To use all 

available data, estimates of two subsets of size N/2 and four subsets 
of size N/4 are averaged to obtain the values for the extrapolation. 
Together with the full length data calculation, this requires seven 
different evaluations of the quantity being estimated.

Nemenman–Shafee–Bialek (NSB)
The NSB method (Nemenman et al., 2002, 2004) utilises a Bayesian 
inference approach and does not rely on the assumption of the 
asymptotic sampling regime. It is based on the principle that when 
estimating a quantity, the least bias will be achieved when assuming 
an a priori uniform distribution over the quantity. This method is 
more challenging to implement than the other methods, involving 
a large amount of function inversion and numerical integration. 
However, it often gives a signifi cant improvement in the accuracy 
of the bias correction (Montemurro et al., 2007b; Nemenman et al., 
2002, 2004).

Shuffl ed Information Estimator (Ish)
Recently, an alternative method of estimating the mutual informa-
tion has been proposed (Montemurro et al., 2007b; Panzeri et al., 
2007). Unlike the methods above, this is a method for calculating 
the information only, and is not a general entropy bias correction. 
However, it can be used with the entropy corrections described 
above to obtain more accurate results. For this method, two new 
quantities are defi ned. H

ind
(R|S) is the noise entropy that would be 

obtained if each individual component r
i
 of the response array r were 

independent of any other component r
j
 (i ≠ j) at fi xed stimulus; that 

is the entropy calculated from the distribution P
ind

(r|s) = Π
i
 P(r

i
|s). 

Since this value depends only on the fi rst order marginal values of 
the response, it has a small bias. H

sh
(R|S) is the entropy that results 

when stimulus conditional response correlations are removed by 
“shuffl ing” the data. That is, for each stimulus s, the individual 
response components r

i
 are shuffl ed independently across trials, to 

obtain a new set of vector responses r. Both of these values provide 
estimates of the entropy of the system if correlations were removed 
and become equal for an infi nite number of trials. However, with 
fi nite trials, H

ind
(R|S) shows a small bias, while H

sh
(R|S) shows 

a much larger bias, which is of the same order of magnitude as 
that of H(R|S), but typically slightly more negative. Using these 
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properties, a so-called shuffl ed information estimator, I
sh

, can be 
computed as

I
sh

(S; R) = H(R) − H
ind

(R|S) + H
sh

(R|S) − H(R|S) (6)

In the limit of a large number of trials I
sh

(S; R) = I(S; R) since 
H

sh
(R|S) = H

ind
(R|S). For small numbers of trials, the biases of 

H
sh

(R|S) and H(R|S) approximately cancel out, leaving the bias 
of I

sh
(S; R) dominated by that of H(R) − H

ind
(R|S) which is much 

smaller than that of the normal information estimate I(S; R). Using 
this shuffl ing technique, combined with entropy bias correction 
methods as described above, can reduce the number of trials needed 
for a reliable estimate by a factor of four (Montemurro et al., 2007b; 
Panzeri et al., 2007).

James–Stein Shrinkage (“Shrink”) Estimator
Another recently proposed technique to compute entropies from 
limited samples is the so-called “James–Stein shrinkage” technique 
(Hausser and Strimmer, 2008), which works by improving the 
estimate of the underlying probabilities, rather than the entropy 
specifi cally. The James–Stein shrinkage technique is based on aver-
aging two models with different properties; a high dimensional 
model with low bias and high variance and a lower dimensional 
one with larger bias but smaller variance. The probabilities p

r
 of 

each response r are determined by

p t pr r r
Shrink ML= + −λ λ( )1  (7)

where λ ∈ [0, 1] is the shrinkage intensity, pr
ML is the normal 

maximum likelihood estimate from frequency counts and t
r
 is the 

shrinkage target. The maximum entropy uniform distribution is 
suggested as a convenient target in Hausser and Strimmer (2008). 
The shrinkage intensity λ is then given by the following

λ*
( )

=
− ( )

− −( )
∑
∑

1

1

2

2

p

n t p

rr

k rr

ML

ML

 

(8)

This is repeated for all the stimulus conditional distributions, 
and the entropy is calculated from the corrected probability values 
using the plug-in method.

Comparative performance of different estimators
Figure 1 reports the results of the performance of bias correction 
procedures on a set of simulated spike trains from eight simulated 
neurons. Each of these neurons could emit a spike or not with a 
probability obtained from a Bernoulli process. The spiking prob-
abilities were exactly equal to those measured, in the 10–15 ms 
post-stimulus interval, from eight neurons in rat somatosensory 
cortex responding to 13 stimuli consisting of whisker vibrations 
of different amplitude and frequency (Arabzadeh et al., 2004). 
The 10–15 ms interval was chosen since it was found to be the 
interval containing highest information values. Figure 1A shows 
that (with the exception of the James–Stein shrinkage) all bias 
correction procedures generally improve the estimate of I(S; R) 
with respect to the plug-in estimator, and the NSB correction is 
especially effective. For the James–Stein shrinkage estimator, a 
uniform target distribution was used, and this may account for 
the relatively poor performance of that method outside of the 

 asymptotic regime. Figure 1B shows that the bias-corrected esti-
mation of information is much improved by using I

sh
(S; R) rather 

than I(S; R). The use of I
sh

(S; R) makes the residual errors in the 
estimation of information much smaller and almost independent 
from the bias correction method used. Taking into account both 
bias correction performance and computation time, for this simu-
lated system the best method to use is the shuffl ed information 
estimator combined with the Panzeri–Treves analytical correction. 
Using this, an accurate estimate of the information is possible 
even when the number of samples per stimulus is R

4
 where R is the 

dimension of the response space.
While the basic plug-in entropy calculation is a straightforward 

sum of logarithms, the correction methods described above add sig-
nifi cant complexity to the required calculations. In QE, the under-
lying entropy calculations have to be run many times, for PT the 
Bayesian estimate of the number of stimulus responses involves 
additional calculations and NSB involves a complicated procedure 
of many numerical integrations. For large data sets, with the large 
probability spaces that can often arise from modern physiological 
techniques, performance can be an issue as these computational 
methods become increasingly CPU and memory intensive. Since 
the performance of bias correction procedures depends on the 
statistics of data under analysis, in each data analysis task it is also 
important to test the accuracy of information estimation methods 
on simulated data with statistical properties similar to the actual 
experimental data of interest (Panzeri et al., 2007). It is therefore 
crucial that these methods be implemented as effi ciently as pos-
sible. An advantage of Python is that one can benefi t both from the 
improved development time due to the simple syntax and interac-
tive environment, as well as a number of well developed methods 
for optimising the performance critical portions of the code when 
necessary. There are tools for automatically converting Python to C 
inline, inserting your own C code within a Python program, writing 
full C and FORTRAN extension  modules or using Cython, which 

A B

FIGURE 1 | Comparison of the performance of different bias correction 

methods. The methods were applied to spike trains of eight simulated 
somatosensory cortical neurons (see text). The information estimates I(S; R) 
and Ish(S; R) are plotted as a function of the available number of trials per 
stimulus. (A) Mean ± SD/2 (over 50 simulations) of I(S; R). (B) Mean ± SD/2 
(over 50 simulations) of Ish(S; R). This calculation is very similar to that in 
Panzeri et al. (2007, Figure 3), which also used realistic simulations of cortical 
spike trains (the only difference was that for this fi gure, the simulated 
population did not contain any correlations). This fi gure was produced using 
the Python library for bias corrections described in Section “A Python Library 
for Information Theoretic Estimates”, and the code to produce it is available at 
http://code.google.com/p/pyentropy/.

http://code.google.com/p/pyentropy/
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is a variant of the Python language with a similar syntax but that 
compiles straight to C code.

A PYTHON LIBRARY FOR INFORMATION THEORETIC ESTIMATES
The study and development of techniques for estimation of infor-
mation theoretic quantities and associated bias corrections has 
developed into a fi eld of its own. In order for the results of this work 
to be useful outside of this small community it must be possible 
for non-specialists to easily apply these techniques to their data. 
We have therefore developed a library of tools with the dual pur-
pose of allowing easy application of the most suitable cutting edge 
bias corrections, while also providing a framework for continued 
enhancement of existing methods as well as development of new 
techniques. Although this has been developed for application to 
investigations of neural coding, the library has been designed to be 
as general as possible, in the hope that it might also be of use in other 
areas, and it is publicly available under an open source license3. 
There are similar packages available in other languages, such as the 
R entropy library4 and the MATLAB Spike Train Analysis Toolbox5, 
but the authors are not aware of any similar Python package.

At the core of the library are two classes, DiscreteSystem and 
SortedDiscreteSystem which sample and store the probability 
distributions associated with a system and contain methods to 
compute different entropy quantities. DiscreteSystem is the 
most general and can take arbitrarily ordered input. The class 
is initialised as s=DiscreteSystem(X, X_dims, Y, Y_dims) 
where X_dims=(Xn,Xm) and Y_dims=(Yn,Ym) are tuples of val-
ues describing the parameters of the X and Y spaces respectively. Xn 
and Yn are the number of variables in the space, each of which is 
quantised to take one of Xm or Ym possible values, respectively. In 
total therefore there are XmXn possible values in the X space and YmYn 
in the Y space for each trial. X and Y are provided as integer arrays 
with values in [0, Xm − 1] and [0, Ym − 1] respectively with 
Xn, Yn rows representing the constituent variables and a column 
for each trial. It is important the columns match, that is the value 
of X in a given column corresponds to the same trial as the value 
of Y in the same column, but there are no further requirements 
on the format of the input. SortedDiscreteSystem requires the 
input trials to be grouped in values of the variable Y. This allows 
much more effi cient sampling of the required probability distri-
butions, since the trials for a given Y value can be easily isolated 
without having to search through the whole data set. This requires 
the space Y to be a single fi nite alphabet variable, so it should 
be decimalised beforehand if necessary. The class is initialised as 
s = SortedDiscreteSystem(X, X_dims, Ym, Ny) where X, 
X_dims are as above and Ym is the number of possible values for 
the single variable Y space. Ny is an array containing the number of 
trials available for each Y value. For example, Ny[0\] is the number 
of trials available with Y = 0\, and the corresponding X values 
are found at X[0\ : Ny[0\]]. Both of these classes inherit from a 
base class BaseSystem which contains the common entropy and 
information calculations, reducing code duplication and increas-
ing maintainability.

In neural coding applications such as those described previously, 
Y would be the stimulus space S, while X would be the response 
space R. Since the stimuli are usually controlled by the experi-
menter, the results are often available already sorted by stimulus, 
allowing use of the more effi cient SortedDiscreteSystem class. 
Mutual information is symmetric, I(X; Y) = I(Y; X), so in fact 
the stimulus and response spaces can be provided in any order, 
but due to the way the conditional probabilities are sampled it is 
strongly suggested that the smaller of the two spaces be provided 
as the Y parameter.

Once initialised as above, entropy quantities can be calculated 
using the method s.calculate_entropies(method, sam-
pling, calc) where method is one of [‘plugin’,‘pt’,‘qe’,
‘nsb’] and selects the bias correction technique to use, sam-
pling is one of [‘naive’,‘beta:x’,’shrink’] which selects 
the method for estimating the probability distributions and calc 
is a list containing a number of entropies to calculate. The entropies 
available are [‘HX’,‘HY’,‘HXY’,‘SiHXi’,‘HiX’,‘HiXY’,
‘HshXY’,‘ChiX’], which in the case where, as described above, 
the space X corresponds to the response space R and Y to the stimu-
lus space S, denote respectively H(R), H(S), H(R|S), ∑ =i

Rn H1 ( )Ri , 
H

ind
(R), H

ind
(R|S), H

sh
(R|S) and χ(R). χ(R) is a quantity needed for 

the information breakdown of (Pola et al., 2003) and is reported 
in Eq. 25 therein. This function will fi rst decimalise the X and Y 
spaces, if required (if n > 1) which involves converting the length-n 
base-m words representing the values for each space to a single deci-
mal integer value in [0, mn − 1]. The probabilities required for the 
requested output entropies are then computed using the sampling 
method specifi ed. “naive” represents the standard histogram bin 
counting method which is usually used. The add-constant estimator 
(Schürmann and Grassberger, 1996) is implemented through the 
“beta:x” method. The β parameter is provided after the colon in 
the option, so “beta:0\.0\1” would use the add-constant estima-
tor with β = 0.01. The “shrink” option selects the James–Stein 
shrinkage estimator (Hausser and Strimmer, 2008). All the entropy 
estimates are currently implemented in pure Python, except for 
the NSB estimator. This is implemented using existing publicly 
available optimised codes6. We have not yet implemented a direct 
link to the NSB codes, but instead write the data for analysis to 
a fi le, for processing by the standalone external program before 
reading back results from a fi le. Python’s heritage as a scripting 
language makes this process of reading and writing formatted 
fi les and programmatically calling an external program from the 
code very easy. The functions s.I() and s.Ish() can be used 
to obtain the mutual information estimate and shuffl ed mutual 
information estimate respectively, provided the required entropies 
have been computed. Similarly s.pola_decomp() will return the 
computed values for the decomposition of the mutual informa-
tion presented in Pola et al. (2003), again provided the required 
entropies were computed.

The module has been designed to be as fl exible as possible, allow-
ing comparison of the different methods at every stage. For example, 
the DiscreteSystem instance contains the sampled probability 
distributions, so it is possible to compare the different probability 
estimation methods directly. It is easy to add additional entropic 3See http://code.google.com/p/pyentropy/

4See http://www.strimmerlab.org/software/entropy/index.html
5See http://neuroanalysis.org/toolkit/ 6From http://nsb-entropy.sourceforge.net/

http://code.google.com/p/pyentropy/
http://www.strimmerlab.org/software/entropy/index.html
http://neuroanalysis.org/toolkit/
http://nsb-entropy.sourceforge.net/
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quantities or new functions of them to the class. The code is docu-
mented through use of Python docstrings, which are  embedded in 
the source and accessible through the interactive interpreter. Having 
the code documented in this way makes it easier for others to under-
stand and contribute to.

There are several properties of Python that make it well suited to 
this application. Many loops can be vectorised into a single opera-
tion acting on arrays which is implemented through the NumPy 
interface to a highly effi cient linear algebra library (ATLAS). When 
taking slices (extracting a single row or column) of a NumPy array, 
for example when determining the independent probabilities of the 
X variables, a new view is created, but points to the same original 
data. In contrast, in MATLAB, taking such a slice always results in 
the extracted row being copied in memory to a new array object. As 
discussed, the object-oriented nature of Python allows code reuse 
through inheritance. To give an example of the performance of the 
Pyentropy library, for the preparation of the data for the Plugin, PT 
and QE methods in Figure 1, the time taken using the Pyentropy 
library on a 2.4GHz Core 2 Duo laptop was 439 s. This includes 
data simulation for 50 trials at each sample size. The same task, 
using similar MATLAB code on an equivalent laptop was 987 s. 
There is also work in progress to extend the Pyentropy code with a 
more direct calculation of the core estimates in Cython. Cython is 
a language for writing C extensions to Python, and it shares a very 
similar syntax. This provides an easy way to quickly develop fast C 
modules to speed up the execution of Python code.

FINITE ALPHABET MAXIMUM ENTROPY SOLUTIONS
CORRELATIONS AND MAXIMUM ENTROPY MODELS
Simultaneous recordings of the activity of individual neurons 
placed within local networks in the central nervous system show 
that most pairs of neurons are weakly correlated: the probabil-
ity of observing simultaneous spiking is typically sightly – but 
 signifi cantly –  different to the product of the probability of observ-
ing the individual spikes (Averbeck et al., 2006; Mastronarde, 1983). 
These correlations are hypothesized by many investigators to be a 
fundamental part of the neural population code; they may con-
tribute, for example, by tagging the occurrence of particular salient 
stimulus combinations (Gray et al., 1989), or by constraining the 
number of possible network states so that the network may per-
form error corrections (Schneidman et al., 2006). Whatever the 
role of correlated fi ring, an observer of neural activity (either a data 
analyst or a downstream neural system) trying to assess the impor-
tance of correlated activity has to face a hard problem: correlations 
are diffi cult to sample because they are described by a number of 
parameters that increases exponentially with the number of cells 
considered. Therefore, it is important to establish whether it is 
possible to describe all correlations between neurons with a small 
number of parameters that preserve all the relevant features of 
the joint distribution of simultaneous responses. One way to fi nd 
compact representations of the correlation structure of response 
probability can be obtained by using the technique of maximum 
entropy (Montemurro et al., 2007b; Schneidman et al., 2003; Tang 
et al., 2008; Victor, 2006), as follows.

The question addressed by maximum entropy models is how 
well we can describe all interactions between all variables in terms 
of subsets of interactions between up to K variables only, or whether 

and to what degree higher order interactions are present and impor-
tant. The maximum entropy technique compares the measured 
response probability to one that takes into account all the observed 
interactions of up to K elements but does not impose any additional 
structure on the data. Measuring all interactions of up to K variables 
means measuring all the marginal response probabilities involving 
up to K variables. Therefore any probability matching the observed 
interactions of up to K elements must obey (apart from the usual 
non negativity and normalization constraints) the following lin-
ear constraints. Here we consider a response vector r = {r

1
,…, r

L
} 

of dimension L, with each variable r
i
 taking values from a fi nite 

alphabet A containing m elements.

P r P r
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(9)

Each line above denotes a family of constraints on a model 
distribution P

K
(r) enforcing equality of the marginal values of a 

given order to those of the true distribution P(r). These marginals 
are denoted by η with subscript indices representing the variables 
involved in the marginal and superscript indices the corresponding 
values. The ath order constraint applies for all unique combina-
tions of a variables, and every permutation of possible values that 
those variables can take. Thus the ath line above represents ma L

a( ) 
constraints, the product of permutations of a values with choices 
of a variables.

The probability distribution P
K
(r) with maximum entropy 

among those satisfying the above constraints is the one that does 
not impose the presence of any additional higher order correla-
tions or interactions between the variables. To choose a distribution 
with lower entropy would correspond to the assumption of some 
additional structure that we do not know; to choose one with a 
higher entropy would necessarily violate the constraints that we 
wish to enforce.

Following Amari (2001); Cover and Thomas (2006) it can be 
shown that there is a unique solution to the constrained maximum 
entropy problem, which can be written in the following exponential 
form:

PK i i

r r
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r r
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(10)

The set of indices i
1
,…,i

a
 label the subsets of a variables among 

the total L considered. The set of indices r ri ia1
, ,…  labels a specifi c 

set of values of these variables. The fi rst term in the sum is a fi nite 
alphabet Kronecker delta function which takes the value 1 when 
the variables of the argument specifi ed by the subscript indices take 
the values specifi ed by the superscript indices, and 0 otherwise. As 
with the marginal constraints, the second sum for each order is over 
all unique combinations of a variables and all permutations of a 
values that those variables can take; there are ma L

a( ) summands, and 
the same number of distinct θ coeffi cients of that order.
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In order to compute the maximum entropy distribution 
P

K
(r; θ) compatible with all the known interactions up to K-th 

order, we need to fi nd the θ coeffi cients with up to K indices to 
construct the solution above. These can be determined from the 
knowledge of the experimental η marginal probabilities of up to 
K elements through a set of algebraic equations, as detailed in 
the following section.

Previous applications of the maximum entropy approach have 
included temporal sequences of spiking activity, or multi-unit spik-
ing activity across a population, both of which are binary. This 
simplifi es the calculation of the maximum entropy solutions. The 
extension to a fi nite alphabet probability space is a signifi cant one, 
since it greatly increases the scope of possible applications for the 
method. For example, if larger time bins are used, there will some-
times be more than one spike occurring in each bin. At the moment 
these values are generally binarized, but using the fi nite alphabet 
method allows use of extended time bins, while keeping the effect 
of all spikes. It can therefore be used to investigate the effect of 
bursting. Similarly, the fi nite alphabet extension means the method 
can be applied to other data, such as LFPs (Belitski et al., 2008) 
or fMRI, which are inherently continuous but may be meaning-
fully quantised into a fi nite alphabet. It also allows investigation 
of the reverse problem, neural encoding, where one studies the 
properties of the stimulus, given that a response (such as a spike) 
as occurred.

In the following, we describe an implementation of the fi nite-
alphabet maximum entropy computation using Python. In analogy 
to Schneidman et al. (2003), we apply the maximum entropy calcu-
lation to P(r). However, the same procedure could be in principle 
applied to P(r|s).

AN ALGORITHM FOR FINITE-ALPHABET MAXIMUM 
ENTROPY SOLUTIONS
The key concept in the algorithm we use to obtain the maximum 
entropy solution is the idea of identifying a specifi c probability 
distribution using different coordinate systems. The most obvious 
way of characterising a discrete probability distribution is by speci-
fying the full list of probabilities for each element of the space. For 
example, if we have a fi nite alphabet response vector r = {r

1
,…,r

L
} 

as above, then there are mL possible values for r and so the prob-
ability distribution P(r) can be characterised by mL − 1 probability 
values, since one degree of freedom is removed by the normalisation 
constraint. These are called the p-coordinates. An alternative way 
of uniquely determining a probability distribution is by listing the 
marginal probability values. As mentioned in the previous  section, 
there are mk L

k( ) marginals containing of order k, so the collection of 
all marginals has ∑ = −=k

L k Lm mL
k1 1( )  elements. This way of describ-

ing the probability is called the η-coordinates. For the fi nal char-
acterisation of a probability distribution, we consider the form 
suggested by Eq. 10. Taking K = L, P

K
(r) = P(r) and Eq. 10 shows 

that any probability can be computed from the set of coeffi cients, θ. 
Again there are mk L

k( ) coeffi cients of each order k. θ
0
 is fi xed by the 

normalisation condition, so again we have mL − 1 numbers that 
uniquely identify the probability distribution. Expressing a prob-
ability distribution in this way is also known as the log-linear form, 
and the coeffi cients, θ are called the log-linear effects. Here we refer 
to them as the θ-coordinates.

A given probability distribution is represented in any of 
these coordinate systems by a vector of values. In the following 
p denotes a vector describing a probability distribution in the 
p-coordinates, η denotes a vector of η-coordinate values and θ 
a vector of θ-coordinates. The p vector is ordered so that the 
value of the vector at a given index represents the probability of 
the underlying state which, when interpreted as a length L base 
m word, has the decimal value of the index. This ordering was 
chosen since it is easy to convert between state values and vec-
tor indices using existing change of basis functions. The vector 
η = (η

1
, η

2
,…,η

L
) where η

i
 is the set of all marginals of order i and 

similarly θ = (θ
1
, θ

2
,…,θ

L
). The ordering of the vector within the 

subsets of different orders is arbitrary, however it is important that 
the subsets θ

i
 and η

i
 share the same ordering for each i.

These notions are rigorously developed in Amari (2001) using 
the framework of information geometry, in which the set of prob-
ability distributions on a given vector space are treated as a mani-
fold, and the properties of the coordinate systems described above 
are formalised.

Coordinate Transformations
An important step in the numerical method for obtaining the maxi-
mum entropy solution is the implementation of the transforma-
tions between the different coordinate systems described above for 
representing a probability distribution.

η–p transforms. The key transformation is that from p-coordinates 
to η-coordinates. This is a linear transformation which performs the 
summation of relevant probabilities for calculating the marginal. 
With the coordinates arranged in vectors, as described above, it can 
be expressed as

η = Ap (11)

where A is a square matrix containing binary values. Each row of A 
contains a 1 in the column for each p coordinate that contributes 
to that marginal. The inverse transformation, p coordinates from 
η coordinates is simply

p = A−1η (12)

The matrix A is invertible since it is square and all its constituent 
rows are linearly independent.

θ–p transforms. For the θ–p transformations, fi rst notice from 
Eq. 10 that in vector form p = +e ATθ θ

0 . This is because, for a given 
probability, the θ terms required are those corresponding to the 
non-zero elements of that specifi c state vector. Similarly, for a given 
probability, that probability will appear in the sum for the mar-
ginals corresponding to the same non-zero elements of the state 
vector. The marginals that a given probability appears in are given 
by the columns of the matrix A, so provided the θ vector is ordered 
in the same way as the η vector, the sum of θ terms required in 
the exponential of Eq. 10 for each probability is given by ATθ. By 
evaluating Eq. 10 for the zero state vector p P ri i

L
0 10= =( )={ }  we see 

that the constant factor in the log-linear model, eθ0, is in fact p
0
. 

From p = p e AT

0

θ
, it is trivial to obtain the following transformation 

from p coordinates to θ coordinates.
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θ = A−T [ln p − ln p
0
] (13)

The other direction is slightly more complicated, since for a 
closed expression for p we must compute p

0
 from the theta vector. 

The normalisation condition requires that ∑ + =p p0 1, since the 
vector p does not include the p

0
 value. Substituting the expression 

above gives p e p p eA AT T

0 0 0

1

1 1∑ + = ⇒ = + ∑( )−θ θ
, yielding

p =
+ ∑

e

e

A

A

T

T

θ

θ
1  

(14)

Numerical Optimisation
The advantages of the different coordinate systems described above 
are that they allow us to easily represent our constraints on the max-
imum entropy solution. From Eq. 9 fi xing interactions up to order 
K to those of the measured distribution corresponds to setting the 
low order η-coordinates of the maximum entropy solution equal 
to those of the measured distribution. From Eq. 10 the maximum 
entropy constraint is enforced by setting the high order compo-
nents of the θ-coordinates to zero. By enforcing these constraints 
simultaneously, we obtain a set of N simultaneous equations in N 
unknowns, where N mj

k j L
j= ∑ =1 ( ) is the number of coordinates up 

to order k. Again m is the size of the fi nite alphabet.
In the following η

k
 represents the N low order (up to order k) 

marginals of the sampled distribution. θ θk k
, + represent the low and 

high order theta coordinates of the maximum entropy distribution. 
p̌(·) denotes the coordinate transformation from θ to p coordinates 
from Eq. 14 and η̌

k
(·) denotes the coordinate transformation in 

Eq. 11 but with only the low order marginals returned. Setting the 
high order theta’s, θ

k+ , to zero ensures that there are no higher order 
interactions. It is then possible to fi nd the low order theta’s that pro-
duce the same low order marginals as the sampled distribution, η

k
. 

These low order theta’s, θk , completely characterise the maximum 
entropy distribution. In vector form the equations are:

η
k
 − η̌

k
[p̌ ( , )]θ θk k+ = =0 0 (15)

Once the θk are determined by numerically solving the equa-
tion above, one can convert back to p-coordinates to obtain the 
corresponding maximum entropy distribution and calculate its 
entropy.

PYTHON IMPLEMENTATION
Initially the method described above was implemented in 
MATLAB. Later, the same algorithm was converted to Python 
with NumPy and SciPy. This was both because we were having 
performance issues with MATLAB in the fi nite alphabet case, 
and partly as a way to evaluate Python as a platform for our 
work. This gives the opportunity to make comparisons between 
the two systems. However, as well as moving the code to Python, 
we continued to develop and improve the algorithms, making it 
diffi cult to provide rigorous performance comparisons between 
the two systems. Instead we hope to provide an overview of our 
experiences and impressions of using Python in an ongoing 
research project.

A major difference in the code between the two systems is 
the structure of the program. In MATLAB the notion of the 

global workspace was exploited. Here a setup script is used to 
defi ne the coordinate transformation functions in the global 
workspace, from where they can be easily called by other scripts 
or used to interactively investigate data. In Python, an object-
oriented approach was taken featuring two main classes. The 
fi rst of these, AmariSolve, contains the parameters related to 
the underlying probability distribution, the required coordinate 
transformations and the code for performing the numerical 
solution. This is initialised with two parameters, the number 
of variables and the fi nite alphabet of each variable, since this is 
the only information required to implement the solution. The 
second class, AmariSystem, contains the data related to a spe-
cifi c system being studied, and contains the sampled probability 
distributions, calculated maximum entropy distributions and 
associated entropies. In this way the data independent analysis 
code is separated from the system specifi c code and data – the 
idea being that a single AmariSolve instance can be used on 
different data sets, providing the dimensions of the probability 
space are the same. It was found this approach gave much more 
fl exibility than the global workspace, which could be confusing 
to manage during development, for example by requiring a full 
copy of the setup script to be maintained for every change to the 
algorithm investigated.

A key step in the implementation of the algorithm is the genera-
tion of the matrix A which provides the transformation between 
probabilities (p-coordinates) and marginals (η-coordinates). A 
recursive function is used in a loop over each order, to compute 
the elements of A row by row. The code implements the long-
hand approach used for manual calculation of smaller matrices. 
The idea is that each marginal is the sum over all variables not 
fi xed by the specifi cation of the marginal. For each order a vec-
tor called terms is created which contains all base m words of 
length L − o, where o is the order being considered. Then for each 
marginal, if columns of the appropriate value are inserted into 
the appropriate position in the terms array, the result contains 
a row for each probability state included in that marginal. These 
are converted to decimal, which directly gives the index in the 
probability vector, and the corresponding columns in A are set 
to 1. To cover the different marginals, fi rst the alphabet value and 
then the position is looped over. For orders higher than one, this 
process is recursive, so the fi rst alphabet value is looped over, then 
within that the fi rst position, then within that the second alphabet, 
then the second position and so on. This transformation matrix 
can be very large since its dimensions are the dimensions of the 
full probability space. However, it is highly sparse in structure, 
so in both implementations the provided sparse array construct 
was used to reduce the amount of memory required. In SciPy, 
the sparse array module is very fl exible, providing a number of 
formats and datatypes. The advantage of this was that the binary 
matrix A could be stored as a sparse array of 8-bit integers in SciPy, 
which provided a factor of eight memory saving over the 64-bit 
double which is the only type the MATLAB sparse matrix supports. 
Equations 12 and 13 show that some coordinate transformations 
require inversion of the matrix A. Although this is not required 
directly for the computation of the maximum entropies, it was 
frequently useful while investigating properties of the system and 
of the different maximum entropy solutions. SciPy offers a very 
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fl exible direct interface to the UMFPACK7 library of sparse solv-
ers (Davis, 2004), that allowed us to easily pre-factor the matrix 
and store the results allowing rapid calculation of the coordinate 
transforms when needed.

The numerical optimisation step is very similar in both imple-
mentations, using the fsolve function of the respective system. 
In MATLAB a Gauss–Newton method was used, while in SciPy 
fsolve is a wrapper around the MINPACK (Moré et al., 1999) 
hybrd algorithm which implements a modifi cation of the Powell 
hybrid method. Both of these methods performed similarly. The 
function that the optimiser runs is the same in both implemen-
tations and this is a direct implementation of the left hand side 
of Eq. 15; the Python version is shown below. Here Asmall is a 
subset of the transformation matrix A containing only the rows 
required and Bsmall is the transpose of this. Asmall is extracted 
from A using the slice operator, for example in Python, Asmall = 
A[:l, :]. Python again provides a signifi cant advantage here in 
terms of memory used. In MATLAB, any such slice results in a 
copy of the data. However, with NumPy, the slice results in a view 
of the original data. Similarly, in NumPy the transpose is also a 
view, with a different starting point and striding, but the same data 
buffer as the original array. In MATLAB the transpose operation 
also produces a copy.

defdef solvefunc(self, theta_un, Asmall, Bsmall, eta_sampled):
   b = np.exp(Bsmall.matvec(theta_un))
   y = eta_sampled( Asmall.matvec(b)/(b.sum() + 1) )
   return   return y

As the method was developed and applied to increasing large 
probability spaces, it became clear that the limiting factor for these 
more challenging parameter sets was the memory usage rather than 
the computation time. The Python implementation was therefore 
optimised to reduce the memory usage.

This enhancement was simplifi ed by using the object-oriented 
features of Python. New classes were created which inherited from 
AmariSolve and AmariSystem described above. It was then pos-
sible to change only the required functions, for example the matrix 
generation routine, to stop at the required row. This minimised 
the other changes and duplication of code. Also, developing in this 
way meant very few changes were required to the analysis scripts to 
take advantage of this change – in most cases a simple substitution 
of the class name at the top of the script was enough to use the 
new method. One of the memory optimisations was to produce 
the matrix A in smaller blocks, writing the rows and columns of 
the non-zero elements directly to fi les on disk to reduce memory 
overhead. Once this procedure was completed a sparse matrix in 
coordinate (COO) format could be generated directly from these 
fi les, and then converted to compressed sparse column (CSC) 
format for effi cient matrix-vector multiplication. This is another 
example of where good results were obtained by using low level 
features that would not have been available in MATLAB.

As an example of the relative performance of Python and 
MATLAB, maximum entropy solutions of up to second order were 
computed for a system with n = 4, m = 9 (four variables each taking 
1 of 9 values). The MATLAB code took 17 s with a peak resident 

memory usage of 340 MB and the Python code took 12 s with a 
peak resident memory usage of 110 MB. These results are typical of 
our experience across a range of parameter values. The numerical 
optimisation routine took almost exactly the same time in both 
systems, with the difference being due to the improved performance 
of the sampling of the probability distributions in Python. This is 
likely to be due to the reduced amount of data copying needed with 
NumPy when using slicing and other array operations.

In conclusion, for the development of this technique the use 
of Python with NumPy and SciPy libraries as an alternative to 
MATLAB was highly successful. The computational speed was very 
similar, but using NumPy allowed us to reduce the memory require-
ment by around two-thirds. This is important, because as described 
above, memory usage was the limiting factor restricting the size of 
the probability space over which the analysis could be performed. As 
well as the vectors representing the actual probability distribution, 
the sparse matrix A must be calculated and held in memory. The 
ability to use an 8-bit integer for this binary matrix with Python 
provided a factor of 8 memory saving over the MATLAB equiva-
lent. More signifi cantly, the algorithm requires extraction of the 
submatrix of up to the relevant order, and the transpose of that, 
which in MATLAB consists of copies (meaning for each order the 
data is copied in memory three times, once for the full matrix A, 
once for the extracted Asmall for the given order, and once for 
the transpose thereof, Bsmall). As an example, this meant that 
on a workstation with 2 GB of RAM the largest binary probability 
space that could be analysed up to order 3 was 12 variables for the 
MATLAB implementation, but 18 variables for the Python version. 
It is also worth noting that, while being similar to MATLAB, the 
Python language is a great pleasure to work with.

Example of application to thalamic neural recordings
To illustrate the application of maximum entropy techniques, 
here we compute maximum entropy models from a neuron in 
the ventro posterior medial nucleus (VPm), which is the principal 
whisker-related relay nucleus in the rat thalamus. Using extracellu-
lar microelectrodes, we recorded the responses of single VPm units 
in anaesthetised rats whose whiskers were mechanically stimulated 
with a piezoelectric wafer driven by a low-pass fi ltered white noise 
(see Montemurro et al., 2007a, for details). We used two types of 
white noise stimulation. The fi rst sequence was identical on every 
trial (repeated stimulus); the second was independently gener-
ated on every trial (non-repeated stimulus). Figure 2B shows a 
raster plot of the spikes fi red by a single neuron in response to 
70 repetitions of the stimulus in Figure 2A. As previously reported 
(Montemurro et al., 2007a; Petersen et al., 2008), VPm responses to 
white noise were highly repeatable and temporally precise. An infor-
mation theoretic analysis of these data revealed that these neurons 
convey information at sub-ms temporal precision (Montemurro 
et al., 2007a) and that there are correlations between the times of 
individual spikes. One source of correlation came from the refrac-
toriness of neurons, and another source of correlation came from 
their tendency to fi re spikes in bursts (Montemurro et al., 2007a). 
An important question is whether these correlations between the 
times of spikes emitted by the same neuron have a signifi cant impact 
on the information and entropy of the neural spike train, and if 
these correlations can be described by simple pairwise models or if 7http://www.cise.ufl .edu/research/sparse/umfpack/
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they rather need a complex, high order characterization. Here we 
will address these questions by using maximum entropy models 
which, as explained above, provide a natural framework to study the 
impact of different orders of correlation to spike train entropy and 
information. Previous studies employing maximum entropy have 
focussed mainly on correlations across a population of neurons 
(Schneidman et al., 2006; Shlens et al., 2006). Here, we extend this 
study to focus on correlations in time between spikes of a single 
neuron. This is interesting because fi nding a compact maximum 

entropy representation of within cell correlations is an important 
step towards understanding spike timing codes and representing 
them effi ciently (Nirenberg and Victor, 2007; Tang et al., 2008).

We discretized the time into small bins of size Δt = 4 ms and 
quantifi ed the response of the considered VPm neuron as a binary 
sequence of 1’s and 0’s (spikes or silence in that bin respectively), 
characterising the neural response r as non-overlapping binary 
words of length L extracted from this signal. We then consid-
ered the probability of response P(r) in response to all patterns of 
whisker stimulation obtained from the non-repeated white noise 
sequences, and we compared its entropy to that of the maximum 
entropy probability P

K
(r) at level K (K = 1,…,3) and to the entropy 

of the true distribution. Results are reported in Figure 3. We found 
that the lowest order model (K = 1, which considers spikes in each 
bin as independent from each other) provides an entropy very 
close to that carried by higher order probability models. The dif-
ference between lower and higher order entropies becomes pro-
portionally larger as the length L of the binary word increases. 
However, differences remain small: for L = 14, the difference 
between the independent-model, K = 1 entropy and the true one 
remain within 3%. This suggests that the spike train could be 
quantitatively well described even by a simple model that ignores 
correlations between spikes at different time bins. It should be 
noted that in the Python implementation of this calculation, the 
limit on the maximum number of time bins L and the order K that 
could be analysed was set by the number of trials available and 
the effectiveness of the sampling bias corrections implemented, 
whereas in the corresponding MATLAB implementation the limit 
was reached when the available memory was consumed. For a 
binary system as described here that limit was L = 12, K = 2 on 
our workstation. This highlights the advantages of Python for 
these implementations.

It should be noted that while we are applying the analysis here to 
data from a single cell, the computational challenge is determined 
solely by the dimension of the underlying probability space. In 
this case, the largest underlying probability space considered has a 
dimension of 214 which is computationally equivalent to the case of 
the binary response of 14 simultaneously recorded neurons.

A

B

FIGURE 2 | Responses of a VPm neuron to white noise vibrissa 

stimulation. (A) Vibrissa position as a function of time in units of stimulus SD 
(1 SD = 70 µm). (B) Spikes fi red by the neuron in response to 70 repetitions of 
the stimulus shown in (A).

A B C

FIGURE 3 | Response entropy of a VPm neuron to white noise vibrassa 

stimulation. The full response entropy [H(R) denoted H in the fi gure] is shown 
together with that of maximum entropy models preserving fi rst [H(1)], fi rst and 

second [H (2)] and up to third order [H (3)] marginal densities. The response is 
treated as non-overlapping words of length 6 (panel A), 10 (panel B) and 14 
(panel C) bins, with each bin of 4 ms duration.
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COLLABORATIVE COMPUTING
There is a growing trend in neuroscience towards the development 
and use of collaborative computing services. These are multi-user 
systems, accessed over the internet which provide computational 
resources while facilitating interaction between users. This is a 
natural evolution for the fi eld, as rapid advances in physiologi-
cal techniques of many kinds result in data sets of increasing size 
and with an associated proliferation of analysis tools of increasing 
complexity. The idea is to provide an environment to foster collabo-
ration, especially between experimentalists and theoreticians, by 
providing databases of experimental results, and online analytical 
tools for application to those data.

The fi eld of bioinformatics has pioneered the development of 
such systems, which are now well established and playing an impor-
tant role. However, implementing such systems for neuroscience 
presents some challenges not faced by the bioinformatics commu-
nity. The greatest of these is the volume and variety of experimental 
data. While traditional bioinformatics services tend to process data 
as strings – which is partly why the Perl programming language 
still underpins much bioinformatics analysis – in neuroscience we 
deal with large sets of binary data in a variety of different formats. 
This presents diffi culties for the decentralised model of separately 
provided and hosted services that has become popular in the bio-
informatics community. This data requires signifi cant contextual 
detail, or metadata, to be useful and is large enough to make the 
sharing of terabytes of data between labs a signifi cant issue. It there-
fore seems that neuroscience requires a stronger organisational 
structure for these systems, to facilitate easier interoperability of 
data and provide security and access control.

The adoption of Python is highly advantageous in this context. 
The Python language is fl exible, extensible and runs on a wide range 
of platforms. It also has the fast array mathematics crucial for neuro-
science work, which are not available in languages such as Perl, which 
have been traditionally used for bioinformatics services. Like Perl 
though, it is a dynamic interpreted language, which simplifi es the 
deployment of code on distributed systems. It has a similar syntax to 
MATLAB, the established standard in the fi eld, and although there 
are no automated tools, translating code and algorithms from one 
to the other is relatively straightforward. Unfortunately it is diffi cult 
to use MATLAB to provide these kinds of multi-user services due to 
licensing restrictions. We are working on adapting our information 
theoretic techniques for use in systems of this type, and this was one 
of the factors that infl uenced our decision to investigate Python.

The Code, Analysis, Repository and Modelling for e-Neuroscience 
(CARMEN)8 project is a consortium effort to create a virtual 
laboratory for neurophysiology (Gibson et al., 2008), and is one 
example of project attempting to provide a centralised organisa-
tional structure for collaborative computing in neuroscience, as 
discussed above. CARMEN is an e-Science Pilot Project funded 
by the Engineering and Physical Sciences Research Council (UK) 
and involves investigators from 11 UK universities.

The goals of the CARMEN project are to create a decentralised 
computing resource used by experimentalists and theoreticians 
alike; a repository for both experimental data and analysis code that 

can be made available to all users of the system. We are working 
to provide our Python-based information theoretic algorithms as 
“services” on the CARMEN system. Providing such packaged serv-
ices as modules that can be used in easy to construct “workfl ows” 
has many advantages. It allows easy comparison of different analyti-
cal techniques on the same dataset, as well as allowing application 
of a given technique to a number of different datasets that might 
otherwise be hard to obtain or convert to a suitable format. It allows 
application of the techniques of information theory by experi-
mentalists and others who may otherwise lack the mathematical 
background, programming skills or inclination to implement such 
techniques by hand from the literature. It should also allow better 
reproducibility of published results, as well as providing a substan-
tial computational resource allowing calculations that could be too 
time consuming for a user to perform on a desktop computer.

PYTHON WEB SERVICES
A “web service” is “a software system designed to support inter-
operable machine-to-machine interaction over a network”9. Web 
services are well suited to collaborative computing services, and 
they have been proven as a successful model for e-Science through 
their use in the bioinformatics community. They are also used as the 
foundation of the analysis code in the CARMEN project described 
above. Web services are operating system, location and language 
neutral. This is exploited in CARMEN to allow dynamic deploy-
ment of services to different computational nodes, and also sim-
plifi es the use and integration of analysis code written in a range 
of languages.

There are a number of standards governing the behaviour of 
web services, largely provided by the World Wide Web Consortium 
(W3C), which are required to allow them to interact. The fact that 
these standards are vendor neutral has enabled them to gain trac-
tion where previous attempts to provide interoperable services has 
failed. Simple Object Access Protocol (SOAP)10 is a standard XML 
based messaging format used to pass data and parameters to an 
analysis service, and then receive the results back. All clients and 
web services are capable of passing and decoding SOAP messages. 
The other pivotal standard is that of the Web Services Description 
Language (WSDL)11, an XML document for the description of a 
web service; that is the method calls it provides, the arguments they 
require and the results they return. The WSDL that represents a web 
service is suffi ciently informative to allow automatic generation of 
clients capable of binding to the service.

As part of our work we are making the information theoretic 
techniques that we are developing available as web services, for 
use in CARMEN and similar systems. Python greatly eases this 
process. We can create a Python-based service for a specifi c informa-
tion theoretic task simply by importing our information theoretic 
library and calling the appropriate function with the appropri-
ate arguments. This reduces code repetition, and the fl exibility 
and simplicity of the Python module system makes the process 
easy to manage. For example, if the algorithmic code was actually 

9http://www.w3.org/TR/ws-gloss/
10http://www.w3.org/TR/soap/
11http://www.w3.org/TR/wsdl8http://www.carmen.org.uk/

http://www.carmen.org.uk/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
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included in the service programs, this would exist in every service 
performing an information theoretic calculation with a copy on 
every node to which the service had been deployed. By having a 
library with a consistent API, this can be updated in a single place 
on each computational node without having to change any of the 
existing services.

Once there is a Python script to perform the required task, it is 
necessary to “wrap” it to create a web service. There are a number 
of toolkits to do this including the Python native Zolera SOAP 
Infrastructure (ZSI) and SOAPpy. However, the method we have 
been using is InstantSOAP12 a generic toolkit capable of expos-
ing legacy applications as web services. Initially, we have created 
Python scripts that run as command line applications. This is 
straightforward since Python includes an excellent tool for easily 
parsing command line options. InstantSOAP provides a native 
command line processor to wrap any command line application 
into a web service through the creation of a single XML fi le. 
Work is currently in progress to extend InstantSOAP to natively 
support Python services, allowing direct deployment of a Python 
function as a web service, without requiring the developer to 
understand the web services stack, a signifi cant barrier to entry 
in developing web services in any language. Python’s licensing 
model is also important in the deployment of distributed serv-
ices; MATLAB suffers from licensing restrictions for collaborative 
deployment. This makes it harder both to provide open services 
to a large number of users and to employ the dynamic deploy-
ment architecture through which code may run on a number of 
computational nodes. For example, whilst CARMEN is capable of 
providing MATLAB web services, it is through compiled MATLAB 
scripts, supported by the MATLAB runtime environment, and has 
no native interface to MATLAB per se, adding additional complex-
ity to the procedure of creating, deploying and managing web 
services. There are also a number of ongoing technical challenges 
related to running the compiled MATLAB binaries within the web 
service environment.

DISCUSSION
In modern neuroscience a growing challenge is handling and inter-
preting increasingly large volumes of physiological data of many 
different types. To face this challenge computational techniques are 
becoming more and more important. We have described informa-
tion theory, which is one such technique that is particularly suited 
to the challenges posed by neurophysiological datasets, and can 
provide valuable insights into neural coding and the function of 
the nervous system.

Information theory provides a natural framework to study 
communication in most systems, and the brain is no exception. An 
obstacle to a wider spread of its use among sensory neurophysi-
ology laboratories has been the technical diffi culties associated 
with its calculation (mostly the problem of bias corrections) and 
the lack of well defi ned, cross-platform packages that can handle 
generic datasets. The work presented in this paper is an attempt 
to address this limitation and provide the neuroscience commu-
nity with open source packages that allow unbiased  calculation 

of information from various types of neural data, from spikes to 
fi eld potentials. The use of Python helps to develop fl exible tools 
that can easily be applied or extended (because of the fl exibility 
of the Python language) to handle different types of neurophysi-
ological signals (because of the ability to manage memory effi -
ciently) and to different data formats (because of the ability of 
Python to easily read a variety of data formats commonly used 
in neuroscience).

We have also described a current area of intensive research on 
neural coding; namely a new implementation for computing solu-
tions of maximum entropy given marginal constraints. Although 
the example presented in Figure 3 was on a binary data space, the 
ability of the code to support fi nite alphabet probability spaces is 
signifi cant and allows the application of the maximum entropy 
technique to a wide range of new areas. In our own experience 
with simulated data (results not shown here, but partly reported in 
Lüdtke et al., 2009), using the Python implementation described 
here we were able to solve maximum entropy solutions of order 
2 on spaces of up to 7 variables quantised to 9 levels (a probability 
space with dimension ∼4.7 m) on a well-equipped workstation 
in a reasonable amount of time (∼1 day). This was a dramatic 
improvement over what we were initially able to achieve with the 
MATLAB version of code; indeed the MATLAB version would 
have been unable to solve for a system of that size due to memory 
limitations. Other potential fi nite alphabet applications include 
analysis of quantised naturally continuous signals, such as LFP or 
fMRI as well as opening the possibility of studying the interactions 
between the stimulus features encoded by spiking responses, where 
instead of response given stimulus we consider the properties of 
the stimulus given a response.

Looking to the future of inter-disciplinary science, we have con-
sidered the possibilities offered by collaborative computing services 
based on grid or cloud architectures. While such systems have been 
developed for use in other areas, neuroscience poses some unique 
challenges. We have outlined our work as part of the CARMEN 
project, which hopes to address these challenges and provide a 
valuable service for storage, processing and analysis of electrophysi-
ological data. We are developing information theoretic analysis 
tools as web services, which will make them available to greater 
range of practitioners, and hopefully increase their use within the 
neuroscience community.

The development of analysis tools like the ones discussed 
here has potentially signifi cant implications for the refi nement, 
reduction and replacement (3R) of animals in research. In our 
specifi c case, the opportunity to easily run information analysis 
on a number of different existing datasets (which as discussed, 
is facilitated by Python) maximizes the probability of obtaining 
new insights into neural codes without the need to sacrifi ce new 
animals. The free availability of advanced routines for calculation 
of bias-corrected information estimates offers neurophysiologi-
cal laboratories the possibility of reliably computing informa-
tion from a smaller number of trials, thereby maximizing the 
potential to record from multiple sites in the same animal and 
thus reducing the total number of animals needed for statisti-
cal signifi cance. The ability of the code to adapt to the different 
types of neural signals that can simultaneously be extracted from 12http://instantsoap.sourceforge.net/

http://instantsoap.sourceforge.net/
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the extracellular signal also increases the amount of information 
that can be obtained without increasing the invasiveness of the 
recording procedures.

We have found signifi cant advantages to using Python for all 
of the work described above. As discussed, we have found it well 
suited both to reimplementing existing techniques for exposure to a 
wider audience, as open-source packages and hosted computational 
services, and to the research and development of new techniques 
and algorithms. Together with the excellent interactive environ-
ment IPython13, it provides much of the power available from low 
level C coding with a numerical library, but with greatly reduced 
complexity and development time. For example, a major advantage 
for our maximum entropy application was the way we were able to 
fi ne tune the use of the sparse matrix structures. The interactive 
nature, familiar to users of MATLAB, is crucial to aid research, 
both in terms of investigation of data as well as development of 
algorithms. Compared to MATLAB, we have seen performance 
increases in moving our code to Python, particularly related to 
memory management in the case of our more demanding algo-
rithms. In addition, increased productivity and code manageability, 
for example from the ability to use object-oriented programming 
techniques, speed development and ease collaboration with other 
researchers.

We have experienced few problems with migrating our code 
from MATLAB. We have been able to easily access existing data 
stored in .MAT fi les and also to smoothly translate code. It is 
even possible to call MATLAB from Python, through the mla-
bwrap module14, which we have used to run existing MATLAB 
code provided by colleagues for preprocessing data. Initially the 
required packages were diffi cult to install, requiring compilation 
from source of a range of packages with complicated depend-
encies. Actually getting the software installed was therefore the 
greatest challenge when we began using Python. However, since 
then, the community has done a lot of work in improving this 
process, and there are now regular binary releases of all the impor-
tant components, as well as a number of projects that distribute 
a complete scientifi c tool chain with all required components 
through a common installer15. Another challenge was adapting 
to the pass by reference semantics of Python rather than the pass 
by value style of MATLAB, as well as adapting to 0 based index-
ing. However, once these mental adjustments had been made we 
found ourselves more productive with Python than we were with 
MATLAB. Other disadvantages of Python are that the documenta-
tion of the included functions, while still available interactively, 
is not as comprehensive as that provided with MATLAB and the 
plotting functionality provided by matplotlib, is not quite as 
easy to use or well developed as the MATLAB version, especially 
with regard to 3D plotting.

We have been able to easily provide our Python code as web serv-
ices, for integration into collaborative systems such as CARMEN, 
without requiring a signifi cant time investment to adjust or tune 

the code for this purpose. In fact, Python is an excellent fi t for 
projects such as CARMEN. It provides the fl exibility of dynamic 
interpreted languages such as Perl, that have traditionally been 
used to provide services in systems of this type, while includ-
ing the fast array mathematics that are crucial for the effi cient 
analysis of neurophysiological data. It is diffi cult to use MATLAB 
in systems such as this, due to licensing restrictions which pose 
problems, both for allowing multiple users to access the service, 
and for running the service on different nodes in a grid infrastruc-
ture. Obviously, with Python being open source, there are no such 
issues. The benefi ts of open source extend beyond collaborative 
computing projects however; there is a compelling open-access 
argument for avoiding expensive proprietary software in published 
scientifi c work.

So far we have only scratched the surface in terms of what is 
available in the Python ecosystem that could be of benefi t for our 
work. The extensive collection of modules available for Python allow 
great fl exibility, for example making it much easier to develop GUI 
interfaces and handle a wide variety of data formats. There are also 
several methods to easily extend Python code with natively com-
piled C extensions, to increase the performance of critical sections 
of code, while still allowing the interactive use and rapid devel-
opment of Python. We are currently focussed on optimising our 
information theoretic codes through the use of Cython16, which 
we are fi nding signifi cantly easier to use and less error prone than 
the MATLAB equivalent (the MEX interface). Another area we are 
actively investigating in the use of parallelism. In many cases our 
problems are embarrassingly parallel, for example calculating infor-
mation theoretic bias-corrected quantities over a number of data 
sets or computing maximum entropy solutions of different orders 
and conditional distributions. A number of open source solutions 
exist for parallel computing with Python, and we are investigating 
using these features of IPython to easily distribute these types of 
jobs to available machines.

SUPPLEMENTARY MATERIAL
The Python library for information theoretic estimates described 
in Section “A Python Library for Information Theoretic Estimates”, 
including code for producing Figure 1, can be found at http://code.
google.com/p/pyentropy/. The code for obtaining the fi nite alpha-
bet maximum entropy solutions can also be found on that page. 
This code is provided as Supplementary Material on the condi-
tions that (1) the authorship of the software shall be acknowledged, 
(2) the present article shall be correctly cited in any publication that 
uses results generated by the software, (3) any publication that uses 
results generated by our software shall correctly cite the original 
articles (cited in this paper) which developed any bias correction 
methods used.
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13“An enhanced interactive Python shell and architecture for interactive parallel 
computing”, http://ipython.scipy.org/ (Perez and Granger, 2007)
14“A high-level Python to MATLAB bridge”, http://mlabwrap.sourceforge.net/
15See for example http://www.pythonxy.com/ and http://www.enthought.com/pro-
ducts/epd.php 16The Cython language, “C extensions for Python”, http://cython.org/
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