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Anomaly detection is a typical binary classification problem under the condition of 
unbalanced samples, which has been widely used in various fields of data mining. 
For example, it can help detect heart murmurs when the heart is structurally 
abnormal, to tell if a newborn has congenital heart disease. Due to the low time 
and high efficiency, most work focuses on the semi- supervised anomaly detection 
method. However, the anomaly detection effect of this method is not high because 
of massive data with uneven samples and different noise. To improve the accuracy 
of anomaly detection under unbalanced sample conditions, we propose a new 
semi-supervised anomaly detection method (WCOS) based on semi-supervised 
clustering, which combines wavelet reconstruction, convolutional autoencoder, and 
one classification support vector machine. In this way, we can not only distinguish 
a small proportion of abnormal heart sounds in the huge data scale but also filter 
the noise through the noise reduction network, thus significantly improving the 
detection accuracy. In addition, we evaluated our method using real datasets. When 
the noise of sigma = 0.5, the AUC standard deviation of the WR-CAE-OCSVM is 
19.2, 54.1, and 29.8% lower than that of WR-OCSVM, CAE-OCSVM and OCSVM, 
respectively. The results confirmed the higher accuracy of anomaly detection in 
WCOS compared to other state-of-the-art methods.
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1 Introduction

With the change in the modern medical model, the spectrum of human diseases and death has 
undergone great changes, and birth defects have gradually become the main cause threatening 
children’s health, congenital heart disease is the most common type of birth defect disease, 
accounting for about 28% of all congenital malformations. Among the fatal defects in children 
under 5 years old, congenital heart disease is the first (Xue et al., 2022). Therefore, early and accurate 
diagnosis of congenital heart disease will make children get timely diagnosis and treatment, and 
significantly improve the prognosis of children. Cardiac auscultation, as a convenient and 
non-invasive examination method, is the most important means of early screening for congenital 
heart disease, and the accuracy of the results of auscultation has become an important factor 
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affecting the screening effect of congenital heart disease. The traditional 
auscultation method requires the use of a general stethoscope by an 
audiologist with certain audiological skills and experience, but because of 
the high degree of subjectivity, the lack of audiological skills and 
experience of primary care doctors is often a bottleneck limiting the 
effectiveness of congenital heart disease screening. With the development 
of artificial intelligence technology, the collection of heart sounds by 
electronic stethoscope and the recognition of digital auscultation data by 
artificial intelligence algorithm make the artificial intelligence of cardiac 
auscultation possible (Wang et al., 2024).

Artificial intelligence auscultation will effectively assist doctors in 
judging the condition, greatly reduce the work intensity of doctors, and 
improve the accuracy of auscultation. Heart sound is a complex sound 
produced by the switching of heart valves, the relaxation and contraction 
of tendons and muscles, the impact of blood flow, and the vibration of the 
cardiovascular wall. Abnormal blood shunt will occur when the heart 
structure is abnormal, and then the heart murmur will be generated. 
Therefore, the detection of abnormal heart sounds is becoming an 
increasingly important research field (Jyothi and Pradeepini, 2021).

Abnormal detection will have different degrees of detection 
difficulties according to different samples and different processes of signal 
acquisition. First, for heart sound samples, sample imbalance will cause 
the model to be biased toward most normal samples, thus placing a higher 
emphasis on most normal samples in prediction, which may lead to the 
improvement of the accuracy of most normal samples and the decrease 
of the accuracy of a few abnormal samples. This bias makes it impossible 
for the model to accurately distinguish abnormal heart sound samples 
because abnormal samples usually belong to a small number of abnormal 
samples (Liang et al., 2021). At the same time, the heart sound signal is 
easily interfered with by various noises in the acquisition process, such as 
power line frequency noise, baseline drift, myoelectric interference (Xiao-
dong et al., 2020; Shen et al., 2021), etc. These noises will reduce the 
quality of the heart sound signal and lead to the loss of information, which 
will affect the accuracy of the subsequent heart sound signal analysis and 
processing. Consequently, sample imbalance will cause the model to bias 
most normal classes and reduce the prediction accuracy of a few abnormal 
classes, while noise interference will reduce the robustness and feature 
learning ability of the model.

Effective identification of normal and abnormal heart sounds is a 
difficulty in artificial intelligence auscultation research (Ling et  al., 
2003), and it is urgent to establish an anomaly detection technology 
with a better detection effect to reduce the influence of sample 
heterogeneity and noise on detecting abnormal heart sounds. Deep 
learning technology has made a lot of progress in the field of anomaly 
detection, which involves a variety of deep neural network structures, 
loss functions, and optimization algorithms (Chong et  al., 2021), 
including anomaly detection based on autoencoders, anomaly detection 
based on graph neural networks and anomaly detection based on deep 
generation models. Below is a detailed summary of the methods for 
detecting heart sound anomalies based on deep learning techniques.

2 Literature review of anomaly 
detection in heart sounds

The autoencoder is an unsupervised deep neural network that 
learns a compressed representation from the input data and reconstructs 
an output that is as similar as possible to the original data. Abnormal 

data usually cannot be  reconstructed well, so the autoencoder can 
be used for anomaly detection. Recent studies have also combined other 
deep-learning techniques with autoencoders, such as autoencoders 
(Chen et al., 2024), variational autoencoders (Gangloff et al., 2024), and 
generative adversarial networks (Ruff et  al., 2021; Li, 2024). The 
disadvantage is that the autoencoder may learn abnormal data features 
and thus reduce the detection accuracy, and the reconstruction error 
cannot accurately reflect the abnormal degree of the data.

Graph neural network is a kind of deep learning model specially 
used to process graph-structured data (Mir et al., 2023). Abnormal 
data is usually some unusual node or edge in the data, so you can 
translate the anomaly detection problem into detecting abnormal 
nodes or edges in the graph structure. The latest research shows that 
the anomaly detection method based on graph neural networks has 
achieved very good results in the heart sound signal recognition scene 
(Rezaee et al., 2022) and a variety of other scenes (Niu et al., 2021). To 
alleviate the nature and scalability of the scene, combined with other 
methods, variational graph convolutional networks (Mir et al., 2024), 
two-domain graph convolutional networks (Li et al., 2023), space–
time graph networks (Yuan et al., 2024), and so on are proposed. The 
disadvantage is that the computational complexity of the graph neural 
network is high, which requires more computational resources, and 
the model is highly dependent on the accuracy and integrity of the 
graph structure, which affects the anomaly detection effect.

Deep generation models are a class of deep learning models that 
can learn a probability distribution from data and generate new data 
similar to the original data. The latest research shows that the anomaly 
detection method based on the deep generation model has high 
flexibility and robustness, and can be applied to various types of data, 
such as text data (Fan et al., 2021), image data (Sanders et al., 2020), 
and time series data (Gao et al., 2021).

There are also other methods based on mathematical models, such 
as establishing an indiscernibility-assisted intuitionistic fuzzy-rough set 
model based on fuzzy and rough set theories to reduce the noise 
(Shreevastava et al., 2023), establishing a missing value estimation and 
feature selection method to reduce the dimensionality while maintaining 
the performance (Jain et al., 2023), integrating the fuzzification module 
and the RBFNN, designing an adaptive control scheme to effectively 
reduce the model’s detection uncertainty (Kumar et  al., 2024), and 
designing an adaptive control scheme based on intuitionistic fuzzy 
interference to resist noise and better handle uncertainty in judgment 
and recognition (Jain et al., 2022). The shortcomings of the mathematical 
model-based approach are that the model efficacy depends on the data 
quality and distribution, the parameter tuning is challenging, and the 
generalization to different datasets needs to be further investigated.

To sum up, anomaly detection based on autoencoders performs 
well in terms of simplicity and generalization ability but lacks in terms 
of sensitivity to abnormal data and reconstruction error for heart 
sound data (Cloudera and Nisha, 2020). Anomaly detection based on 
graph neural networks performs well in handling complex 
relationships and unifying frameworks, but it is highly computation-
based and depends on graph structure (Jia-Yan et al., 2020). However, 
anomaly detection based on a depth generation model has significant 
advantages in terms of representation ability, automatic feature 
extraction, and wide applicability of cardiac sound anomaly data 
(Xing et al., 2020). Therefore, based on the deep generation model and 
inspired by the DCGAN network architecture model (Liu et al., 2019) 
and the semi-supervised value detection framework (Shi et al., 2023), 
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this study intends to collect the heart sound data of children in our 
center. Combined with the semi-supervised anomaly detection 
framework of wavelet reconstruction (Aziz et al., 2024), convolutional 
autoencoder (Li et al., 2024), and one classification support vector 
machine (Zhang et al., 2025), a method for differential analysis of 
normal heart sounds and abnormal heart sounds was constructed and 
verified, the name of the framework is WCOS, which is short for 
WR-CAE-OCSVM. The research results will provide a reference for 
further research on the classification of heart noises.

The subsequent chapters of this paper are arranged as follows. 
Firstly, Chapter 2 describes the framework construction process, 
focusing on wavelet reconstruction and convolutional autoencoder. 
Secondly, as an application verification, Chapter 3 uses real data to 
verify the validity of the proposed model. Finally, in Chapter 4, we give 
the main conclusions of the paper and future research work.

The subsequent chapters of this paper are organized as follows. 
Firstly, the opening of Chapter 2 describes the key significance of heart 
sound abnormality detection in the diagnosis of congenital heart 
disease and puts forward the difficulties of sample imbalance and 
noise interference, followed by Chapter 3, which comprehensively 
analyzes the limitations of traditional means and the advantages and 
disadvantages of each method of deep learning, and analyzes the 
performances of a variety of models, and Chapter 4, which describes 
the process of constructing the framework of the WCOS model and 
analyzes the principles of noise reduction by wavelet, convolutional 
self-encoder feature mining, and classification by support vector 
machine. In Chapter 5, the validity of the proposed model is verified 
based on heart sound signals collected by an electronic stethoscope. 
Finally, in Chapter 6, we give the main conclusions of the article as 
well as an analysis of the model’s strengths and weaknesses.

3 Theory of the developed method

In this paper, we organically combine the wavelet reconstruction 
(WR), the convolutional auto-encoder (CAE), and one classification 

support vector machine (OCSVM) to construct a new semi-
supervised exception detection framework. This section first 
introduces the overall process of the proposed framework and briefly 
introduces the training and testing process of the framework. Then, 
we introduce the important components of the framework: wavelet 
reconstruction, convolutional autoencoder, and one classification 
support vector machine.

3.1 Fundamental architectures of the 
WCOS model

The overall framework of WCOS proposed in this paper mainly 
includes three parts: wavelet reconstruction, convolutional 
autoencoder, and one classification support vector machine, as shown 
in Figure 1.

The upper part of Figure  1 shows the training process of the 
WCOS model. Firstly, the original signal is decomposed by a 
multilayer wavelet, the high-frequency information containing noise 
is zeroed, and then the low-frequency information is reconstructed to 
obtain the reconstructed signal. Then, the reconstructed signals are 
divided by the sliding window method to obtain one sample after 
another. Finally, the training set and the test set are divided by the 
method of five-fold crossover. After partitioning the data set, the 
WCOS model is trained. The training steps of the model are 
summarized as follows: (A) Train the convolutional autoencoder 
using normal samples, the loss function – reconstruction error is 
minimized by backpropagation algorithm; (B) Train the one 
classification support vector machine using the potential 
representation of normal samples, minimize the loss function.

The bottom section of Figure 1 shows the testing process for the 
WCOS model. The testing steps of the model are summarized as 
follows: (A) Input the test sample into the convolutional autoencoder 
and obtain the corresponding latent representation; (B) Input the 
potential representation of the sample into the one classification 
support vector machine and obtain the corresponding anomaly score. 

FIGURE 1

Overall framework of the proposed WCOS model.
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Finally, the abnormal score was used to diagnose patients with 
cardiac abnormalities.

Next, the important components of the model are described in 
detail: wavelet reconstruction, convolutional self-encoder, and 
one-classification support vector machine.

3.2 Wavelet reconstruction

Wavelet reconstruction is used to denoise heart sounds. As a 
classical time-scale analysis algorithm, wavelet transform can 
decompose the signal into two sets of wavelet coefficients: 
approximation coefficient and detail coefficient. As shown in Figure 2, 
the approximate coefficients can be decomposed recursively, allowing 
for a more “detailed” examination of the original signal. In general, the 
approximate coefficient represents the information of the 
low-frequency part of the signal and is considered as the trend term 
of the signal. The detail coefficient characterizes the information of the 
high-frequency part of the signal, which is considered as the noise 
term of the signal. Therefore, to avoid the influence of noise, it is 
necessary to retain the approximate coefficient and discard the detail 
coefficient in the process of reconstruction.

In practical engineering, a series of low-pass filters and high-pass 
filters are usually used for discrete wavelet transform. Specifically, the 
wavelet decomposition formula for the original signal 𝑥 is shown as 
follows function of Equation 1:

 

( ) ( ) ( )
( ) ( ) ( )

2
2

cA k x n h k n
cD k x n g k n
 = ∑ −
 = ∑ −  

(1)

where ( )x n  denotes the sampled value of the original signal at 
discrete moments, ( )cA k  denotes the approximation coefficient of the 
signal, ( )cD k  denotes the detail coefficient, ( )·h  denotes the low-pass 
filter, ( )·g  denotes the high-pass filter, k  is the index of the coefficients 
after the discrete wavelet transform, n  is the sampling index of the 
original signal.

Wavelet reconstruction is the inverse operation of wavelet 
decomposition, and the formula of wavelet reconstruction is as follows 
function of Equation 2:

 
( ) ( ) ( ) ( ) ( )2 2

n n
x k cA n h k n cD n g k n= − + −∑ ∑

 
(2)

Where ( )x k  denotes the sampled value of the reconstructed signal 
at discrete moments, ( )cA n , ( )cD n . Same meaning as in wavelet 
decomposition, approximation coefficients and detail coefficients, 
respectively, but here as inputs to the reconstruction, ( )2k n− , 
( )2g k n−  still represent low-pass and high-pass filters, respectively, 

but the indexing is different here and is the operation used to 
reconstruct the original signal from the coefficients.

To avoid noise, set the detail parameters ( )cD n  of the above 
equation to zero, then the above formula becomes the function of 
Equation 3 below:

 
( ) ( ) ( )2

n
x k cA n h k n= −∑

 
(3)

Where, ( )cA n  denotes the approximation coefficient of the signal. 
This removes the high-frequency noise component of the signal, 
which tends to contain more noise, while the low-frequency 
component retains the main information of the signal. At this time, 
the reconstructed signal not only retains the main information of the 
original signal but also avoids the influence of noise to a certain extent, 
so the reconstructed signal is more suitable for the detection of 
cardiac abnormalities.

The Symlet 4 (sym4) wavelet was used in this study for wavelet 
decomposition. The sym4 wavelet was chosen because it provides a 
favorable trade-off between time and frequency localization of heart 
sound signals. The complexity of heart sound waveforms, which are 
often disturbed by noise, calls for a wavelet that can accurately 
decompose both low-frequency fundamental rhythms as well as high-
frequency transient events such as murmurs. sym4 wavelet’s design 
features make it capable of such tasks. Its symmetrical nature reduces 
phase distortion during decomposition and reconstruction, which is 
essential for maintaining the integrity of the signal’s phase information, 
which is critical for recognizing subtle differences in heartbeat patterns.

Regarding the level of wavelet decomposition, a 5-level 
decomposition was used. The five-level decomposition provides a 
fine-grained exploration of the signal spectrum. The initial levels 
capture the broad low-frequency trends that underpin the normal 
cardiac cycle. As the level of decomposition increases, details and 
potential anomalies in the high-frequency range gradually become 
apparent. For example, subtle changes in murmur intensity and 
frequency can be better separated and characterized at these higher 
levels. Thus, this five-level approach allows the extraction of 
discriminative features from different frequency layers and improves 
the efficiency of subsequent anomaly detection procedures by 
providing a comprehensive spectral depiction of the heart 
sound signal.

3.3 1-D convolutional auto-encoder

Convolutional autoencoders are used to extract the characteristic 
information of heart sounds. The convolutional autoencoder consists 
of an encoder and a decoder. The special feature is that the 
convolutional autoencoder uses a convolutional layer to replace the 
fully connected layer in the encoder, and a deconvolution layer to 

FIGURE 2

Wavelet tree of the raw signal.
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replace the fully connected layer in the decoder. The specific structure 
of the convolutional autoencoder in this paper is shown in Figure 1: 
the encoder consists of two convolutional layers, a batch layer, and a 
Leaky ReLU activation function, while the decoder consists of two 
deconvolution layers, a batch layer, and a ReLU activation function, 
and finally a Tanh layer.

The convolutional layer is an important component of 
convolutional autoencoders, which can greatly reduce the number of 
parameters in the network. On the one hand, it can improve the 
robustness of the network; On the other hand, it can also reduce the 
risk of network overfitting. For the single-channel input 𝑥, the 
potential representation of the 𝑖 feature map is formally defined as 
follows Equation 4:

 ( )i i ih f x W B= ⊗ +
 

(4)

Where f  represents the activation function in the encoder (we 
use Leaky ReLU in this article), iB  represents the bias of the 𝑖 
feature map, and the symbol ⊗  represents the two-dimensional 
convolution operation.

The deconvolution layer can be seen as an inverse mapping of the 
convolution layer, and the reconstructed representation for the input 
𝑥 is defined as follows Equation 5:

 
ˆˆ i i

i H
x g h W c

∈

 
= ⊗ +  

 
∑

 
(5)

Where g represents the activation function in the decoder (ReLU 
is used in this article), 𝑐 represents the bias of each input channel, and 
H represents a set of potential feature maps.

In addition, the loss function of the convolutional autoencoder is 
usually the reconstruction error of the sample, which can be expressed 
as follows Equation 6 below:

 
1

1 |ˆ|| |
∈

= −∑cae
x X

L x x
x

 
(6)

Where the 1||·||  represents the 1-norm. 1-norm can obtain a 
clearer reconstructed sample than 2-norm, so this paper uses 1-norm 
to measure the reconstruction error between the input sample and the 
reconstructed sample.

3.4 One-class support vector machine

OCSVM is used to diagnose heart sounds based on characteristic 
information. After the potential characteristics of samples are obtained 
by CAE, the boundary of normal samples needs to be  learned to 
distinguish normal samples from abnormal samples. As a classical 
semi-supervised learning algorithm, the one classification SVM only 
uses normal samples for training, so compared with supervised 
algorithms, it can avoid the training problems caused by the high 
imbalance between normal samples and abnormal samples. As shown 
in Figure  3, the basic principle of OCSVM is to map the normal 
sample into a high-dimensional space through the kernel function, 

treat the origin as the only outlier, learn an optimal hyperplane (with 
maximum spacing between the origin and the normal sample), and 
can distinguish the origin from the normal sample.

For a given data set { }: 1,2.iH h i N= =   and the features of the 
data mapped to high-dimensional space mapping function ( )·ϕ , where 
( )·ϕ  can be computed by the kernel function of Equation 7:

 ( ) ( ) ( ), T
i j i jk h h h hϕ ϕ=  (7)

where ih  and jh  are two data points and ( )·ϕ  is the feature mapping 
function. To make data set H away from the origin, equivalent to the 
following optimization problem Equation 8:

 

( )( )

2
, ,

1 1min || ||
2

0

ξ
ξ

ϕ ξ

ξ

+ −

 ⋅ ≥ −


≥

∑ i
w v i

i i

i

w v
CN

w h v
subjectto

 

(8)

where 𝑤 represents a vector perpendicular to the hyperplane; iξ  
represents the relaxation variable, which can solve the outlier in the 
training set. v is the distance to the origin; ( ]0,1C∈  represents the 
control factor that controls the complexity of the model, N  is the total 
number of samples in the dataset H , subject to denote the constraints, 
and ( )·ϕ  is the previous kernel function formula. It is worth noting 
that in this paper the dataset 𝐻 consists of potential representations 
of samples.

After solving the above optimization problem, to obtain the 
weight of a set of models { }: 1,2, ,iw i N=  , for any of the test sample 

ph , its corresponding decision function is Equation 9 below:

 
( ) ( )sgn ,p i p i

i
f h w k h h v

 
= −  

 
∑

 
(9)

Where ( )sgn ·  represents a symbolic function. If the decision 
function ( ) 1pf h = −  of sample ph  is tested, then sample ph  is 
diagnosed as normal. Conversely, if the decision function of test 
sample ph , then test sample ph  is diagnosed as an abnormal sample. 
Thus anomaly detection under unbalanced conditions can be realized.

FIGURE 3

Sketch of one-class support vector machine.
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3.5 Evaluation metrics of the WCOS model

The Area Under the Curve (AUC) of Receiver Operating 
Characteristics (ROC) was used as the evaluation index, ROC abscissa 
is the false positive rate (FPR), the ordinate is the true positive rate 
(TPR), and the area surrounded by the coordinate axis is defined as 
AUC. Studies show that AUC can better measure the performance of 
the classifier than the overall accuracy under the condition of uneven 
data. AUC is an index to evaluate the quality of the binary classification 
model, given by Equation 10:

 

( )1
2ii positionClass

i
i positionClass

M M
rank

AUC
M N

rank

∈

∈

+
−

=
×

∑

∑
 

(10)

where positionClass represents the positive set, irank  represents 
the rank of the ith sample in the sample ranking, and the 

i
i positionClass

rank
∈

∑  term represents the sum of the ranks belonging to 

the positive samples. M and N represent True Positive Rate (TPR) and 
False Positive Rate (FPR), respectively.

4 Experimental results

4.1 Data set preparation and preprocessing

To verify the validity of the constructed heart sound abnormality 
detection model, a Littmann 3200 electronic stethoscope from 3 M 
Company, USA, was used to collect heart sound signals to construct 
the dataset. The data were processed using a 5-fold cross-validation 
method, and the data were derived from actual clinical measurements 
in multiple medical institutions, not from simulations. In clinical 
practice, abnormalities in cardiac structure or function are associated 
with changes in the rhythm, frequency, and intensity of heart sounds. 
For example, murmurs caused by valvular lesions and weakened or 
enhanced heart sounds due to myocardial lesions are selected as key 
indicators for the detection of abnormalities. At the same time, 
we  searched patients’ medical records, diagnostic reports, and 
treatment feedback to accurately determine the status of heart sounds, 
constructed samples using sliding window technology, and analyzed 
a large number of cases to clarify that the length of abnormal heart 
sound sequences was mostly in the range of 6 to 10, and then set the 
sliding window size to 10.

This paper is experimentally verified on a device with a six-core 
Intel(R) Core (TM)i7-9750HCPU@2.59GHz processor and 8GB 
DDR4 memory.

4.2 Experimental setup

The original signal statistics method TF24 calculates the original 
signal through a series of specific formulas, and its role is to 
decomposition the original sound signal into 24 parameters, which 
cover a variety of characteristics of the signal in the time domain and 
frequency domain. The main purpose of TF24 is to extract 
representative features from the original signal, which can describe 

the characteristics of the original signal more comprehensively. The 
usage of TF24 is to use its 24 extracted parameters as features as the 
input of subsequent models (such as OCSVM). The time domain 
parameters are expressed as p1 ~ p11 and given by Equation 11:
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In Equation 11, p1 represents the average amplitude of the signal 
in the time domain, p2 calculates the standard deviation of the signal 
in the time domain, p3 is related to some weighted summation of the 
signal amplitude, p4 represents the root mean square value of the 
signal in the time domain, p5 directly obtains the maximum amplitude 
of the signal in the time domain, p6–p11 These parameters involve 
higher order statistics of the signal amplitude relative to the mean.

In addition, the original signal statistical method decomposed the 
sound signal into 13 parameters in the time domain, expressed as 
p12 ~ p24, which is given by Equation 12:
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In Equation 12, p12 represents the vibration energy in the 
frequency domain, and p13-p15, p17, and p21-p24 represent the 
convergence of the power spectrum. p16, p18, p19 and p20 represents 
the pattern of change of the main frequency.

The experiments involved four modules, namely OCSVM model, 
raw signal statistics TF24, convolutional autoencoder, and wavelet 
decomposition. Five models were set up for comparison, the control 
group is shown in Table 1.

As can be seen in the above table, the first group OCSVM represents 
a classification support vector machine, the second group TF24-OCSVM 
represents the combination of raw signal statistical method (TF24) and 
OCSVM, and the third group CAE-OCSVM represents the combination 
of convolutional autoencoder (CAE) and OCSVM. The fourth group of 
WR-OCSVM represents the combination of wavelet reconstruction 
(WR) and OCSVM, the fifth group of WR-TF24-OCSVM integrates 
wavelet reconstruction, raw signal statistical methods and OCSVM, and 
the sixth group of WR-CAE-OCSVM combines wavelet reconstruction, 
convolutional autoencoder and OCSVM.

4.3 Result analysis

4.3.1 Comparison with other models
Comparing multiple current anomaly detection models, We chose 

the variant autoencoder (VAE)-based anomaly detection method, 
which is currently widely used and influential in heart sound anomaly 
detection or related fields, is selected as the comparison object. The 
data used in the comparison experiments are from the same source as 
those used to validate the WCOS model in the dissertation, and the 
software and hardware environments run are the same to ensure the 
consistency and comparability of the data.

In the following, the heart sound detection error of the VAE 
model will be verified first, and the mean square error (MSE) will 
be chosen as the evaluation index, as shown in the following formula 
Equation 13:
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i
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(13)

where n represents the number of samples, iy  represents the true 
value of the i th sample, and iy  represents the predicted value of the i 
th sample.

The results of utilizing the five-fold method for the VAE model 
results are shown in Figure 4.

The VAE models for the three convolutional kernel cases can 
be seen in Figure 4. vae1 in Figure 4 represents the Test MSE for the 
VAE model with convolutional kernel of Wang et al. (2024) and Liang 
et  al. (2021) is 1.257207727, vae2 represents the Test MSE for 
convolutional kernel of Liang et al. (2021) and Chong et al. (2021) is 
1.259705973, and vae3 represents the Test MSE for convolutional 
kernel of Chong et al. (2021) and Mir et al. (2024) is 1.257824469. The 
smallest MSE is 1.257207727 when the number of convolutional 
kernels is (Wang et al., 2024; Liang et al., 2021). The maximum MSE 
is 1.259705973 when the number of convolution kernels is (Liang 
et al., 2021; Chong et al., 2021). The range of model MSE is during the 
range of [1.2572, 1.2597].

To compare with the WCOS model proposed in this paper, the 
root mean square error obtained by combining the VAE model with 
wavelet variations, a one-dimensional support vector machine, and 
using the five-fold method is shown below.

Figure 5 represents the MSE of WR-VAE-OCSVM for the six 
convolutional kernel cases, and the Test MSE of the VAE model 
with the convolutional kernel of Wang et al. (2024) and Liang et al. 
(2021) is 1.257626295, that of the convolutional kernel of Liang 
et al. (2021) and Chong et al. (2021) is 1.257779431, that of the 
convolutional kernel of Chong et al. (2021) and Mir et al. (2024) 
is 1.258005643, that of the convolutional kernel for Mir et  al. 
(2024) and Li et al. (2024) has a Test MSE of 1.256320214, the Test 
MSE for convolution kernel for [32, 64] has a Test MSE of 
1.256026459, and the Test MSE for convolution kernel for [64, 
128] has a Test MSE of 1.259554124, and it can be seen that the 
model error is minimized at convolution kernel for [32, 64], when 
the Test MSE is 1.256026459, and when the convolution kernel is 
[64, 128], the model error is the largest, at this time the Test MSE 
is 1.259554124, and the error range is in [1.256026459, 
1.259554124].

Figure 6 represents the MSE of WR-CAE-OCSVM for the six 
convolution kernel cases, and the Test MSE of the VAE model with 
convolution kernel (Wang et  al., 2024; Liang et  al., 2021) is 
1.076472855, the Test MSE with convolution kernel (Liang et al., 2021; 
Chong et al., 2021) is 1.055950403, the Test MSE with convolution 
kernel (Chong et al., 2021; Mir et al., 2024) is 1.048900998, and the 
Test MSE of the VAE model with convolution kernel [16, 32] is 

FIGURE 4

MSE of VAE.

TABLE 1 Control group setup.

Control group no Control model structure

1 OCSVM Model

2 TF24-OCSVM

3 CAE-OCSVM

4 WR-OCSVM

5 WR-TF24-OCSVM

6 WR-CAE-OCSVM
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1.034770775, Test MSE for convolution kernel of [32, 64] is 
1.012387657, and Test MSE for convolution kernel of [64, 128] is 
1.007082856, which can be seen that the model error is minimum 
when the convolution kernel is [64, 128], and at this time Test MSE is 
1.007082856, and the model error is maximum when the convolution 
kernel is (Wang et al., 2024; Liang et al., 2021), which is 1.007082856. 
At this time, the Test MSE is 1.076472855, and the error range is 
[1.007082856, 1.076472855].

Comparing the two models, it is obvious that the error of the 
model proposed in this paper is much lower than that of WR-VAE-
OCSVM, and compared with the WR-VAE-OCSVM model, the 
minimum error is lower by 0.248944, which reduces it by 19.82%, and 
the accuracy of the WCOS model still performs better in a variety of 
test rounds, which verifies the validity and advancement of the model. 
To improve the detection accuracy of the model, the subsequent 
content will discuss the effects of hyperparameters in the model and 
find the optimal parameters, respectively.

4.3.2 Hyperparameter determination
The modules that need to determine hyperparameters include the 

OCSVM module and the convolutional autoencoder module. The 

hyperparameters that the OCSVM module needs to determine are the 
control factor C and the kernel function k. Control factor Select 
C = 1 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2 and 1 × 10−1 
performance. Commonly used kernel function is linear function, 
polynomial function, radial basis function, the sigmoid function, 
formula by ( ) ( ) ( ), T

i j i jk h h h hϕ ϕ=  is given by Equation 14:
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Where a1 and b1 are polynomial coefficients, σ are width 
parameters, and a2 and b2 are coefficients of the sigmoid function. 
What the convolutional self-coder module needs to determine is the 
convolutional kernel i and j. This article arranged the 6 kinds of 
combinations, respectively (I = 2, j = 4), (I = 4, j = 8), (I = 8, j = 16), 
(I = 16, j = 32), (I = 32, j = 64), (I = 64, j = 128). The results of each 
model are as follows.

For the control group OCSVM, Figure 7 shows that the AUC value 
of the OCSVM model is higher only when the kernel function k = krbf. 
When the kernel functions k = klinear, k = kpoly, and ksigmoid, the AUC 
values of the OCSVM model are lower. When the kernel function 
k = krbf, the AUC value is less affected by the control factor C. When 
k = krbf and C = 1 × 10–4, the OCSVM model achieved the best 
performance in this task (AUC = 0.855).

For control group No. 2 TF24-OCSVM, Figure 8 shows that when 
kernel functions k = krbf and klinear, the AUC value of the TF24-OCSVM 
model is higher. When the kernel functions k = kpoly and ksigmoid, the 
AUC value of the TF24-OCSVM model is low. When the kernel 
function k = krbf, the AUC value is less affected by the control factor 

FIGURE 5

MSE of WR-VAE-OCSVM.

FIGURE 6

MSE of WR-CAE-OCSVM.

FIGURE 7

AUC at different parameters.
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C. When the kernel function k = klinear, the AUC value has a greater 
influence on the control factor C. When k = klinear and C = 1 × 10−4, the 
TF24-OCSVM model in this task achieved the best performance 
(AUC = 0.716).

For the control group No. 3 CAE-OCSVM, the results are shown 
in Figure  9. Figure  9 shows that when k = krbf, the AUC of the 
CAE-OCSVM model is significantly higher than the AUC of k = klinear, 
kpoly, and ksigmoid. Therefore, the kernel function of the CAE-OCSVM 
model is set to krbf. In this case, when the kernel is 2–4, the maximum 
AUC is 0.736 (C = 1 × 10−3). When the kernel is 4–8, the maximum 
AUC is 0.867 (C = 1 × 10−3). When the kernel is 8–16, the maximum 
AUC is 0.841 (C = 1 × 10−3)). When the Kernel is 16–32, the maximum 
AUC is 0.842 (C = 5 × 10−2). When the kernel number is 32–64, the 
maximum AUC is 0.846 (C = 1 × 10−3). When the kernel is 86–128, 
the maximum AUC is 0.852 (C = 1 × 10−3). Therefore, to achieve the 
best performance of the CAE-OCSVM model in this task, the kernel 
function is set to k = krbf, the convolution kernel is set to 4–8, and the 
control factor is set to C = 1 × 10−3.

For control group No. 4 WR-OCSVM, the results are shown in 
Figure 10. Figure 10 shows that when kernel function k = krbf, the 
minimum AUC value of the WR-OCSVM model reaches 0.814. When 
the kernel function k = klinear, the maximum AUC of the WR-OCSVM 
model reaches 0.538. When the kernel function k = kpoly, the maximum 
AUC value of the WR-OCSVM model reaches 0.601. When the kernel 
function k = ksigmoid, the maximum AUC value of the WR-OCSVM 
model reaches 0.526. Therefore, when the kernel function k = krbf, the 
lowest AUC value is significantly higher than the highest AUC value 
when the kernel function k = klinear、kpoly、ksigmoid. When the kernel 
function k = krbf and the control factor C = 1 × 10−4, the AUC value is 
the highest, reaching 0.824. Therefore, to achieve the best performance 
of the WR-OCSVM model in this task, the kernel function is set to 
k = krbf, and the control factor is set to C = 1 × 10−4.

For the control group No. 5 WR-TF24-OCSVM, the results are 
shown in Figure  11. It is shown that when the kernel functions 
k = krbf and klinear, the AUC value of the TF24-OCSVM model is 
higher. When the kernel functions k = kpoly and ksigmoid, the AUC value 

of the TF24-OCSVM model is low. When the kernel function 
k = krbf, the AUC value is less affected by the control factor C. When 
the kernel function k = klinear, the AUC value is greatly affected by 
the control factor C. When k = klinear and C = 1 × 10−4, the TF24-
OCSVM model in this task achieved the best performance 
(AUC = 0.796).

For the control group No. 6 WR-CAE-OCSVM, the results are 
shown in Figure  12: when k = krbf, the AUC of the WR-CAE-
OCSVM model is significantly higher than that when k = klinear, kpoly, 
and ksigmoid. Therefore, the kernel function of the WR-CAE-OCSVM 
model is set to krbf. In this case, when the kernel is 2–4, the 
maximum AUC is 0.779 (C = 1 × 10−3). When the kernel is 4–8, the 
maximum AUC is 0.822 (C = 1 × 10−4). When the kernel is 8–16, 
the maximum AUC is 0.848 (C = 1 × 10−3). When the kernel is 
16–32, the maximum AUC is 0.850 (C = 1 × 10−2). When the kernel 
is 32–64, the maximum AUC is 0.851 (C = 1 × 103). When the 
kernel is 86–128, the maximum AUC is 0.870 (C = 1 × 10−3). 
Therefore, to achieve the best performance of the WRCAE-OCSVM 
model in this task, the kernel function is set to k = krbf, the 
convolutional kernel is set to 64–128, and the control factor is set 
to C = 1 × 10−3.

In summary, the optimal hyperparameter Settings of the six 
groups of models are shown in Table 2.

The table comprehensively shows the optimal hyperparameter 
settings of the six groups of models. The models are carefully tuned 
for different model structural characteristics, such as the OCSVM 
model kernel function is set to k = krbf and the control factor 
C = 0.0001 in control group 1, the kernel function is set to k = klinear 
and the control factor C = 0.0001  in control group  2, and the 
convolutional kernel is set to Liang et al. (2021) and Chong et al. 
(2021) for the CAE-OCSVM model in control group 3, the kernel 
function is set to Liang et al. (2021) and Chong et al. (2021), and the 
control factor C = 0.0001 in control group 4. the kernel function is set 
to k = krbf, control factor C = 0.0001, as in control group  4 
WR-OCSVM model kernel function is set to k = krbf, control factor 
C = 0.0001, as in control group 5 WR-TF24-OCSVM model kernel 
function is set to k = klinear, control factor C = 0.0001, as in control 
group 6 WR- CAE -OCSVM model convolution kernel is set to [64, 
128], the kernel function is set to k = krbf, control factor C = 0.0001.

4.3.3 Effectiveness of the developed framework
This paper established five groups of comparison experiments 

based on the cross-difference verification method to verify the validity. 
To remove the randomness of the neural network, each experiment 
was repeated 10 times. The experimental results are shown in 
Figure 13.

Figure 13 compares the AUC values of samples of six models 
OCSVM, TF24-OCSVM, CAE-OCSVM, WR-OCSVM, 
WR-TF24OCSVM, and WR-CAE-OCSVM under the best 
hyperparameters. It shows that the WR-CAE OCSVM has the highest 
AUC value in the samples with K = 1, 2, 3, and 4, reaching 0.867, 0.878, 
0.886, 0.842, and 0.875, respectively.

Table 3 shows the Statistics of the mean, standard deviation, and 
variance of AUC of OCSVM, TF24-OCSVM, CAE-OCSVM, 
WR-OCSVM, WR-TF24-OCSVM and WR-CAE-OCSVM models, 
respectively.

Table  3 shows that the average AUC of WR-CAE-OCSVM is 
higher than that of WR-TF24-OCSVM (0.870–0.796)/ 

FIGURE 8

AUC for different parameters of TF24-OCSVM.
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0.870 × 100% = 8%. Similarly, the average AUC of WR-CAE-OCSVM 
is 5, 1, 18, and 5% higher than that of WR-OCSVM, CAE-OCSVM, 
TF24-OCSVM, and OCSVM, respectively. The above data reflect that 
WR-CAE-OCSVM has the best effect in this heart sound 
classification task.

Table  3 also shows that the AUC standard deviation of 
WR-CAE-OCSVM is lower than that of WR-TF24-OCSVM 
(0.0938–0.0169)/ 0.0938 × 100% = 82%. Similarly, the AUC 
standard deviation of WR-CAE-OCSVM is 42, 55, 87, and 42% 
lower than that of WROCSVM, CAE-OCSVM, TF24-OCSVM, 
and OCSVM, respectively. The AUC variance of WR-CAE-
OCSVM is 97, 66, 80, 98, and 66% lower than that of WR-TF24-
OCSVM, WR-OCSVM, CAE-OCSVM, TF24-OCSVM, and 
OCSVM, respectively. The above data reflect that the WR-CAE-
OCSVM model has the best stability in this heart sound 
classification task.

4.3.4 Anti-noise ability of the developed 
framework

To verify the anti-noise ability of the WR-CAE-OCSVM model in 
the classification of heart sounds, four groups of experiments were 
carried out, respectively. In the experiment, Gaussian noise with 
different standard variance (sigma) was added to heart sounds to 
simulate ambient noise. As shown in Figure 14, gaussian noise with 
four different sigma values is set.

Five groups of experiments were established based on the cross-
difference verification method, and four groups of noise were added 
to each group of experimental data. To eliminate the randomness of 
the neural network, each experiment was repeated 10 times, and the 
experimental results are shown in Figure 15.

Figure  15 shows that the WR-CAE-OCSVM has the best 
classification effect in this task. When the noise of sigma = 0, the 
mean AUC of WR-CAE-OCSVM is higher than that of 

FIGURE 9

AUC of CAE-OCSVM with different parameters.
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WR-OCSVM (0.870–0.824)/ 0.870 × 100% = 5.3%. The mean AUC 
of WR-CAE-OCSVM was 1.4 and 5.3% higher than that of 
CAE-OCSVM and OCSVM, respectively. When noise with 
sigma = 0.1, the mean AUC of the WR-CAE-OCSVM is 4.6, 0.2, 
and 7.2% higher than that of WR-OCSVM, CAEOCSVM and 
OCSVM, respectively. When noise with sigma = 0.25, the mean 
AUC of the WR-CAE-OCSVM is 7.4, 14.7, and 20.3% higher than 
that of WR-OCSVM, CAE-OCSVM and OCSVM, respectively. 
When noise with sigma = 0.5, the mean AUC of the WR-CAE-
OCSVM is 5.0, 6.6, and 16.5% higher than that of WR-OCSVM, 
CAE-OCSVM, and OCSVM, respectively. To verify the stability of 
each model, Figure 16 shows the standard deviation of the AUC 
obtained from five sets of experiments.

Figure 16 shows that the WR-CAE-OCSVM model has the best 
stability in this task. When the noise of sigma = 0, the AUC standard 
deviation of WR-CAE-OCSVM is lower than the mean AUC of the 
WR-OCSVM (0.0290–0.0169)/0.0290 × 100% = 41.8%. The AUC 
standard deviation of the WR-CAE-OCSVM is 55.4 and 41.8% lower 
than that of CAE-OCSVM, and OCSVM, respectively. When the 
noise of sigma = 0.1, the AUC standard deviation of the WR-CAE-
OCSVM is 44.9, 34.3, and 57.2% lower than that of WR-OCSVM, 
CAE-OCSVM, and OCSVM, respectively. When the noise of 
sigma = 0.25, the AUC standard deviation of the WR-CAE-OCSVM 
is 20.7, 58.9, and 19.8% lower than that of WR-OCSVM, 
CAE-OCSVM, and OCSVM, respectively. When the noise of 
sigma = 0.5, the AUC standard deviation of the WR-CAE-OCSVM is 
19.2, 54.1, and 29.8% lower than that of WR-OCSVM, CAE-OCSVM 
and OCSVM, respectively.

5 Discussion and future perspectives

This paper presents a new semi-supervised anomaly detection 
method WCOS, which can work in both unsupervised and semi-
supervised Settings. Experimental evaluations using real data sets 
show that WCOS is much more accurate than current anomaly 
detection methods and has greater noise resistance after adding 
different noise effects. In future work, we will improve the clustering 
process and anomaly measurement to make the detection more 
efficient and time-saving. Surveillance data is often uneven, so our 
future efforts will focus on discovering a suitable regularization 
technique that may further improve the stability of the anomaly 
detection model.

5.1 Advantages of the WCOS framework

In this paper, we  propose a new semi-supervised anomaly 
detection method, WCOS, that can work in both unsupervised and 
semi-supervised settings. It has several significant advantages over 
other anomaly detection methods, firstly its semi-supervised nature is 
a key advantage, in the real world, obtaining a large amount of labeled 
data for heart sound anomaly detection is often both arduous and 
expensive, WCOS can effectively utilize both limited labeled data and 
a large amount of unlabeled data, by training a convolutional 
autoencoder with normal samples and using a one-class support 
vector machine, it can learn the normal heart sound’s inherent 
patterns and accurately differentiate abnormal heart sounds in the 

FIGURE 10

AUC at different parameters.

FIGURE 11

AUC at different parameters.

TABLE 2 Hyperparameter setting.

Control 
group 
number

Control group 
model 
structure

Hyperparameter 
setting

1 OCSVM Model OCSVM (rbf-0.0001)

2 TF24-OCSVM OCSVM (linear-0.0001)

3 CAE- OCSVM CAE-OCSVM (4-8-rbf-0.001)

4 WR-OCSVM OCSVM (rbf-0.0001)

5 WR-TF24-OCSVM OCSVM (linear-0.0001)

6 WR- CAE -OCSVM CAE-OCSVM (64-128-rbf-

0.001)
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presence of sparse labeled abnormal samples, which greatly improves 
its practical applicability in the clinical setting.

Secondly, the integration of wavelet reconstruction provides 
significant noise suppression capability, heart sound signals are often 
contaminated by various noises, such as power line interference and 
baseline drift, wavelet reconstruction decomposes the signal into 
approximation coefficients and detail coefficients, and by eliminating 
the detail coefficients that mainly contain noise components, it 
effectively filters out the high-frequency noises while preserving the 
basic low-frequency trends and characteristics of heart sounds, and 
this denoised signal can be used as a subsequent This denoised signal 
can be used as a high-quality input for subsequent analysis, improving 
signal quality and the reliability of detection results.

The efficacy of the framework is further enhanced by the 
combination of a convolutional autoencoder and one classification 
support vector machine. The convolutional autoencoder has a 
convolutional and deconvolutional layer that extracts hierarchical 
abstract features from the heart sound data, which not only reduces 

FIGURE 12

AUC at different parameters.

FIGURE 13

AUC for five-fold cross validation.
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the dimensionality of the data but also captures underlying patterns 
and correlations in the signal. One classification support vector 
machine then utilizes these learned features to establish accurate 
decision boundaries to distinguish between normal and abnormal 
heart sounds, and experimental results on real datasets fully 
demonstrate the effectiveness of WCOS.

5.2 Disadvantages and limitations

Despite its merits, the WCOS framework has certain drawbacks. 
The computational complexity during the training process is relatively 
high. The training of the convolutional autoencoder demands 
significant computational resources and time, particularly when 
handling large-scale heart sound datasets. The determination of 
optimal hyperparameters for the one-class support vector machine 
also requires extensive experimentation and fine-tuning, adding to the 
computational burden.

Moreover, while the model performs well in the current study 
focused on heart sound anomaly detection, its generalization to other 
types of medical signals or datasets with different characteristics may 
be limited. The model is trained and optimized based on the specific 
features and distributions of the heart sound data used in this research. 
When applied to other medical signal domains, such as 
electroencephalogram (EEG) or electromyogram (EMG) signals, or 
datasets with distinct statistical properties, its performance may 

decline due to differences in signal characteristics, noise patterns, and 
data distributions.

5.3 Future research directions

To address these limitations, future research efforts will 
be  directed toward several aspects. In terms of computational 
efficiency, we  plan to explore advanced model compression 
techniques. These techniques could involve pruning the redundant 
connections and neurons in the convolutional autoencoder without 

TABLE 3 Mean, standard deviation, and variance of AUC for 6 models.

Model AUC 
mean

AUC standard 
deviation

AUC 
variance

OCSVM 0.824 0.0290 0.0008

TF24-OCSVM 0.716 0.1260 0.0159

CAE- OCSVM 0.857 0.0378 0.0014

WR-OCSVM 0.824 0.0290 0.0008

WR-TF24-

OCSVM

0.796 0.0938 0.0088

WR- CAE 

-OCSVM

0.870 0.0169 0.0003

FIGURE 14

Four Gaussian noises with different sigma values.
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significantly sacrificing its performance. Additionally, we  will 
investigate the application of parallel computing architectures to 
accelerate the training process. By distributing the computational 
tasks across multiple processors or computing devices, we can reduce 
the training time and make the framework more accessible for real-
time or large-scale applications.

Regarding generalization, we intend to conduct more extensive 
cross-dataset validations. This will involve collaborating with other 
research institutions to access diverse medical signal datasets from 
different sources and populations. By evaluating the WCOS 
framework on these varied datasets, we can identify its strengths and 
weaknesses in different contexts and make necessary adjustments. 
Furthermore, we will explore the incorporation of domain adaptation 
algorithms. These algorithms can help the model adapt to new data 
domains by learning the transferable features and reducing the 
domain shift between the training and target datasets. This will 
enhance the model’s ability to generalize to a broader range of medical 
signal analysis tasks and contribute to the development of more robust 
and versatile anomaly detection methods in the medical field.
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FIGURE 15

Sigma = 0, 0.1, 0.25, 0.5 anti-noise training AUC.

FIGURE 16

Sigma = 0, 0.1, 0.25, 0.5 anti-noise training AUC.
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