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Introduction: Neurodegenerative diseases such as Alzheimer’s disease (AD) or

frontotemporal lobar degeneration (FTLD) involve specific loss of brain volume,

detectable in vivo using T1-weighted MRI scans. Supervised machine learning

approaches classifying neurodegenerative diseases require diagnostic-labels for

each sample. However, it can be di�cult to obtain expert labels for a large

amount of data. Self-supervised learning (SSL) o�ers an alternative for training

machine learning models without data-labels.

Methods: We investigated if the SSL models can be applied to distinguish

between di�erent neurodegenerative disorders in an interpretable manner. Our

method comprises a feature extractor and a downstream classification head. A

deep convolutional neural network, trained with a contrastive loss, serves as the

feature extractor that learns latent representations. The classification head is a

single-layer perceptron that is trained to perform diagnostic group separation.

We used N = 2,694 T1-weighted MRI scans from four data cohorts: two ADNI

datasets, AIBL and FTLDNI, including cognitively normal controls (CN), cases

with prodromal and clinical AD, as well as FTLD cases di�erentiated into its

phenotypes.

Results: Our results showed that the feature extractor trained in a self-supervised

way provides generalizable and robust representations for the downstream

classification. For AD vs. CN, our model achieves 82% balanced accuracy on the

test subset and 80% on an independent holdout dataset. Similarly, the Behavioral

variant of frontotemporal dementia (BV) vs. CN model attains an 88% balanced

accuracy on the test subset. The average feature attribution heatmaps obtained

by the Integrated Gradient method highlighted hallmark regions, i.e., temporal

gray matter atrophy for AD, and insular atrophy for BV.

Conclusion: Our models perform comparably to state-of-the-art supervised

deep learning approaches. This suggests that the SSL methodology can

successfully make use of unannotated neuroimaging datasets as training data

while remaining robust and interpretable.

KEYWORDS

contrastive learning, self-supervised learning, neurodegenerative disorders, deep

learning, structural magnetic resonance imaging, Alzheimer’s disease, frontotemporal
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1 Introduction

Neurodegenerative diseases such as Alzheimer’s disease

(AD) and frontotemporal dementia (FTD) are characterized

by specific brain volume loss, which can be assessed in-vivo

using structural magnetic resonance imaging (MRI). The usual

radiological evaluation of MRI scans is performed mainly by visual

examination, which is often time-consuming. Assistance systems

for the automated detection of disease-specific patterns could

be useful for better clinical diagnosis, as they can significantly

decrease the evaluation time for radiologists and neurologists,

and help them focus on relevant brain regions. Convolutional

neural networks (CNNs) models can automatically identify

neurodegenerative diseases from MRI scans and achieve state-

of-the-art results in medical imaging tasks. Recent developments

in the CNN architectures have in turn shaped the neuroimaging

community, which is interested in automatic discovery of image

features pertinent to neurological illnesses. Various tasks, such

as disease diagnosis, pathology localization, anatomical region

segmentation, etc., now rely on the use of CNNs (Dyrba et al.,

2021; Qiu et al., 2020; Eitel et al., 2021; Wen et al., 2020; Han et al.,

2022). CNN models are primarily trained in a supervised manner

by using an external ground-truth label. Generating such labels

for data samples is often burdensome and costly. Furthermore,

CNN models require a large amount of training data to achieve

competitive results. Such large datasets are not easily available

within the medical domain due to the high cost of data collection

and the rarity of experts for annotations.

These constraints led us to reconsider the training of CNN

models in a supervised manner, and to explore self-supervised

learning (SSL) approaches. The SSL methods learn without any

sample labels by utilizing the internal structure of the data to

generate representative features. Architectures trained in a self-

supervised manner are biologically plausible, provide extensive

feature space, and can compete with supervised approaches (Orhan

et al., 2020).

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle

Flagship Study of Aging; BN, Batch normalization; BV, behavioral variant

of frontotemporal dementia; CN, Cognitively normal participants; CNN,

Convolutional neural network; ConvNeXT, A highly optimized CNN

model architecture recently introduced by Liu et al. (2022b); DZNE,

Deutsches Zentrum for Neurodegenerative Erkrankungen (German Center

for Neurodegenerative Diseases); FTLD, Frontotemporal lobar degeneration;

FTLDNI, Frontotemporal Lobar Degeneration Neuroimaging Initiative; GELU,

Gaussian error linear units; Grad-CAM, Gradient-weighted class activation

mapping; IG, Integrated gradients; InfoNCE, A form a contrastive loss

metric, where NCE stands for Noise-Contrastive Estimation; LN, Layer-wise

normalization; LRP, Layer-wise relevance propagation; MCC, Matthews

correlation coe�cient; MCI, Mild cognitive impairment; MNI, Montreal

Neurological Institute; MRI, Magnetic resonance imaging; NNCLR, Nearest-

Neighbor Contrastive Learning; PNFA, Progressive non-fluent aphasia; SL,

Supervised learning; SSL, Self-supervised learning; SV, semantic variant of

frontotemporal dementia; ViT, Vision Transformers; XAI, Explainable artificial

intelligence.

Moreover, post hoc explanation methods have been developed

within the field of eXplainable Artificial Intelligence (XAI) to

interpret how deep neural networks make decisions. The XAI

methods for explaining CNN models rely on local feature

attribution methods, which assign a relevance score to input

regions for a given input, model, and resulting output. However,

only a handful of studies have explored attribution-based XAI

methods within the field of self-supervised learning (SSL)

applications, e.g., in the medical imaging domain (Chen et al.,

2023).

The main goal of our study was to explore, in a proof-of-

concept study, SSL method’s ability to learn generalizable features

for dementia stage and type detection from structuralMRI data.We

hypothesized that SSL methods could learn meaningful structural

representations, and resulting models could have comparable

performances to supervised models. In this paper, we trained

a CNN model with the SSL setup and then evaluated it on

downstream classification tasks, binary and multi-class. We also

explored a saliency mapping technique for highlighting relevant

input regions. The main research questions were defined as: How

does the contrastive SSL paradigm compare to the supervised learning

paradigm in terms of predictive power? Are the models trained in

contrastive self-supervised way on neuroimaging data interpretable?

2 Background

2.1 Self-supervised learning

Self-supervised learning (SSL) methods learn generalizable

features without any data labels or ground truth information

by solving an initial auxiliary task. The pretrained SSL models

are then used for specific downstream tasks, e.g., identification

of neurodegenerative disorders. Models trained under the SSL

approach have found application in different domains, that is,

image processing (Jing and Tian, 2020), video processing (Schiappa

et al., 2023), and audio processing (Liu et al., 2022a). Within the

imaging domain, multiple auxiliary or so-called “pretext” tasks have

been suggested previously: identifying data augmentations (Reed

et al., 2021; Chen et al., 2020), rotation prediction (Chen et al.,

2019), patch position prediction (Doersch et al., 2015; Noroozi and

Favaro, 2016; Wei et al., 2019), image colorization (Larsson et al.,

2017, 2016), and contrastive learning (Jaiswal et al., 2020).

SSL methods could be thought of as an alternative to pre-

training or automated feature learning step and are related to the

way how young children learn (Orhan et al., 2020). Particularly,

contrastive SSL methods try to learn the general structure present

within the data, by using supervisory signals extracted from the data

itself independently of the ground truth for any specific use-case.

In our study, we used contrastive learning due to its widespread

application as a pretext task (Shurrab and Duwairi, 2022; VanBerlo

et al., 2024).

2.1.1 Formal definition of contrastive SSL
Contrastive learning tasks have received considerable attention

within the SSL methods. Contrastive learning tasks aim to learn a

latent space in which embeddings of similar data samples are pulled
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together, and embeddings of dissimilar data samples are pushed

apart (Gutmann and Hyvärinen, 2010; Weng, 2021; Chopra et al.,

2005). Various loss functions have been suggested to increase the

quality of learned embeddings, and expedite the training. These

include contrastive loss (Gutmann and Hyvärinen, 2010), triplet

loss (Chechik et al., 2010; Schroff et al., 2015), N-pair loss (Sohn,

2016), InfoNCE loss (Oord et al., 2019), and Neighborhood-based

loss (Sabokrou et al., 2019) etc. Contrastive learning is based on

the use of positive and negative data pairs (Grill et al., 2020; Chen

et al., 2020), where a positive pair (i, j) consists of two similar data

instances or views. In many studies, a data sample is paired with its

own augmented variations to create such positive pairs. A negative

pair generally contains two different data samples. The contrastive

loss ℓ for a positive pair is formally defined as follows.

ℓ(i, j) = −log
exp(cos(zi, zj)/τ )

∑2N
k=1 1[k6=i]exp(cos(zi, zk)/τ )

, (1)

Where τ is a scaling factor called temperature, 1 is an indicator

function with output values being 0 or 1, N is the number of

training samples, exp(·) is the exponential function, and cos(·) is
the cosine similarity function, over different z latent representation

of the input.

The Nearest-Neighbor Contrastive Learning (NNCLR) method

(Dwibedi et al., 2021) extends the common contrastive loss by

keeping a record of recent embeddings of augmented views in

a queue Q. Thus, the pairs are not directly compared, rather a

projection embedding that is most similar to a view is selected from

Q for the comparison with another view. The NNCLR contrastive

loss ℓn is defined as:

ℓn(i, j) = −log
exp(cos(S(zi,Q), zj)/τ )

∑2N
k=1 1[k6=i]exp(cos(S(zi,Q), zk)/τ )

, (2)

where S(z,Q) is the nearest neighbor function:

S(z,Q) = argmin
q∈Q

∥

∥z− q
∥

∥

2
. (3)

2.1.2 Self-supervised learning in medical imaging
Recent advancements in self-supervised learning (SSL)

facilitate the training of models capable of effectively acquiring

feature representations relevant to downstream tasks (Thomas

et al., 2024; VanBerlo et al., 2024). When applied to imaging data,

SSL methodologies primarily focus on image reconstruction (Hu

et al., 2021a; Zhou et al., 2023), segmentation (Taleb et al., 2020; Sun

et al., 2023), denoising (Pfaff et al., 2024), and disease classification

(Dufumier et al., 2021; Jiang and Miao, 2022; Gorade et al., 2023).

For example, the study by Taleb et al. (2020) introduces SSL pretext

tasks, including patch-based prediction of latent representations

and the augmentation prediction. In contrast, Hu et al. (2021a)

suggests an alternative pretext task leveraging two parallel networks

to minimize reconstruction loss. Additional research has used

SSL on longitudinal Alzheimer’s Disease (AD) MRI datasets to

explore methods to integrate information from multiple imaging

modalities (Fedorov et al., 2021) or to predict the trajectory of

cognitive performance and/or cognitive decline (Ouyang et al.,

2022; Zhao et al., 2021).

Contrary to the aforementioned studies, which aimed at

applying SSL techniques for the learning of feature representations

within broader application area, our work assesses the

effectiveness of these representations acquired through SSL

in differentiating neurodegenerative disorders with an emphasis

on the interpretability of the models.

2.2 Convolutional neural network
backbones

Convolutional neural networks (CNN) have been the state-of-

the-art solutions for computer vision tasks for almost a decade.

In the last few years, numerous approaches on the advancement

of CNNs were proposed: introduction of skip connections (He

et al., 2016; Huang et al., 2017), experimentation with model

hyper-parameters such as kernel size (Ganjdanesh et al., 2023),

normalization strategies (Ioffe and Szegedy, 2015) and activation

functions (Dubey et al., 2022; Apicella et al., 2021), depthwise

convolutions (Howard et al., 2017), and model’s block architecture

(Sandler et al., 2018).

With the introduction of attention priors, vision transformers

(ViT) (Dosovitskiy et al., 2020) soon became a viable alternative to

purely convolutional models, and currently represent the state-of-

the-art model architecture as generic vision backbones. ViTs were

inspired by the transformer models applied to language processing

tasks. To the best of our knowledge, there weren’t attempts

of systematically comparing attention priors with convolutional

priors. However, in their study Liu et al. (2022b) culminated

many of the CNN advancements proposed over the years, and

compared the resulting ConvNeXt model with comparable vision

transformers. ConvNeXt (Liu et al., 2022b) was proposed as a

purely convolutional model, which achieved favorable results on

common vision benchmarks such as the ImageNet (Deng et al.,

2009) and the COCO (Lin et al., 2014) datasets, sometimes

even providing higher accuracy than competing ViT models.

Notably, ConvNeXt achieved these results while maintaining

the computational simplicity and efficiency of standard CNN

models, highlighting the importance of convolutional priors for

vision tasks.

2.3 Feature attribution

With the growing popularity of CNN models and these models

becoming the off-the-shelf baselines, there has also been a growing

need to understand them. Multiple studies have attempted to

explain and interpret black-box CNN models. Within the domain

of explainable AI (XAI), there are various methods to derive

the importance of input features, i.e., the importance scores

with respect to each prediction. These importance scores can be

visualized by superimposing them on the input scans (Van der

Velden et al., 2022). Certain preferred methods of importance

scoring are Layer-wise Relevance Propagation (LRP) (Montavon

et al., 2019; Kohlbrenner et al., 2020), Gradient-weighted Class

Activation Mapping (Grad-CAM) (Selvaraju et al., 2020), and

Integrated Gradients (IG) (Sundararajan et al., 2017). Multiple
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studies have been conducted mapping importance scores to

input regions, particularly within the neuroscience application of

dementia detection (Dyrba et al., 2021; Singh and Dyrba, 2023;

Böhle et al., 2019; Leonardsen et al., 2024; Wang et al., 2023).

3 Methods

3.1 Neuroimaging datasets

We used T1-weighted brain MRI scans from publicly available

neuroimaging repositories. The data scans in our study were pooled

from the following data repositories: (i) the Alzheimer’s Disease

Neuroimaging Initiative (ADNI),1 study phases ADNI2 and

ADNI3, (ii) the Australian Imaging, Biomarker & Lifestyle Flagship

Study of Aging (AIBL),2 collected by the AIBL study group, and (iii)

the Frontotemporal Lobar Degeneration Neuroimaging Initiative

(FTLDNI).3 In our study, the cognitively normal (CN) scan samples

were consolidated from all three data cohorts. The ADNI and AIBL

data cohorts provided samples with dementia due to Alzheimer’s

disease (AD) and mild cognitive impairment (MCI). While,

FTLDNI was the only data cohort with samples categorized into

different frontotemporal lobar degeneration (FTLD) phenotypes,

i.e., the behavioral variant of frontotemporal dementia (BV),

the semantic variant of frontotemporal dementia (SV), and the

progressive non-fluent aphasia (PNFA). Notably, the data from

ADNI3, ADNI2 and FTLDNI was used for training all models, and

AIBL was used as independent test dataset.

We applied the “t1-linear pipeline” of the Clinica Python library

(Routier et al., 2021; Wen et al., 2020) to preprocess the raw MRI

scans. The pipeline uses the N4ITKmethod for bias field correction

and the SyN algorithm from ANTs to perform an affine registration

for alignment of each scan with theMontreal Neurological Institute

(MNI) reference space. However, more advanced steps such as

brain extraction, tissue segmentation, and non-linear warping were

not performed. Some MRI scans were excluded due to severe

quality issues, i.e., the presence of imaging artifacts such as blurring

or ghosting, or missing diagnostic information.

Additionally, each scan was cropped to the size of 169 ×
208 × 179 voxels with 1 mm isotropic resolution. After applying

preprocessing methods, our study includes 841 scans from the

ADNI2, 968 scans from the ADNI3, 612 scans from AIBL and 273

scans from FTLDNI. Table 1 summarizes the sample statistics of the

different data sources.

3.2 Proposed self-supervised learning
pipeline

Our proposed method consists of two modules: a feature

extractor and a classification head. The feature extractor is a

convolutional neural network trained without any sample labels in

a self-supervised manner. The classification head is a simple neural

1 ADNI: https://adni.loni.usc.edu/.

2 AIBL: https://aibl.csiro.au/.

3 FTLDNI: https://memory.ucsf.edu/research-trials/research/allftd.

TABLE 1 Sample statistics of study data per diagnosis state.

CN AD MCI

ADNI3

Age: µ(σ ) 74 (7) 77 (8.3) 74.6 (8)

MMSE: µ(σ ) 29.4 (0.7) 20.8 (4.5) 27.9 (1.1)

Sex: F/M 312/221 52/70 140/173

ADNI2

Age: µ(σ ) 75.8 (7) 76.2(7.6) 74.6 (7.9)

MMSE: µ(σ ) 29.3 (0.7) 21.1(4.3) 27.8 (1.1)

Sex: F/M 110/94 120/163 151/203

AIBL

Age: µ(σ ) 73.5 (6.4) 75.4 (7.9) 76.6 (6.5)

MMSE: µ(σ ) 29.2 (0.8) 19.5 (5.8) 27.2 (1.3)

Sex: F/M 239/182 51/37 41/62

CN BV SV PNFA

FTLDNI

Age: µ(σ ) 64.3 (7.1) 62.1 (5.8) 62.7 (6.8) 68.9 (7.7)

MMSE: µ(σ ) 29.7 (0.5) 22.6 (6.2) 22.5 (5.7) 24.9 (5.5)

Sex: F/M 72/58 23/48 14/23 19/16

CN, a cognitively normal state; AD, dementia due to Alzheimer’s disease; MCI, mild cognitive

impairment; BV, behavioral variant of frontotemporal dementia; SV, semantic variant of

frontotemporal dementia; PNFA, progressive non-fluent aphasia; µ, mean; σ , standard

deviation; MMSE, mini-mental state examination; F, female; M, male.

network subsequently trained in a supervised way. The proposed

architecture is shown in Figure 1.

After executing the t1-linear pipeline of the Clinica library, we

obtained a 3D image for the brain of each participant. However,

we only used 2D convolutional operations, as they reduce the

CNN parameter space and model complexity. We selected only the

coronal plane for the present study. In eachMRI sample, there were

in total 208 coronal slices; however, we considered only 120 coronal

slices in the middle. The slices from the middle contain the relevant

regions, such as the hippocampus and the temporal lobe, which are

reported to be affected already in the earliest stages of Alzheimer’s

disease (Whitwell et al., 2008).

Feature extractor: We used the ConvNeXt model (Liu et al.,

2022b) as the backbone for the SSL framework. It was trained with

the NNCLR loss ℓn to learn visual representations of input data (see

Equation 2). We chose the NNCLR method as it provides a more

generalizable learning paradigm by sampling semantic variations

in the latent space and being less reliant on transformation from

specific pretext tasks (Dwibedi et al., 2021). We applied a series of

random augmentations to a randomly selected coronal slice for the

creation of positive pairs, as exemplified in Figure 2.

The loss optimized for a data batch was:

L =
1

2N

N
∑

k=1

[ℓn(2k− 1, 2k)+ ℓn(2k, 2k− 1)], (4)
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FIGURE 1

Illustration of the proposed architecture. (Top) ConvNeXt, a CNN model, trained under a self-supervised learning paradigm, extracts features from

coronal brain slices. (Bottom center) The classification head learns to classify neurodegenerative disorders from the extracted features. CNN,

convolutional neural network; LN, layer normalization; Conv, convolutional operation; LN, Layer Normalization.

where ℓn is the NNCLR loss from Equation 2, 2k − 1 and 2k

represent the indices of the same augmented slice, andN is the total

number of training samples.

Specifically, we used the “tiny” variant ConvNeXt model (Liu

et al., 2022b) as our backbone model. It has a configuration

with sequential blocks set to (3, 3, 9, 3) and the number of output

channels equalling to (96, 192, 384, 768). ConvNeXt culminates

in many architectural advancements such as larger 7x7 kernel

sizes, skip connections, inverted bottleneck, Gaussian error linear

units (GELU) as activation function, layer-wise normalization (LN)

strategy instead of batch normalisations (BN), etc. The ConvNeXt

model and pretrained model weights can be downloaded from the

publicly available PyTorch library (Paszke et al., 2019).

Classification head: While using the ConvNeXt model as

a feature extractor, we considered the output produced by a

2D adaptive average pooling layer after the last convolutional

block as input for the subsequent “classification head” (Figure 1).

That means the classification head takes as input the latent

feature representations of the MRI scans that where processed

by the backbone CNN model. The dimension of the extracted

feature vector per MRI slice is 768. Our classification head is

a simple neural network consisting of a single fully-connected

layer preceded by a layer normalization operation (Figure 1

bottom). A single-layer perceptron was chosen as the classification

head to leverage the features extracted from the ConvNeXt

feature extractor directly, and not transforming the features by

applying multiple levels of nonlinearities. This design choice aims

to preserve the integrity of the extracted features. Employing

a single-layer perceptron is a widely recognized methodology,

commonly referred to as linear evaluation or linear probing

(Dubois et al., 2023; Scheibenreif et al., 2024; Kalibhat et al.,

2024).

3.3 Feature attribution

Integrated gradients (IG) can be applied to various data

modalities, such as text, images, or structured data (Sundararajan

et al., 2017). IG was chosen over other feature-attribution

methods because of its strong theoretical justifications, such as the

completeness property of the integrated gradients. IG considers

a straight path from some baseline to the input, and computes

the gradients along that path. These accumulated gradients are

called integrated gradients. However, this accumulation is an

approximation of the actual integration of the gradients, and the

number of steps taken between the baseline to the input determines

the quality of this approximation. In our study, we set N = 50 as

the number of integration steps taken between the baseline image

and the input image. To calculate IG importance scores, a mean

CN image was used as a baseline for the IG attribution method.

We used the IG implementation provided by the Captum library

(Kokhlikyan et al., 2020) to calculate importance maps for MRI

scans with respect to the classification task.

3.4 Experimental setup

Training the feature extractor: We trained a feature extraction

model (ConvNeXt) using the NNCLR method on ADNI3, ADNI2

and FTLDNI data for three learning trials. For each trial, we created

random training and test sets. These sets were held constant for all

experiments. If more than one MRI recording was available per

participant, then we assigned all participant’s MRI scans only to

one set, thus avoiding data leakage. This resulted in 10% of data

belonging to the test set.
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FIGURE 2

Randomly applied data augmentations to the input during training. (A) Original. (B) Horizontal flip (C) Crop and resize. (D) Occlusion.

The model was trained for 1,000 epochs using a batch size of

180 samples. The size of the NNCLR queue Q was set to 8,192.

We applied three different data augmentation techniques with

a probability of 0.5 to produce views visualized in Figures 2B–

D: horizontal flip, cropping and resizing, and occlusion. We

experimented with different data sources to train the feature

extractor, i.e., utilizing in-domain medical images vs. training with

out-of-domain natural images. More details about model training

and results could be found in the supplementary.

Training the classification head: To determine if a 3D MRI scan

belongs to a specific diagnostic group, we first derive the latent

representation vectors for 2D coronal slices using the ConvNeXt

feature extractor and then make a prediction for each slice using

the classification head. For evaluation with the test data, we applied

a majority voting procedure in which the group label that occurs

the most frequently determined the final group assignment. We

trained the classification head for 100 epochs, on the same three

training trials that were used to train the feature extractors.We used

a batch size of 64 samples and decayed the learning rate with cosine

annealing after every 20 epochs.

We experimented with various setups for training a

classification head while keeping the weights of the feature

extractor frozen vs. unfrozen, i.e., letting the weights change

during the classification head training. For the downstream

task, we compared different multi-class classification heads, i.e.,

predicting four (CN, MCI, AD, BV) or three classes—(CN, MCI,

AD) and (CN, AD, BV), and binary classification heads—(CN,

AD), (CN, BV), and (AD, BV). Furthermore, we evaluated our

models on the independent AIBL dataset, which was not used

during training. The independent test dataset enabled us to assess

the generalizability of our approach.

We used balanced accuracy, sensitivity (true positive rate),

specificity (true negative rate), and the Matthews correlation

coefficient (MCC) as evaluation metrics. Due to the class imbalance

in our dataset, we have chosen balanced accuracy over simple

accuracy in our study. Balanced accuracy is the average of the

true positive rate and the true negative rate, and thus avoids the

overestimation of model quality that (simple) accuracy generally

shows in class imbalance scenarios. With the true positives TP,

true negatives TN, false positives FP, and false negatives FN, the

balanced accuracy is defined as:

Balanced Accuracy =
TP

TP+FN + TN
TN+FP

2
(5)

As shown in Chicco and Jurman (2020), the MCC should be

preferred over the (simple) accuracy and the F1 score, as they could

generate misleading results in unbalanced data sets. The MCC

ranges between [−1, 1]. To achieve a high MCC score, the classifier

would have to make correct predictions on both the majority and

minority classes. The MCC is formally defined as:

MCC =
TP · TN− FP · FN

√
(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)

(6)

4 Results

4.1 Diagnostic group separation

We evaluated the manner in which the classification head could

be configured. We compared multi-class vs. binary classification

heads. Table 2 shows the results achieved with our proposed

architecture for the identification of neurodegenerative disorders,

using a frozen ConvNeXt feature extractor trained under the

NNCLR SSL paradigm on brain images. The reported numbers

were averaged over three learning trials. For the binary (AD vs.

CN) classification model, the balance accuracy reached 82% for

the cross-validation test sets and 80% for the independent AIBL

data cohort.

Upon comparing results from various settings of classification

heads trained over a frozen feature extractor, we can observe

a general trend, i.e., the binary classification for separating

cognitively normal (CN) and Alzheimer’s disease (AD) samples is a

much simpler task than the 4-way multi-class classification of CN,

mild cognitive impairment (MCI), AD and behavioral variant of

frontotemporal dementia (BV) samples. This finding has often been

reported in other studies in the field.

In the multi-class classification setting, the AD vs. MCI vs. CN

model, often confuses MCI samples with CN or AD samples. This

reflects the progressive nature of the Alzheimer’s dementia, with

MCI being intermediate stage between CN and AD. Interestingly,
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TABLE 2 Classification results of our proposed architecture, consisting of a frozen feature extractor trained under a SSL paradigm, and a single-layer

neural network as the downstream classification head.

Balanced accuracy MCC Sensitivity Specificity

Cross-validation test set (ADNI2/3 and FTLDNI)

AD vs. MCI vs. CN vs. BV: 0.60± 0.03 0.32± 0.02 0.51± 0.01 0.84± 0.00

AD vs. MCI vs. CN: 0.56± 0.02 0.32± 0.03 0.55± 0.02 0.78± 0.01

AD vs. CN vs. BV: 0.78± 0.03 0.55± 0.05 0.73± 0.02 0.87± 0.01

BV vs. CN: 0.88± 0.03 0.57± 0.03 0.90± 0.08 0.86± 0.02

AD vs. CN: 0.82± 0.04 0.61± 0.08 0.82± 0.05 0.82± 0.03

AD vs. BV: 0.93± 0.01 0.73± 0.04 0.85± 0.02 1.00± 0.00

Independent test set (AIBL)

AD vs. MCI vs. CN: 0.53± 0.01 0.30± 0.03 0.69± 0.01 0.84± 0.01

AD vs. CN: 0.80± 0.01 0.59± 0.01 0.66± 0.02 0.94± 0.01

In a multi-class setup, micro averages are reported for the sensitivity and specificity metrics. CN, cognitively normal; AD, dementia due to Alzheimer’s disease; MCI, mild cognitive impairment;

BV, behavioral variant of frontotemporal dementia; MCC, Matthews correlation coefficient.

we found that the AD vs. MCI vs. CN vs. BV model is substantially

better at separating BV samples from the other CN, MCI and

AD samples, with the recall (=sensitivity) of the BV class being

0.89, compared to the average micro recall of the same model

being 0.51. This finding points toward the model being sensitive

to different underlying pathologies of different dementia diseases—

frontotemporal dementia and AD. The same fact could also be

corroborated from the high performance metrics of the binary AD

vs. BV model. In Section 5.1 below, we discuss the achieved results

and compare them with the state of the art.

4.2 Model interpretability

To highlight the input regions that were found to be useful by

the SSL model, we used the Integrated Gradients (IG) attribution

method. IG calculates the importance scores for the input regions

for a specified prediction label. The IG importance scores were

calculated for every sample of the test data set (from ADNI2/3

and FTLDNI), on which our multi-class model (AD vs. CN vs.

BV) makes a correct classification. Figure 3 presents mean IG

importance scores for the disease types AD and BV, visualized

over the brain scan of a healthy sample chosen from the ADNI

cohort. While making a prediction toward the diseased classes,

the red regions in the image highlight input regions representing

the evidence for the diseased class, while the green regions in the

image highlight input regions representing the evidence against the

diseased class. The mean importance scores were thresholded to

visualize the most relevant findings.

5 Discussion

5.1 Feature learning

In our proposed SSL framework, we rely on signals that are

derived from the data itself rather than on external classification

target labels to train a feature extractor. We trained our SSL model

while restricting input to a subset of 2D coronal slices. It should be

noted that other SSL studies also avoided training 3D CNN with

high input resolution and followed similar 2D approaches as our

study (Couronné et al., 2021) or alternatively needed to drastically

downscale the 3D images to a very low 64 × 64 × 64 resolution

to reduce computing time (Ouyang et al., 2022; Fedorov et al.,

2021).

Our AD vs. CN vs. BV multi-class model achieves a balanced

accuracy of 78%. Certain fully supervised methods solve the same

task, achieving performance metrics as—Ma et al. (2020) reports

(simple) accuracy of 86.0% from a model comparable to ours

and 88.3% from a model with multimodal information sources

and generative data augmentation, and Hu et al. (2021b) reports

(simple) accuracy of 66.8% on a larger diverse dataset, and 91.8%

on a smaller cleaner dataset. While our BV vs. CN binary model

achieves a balanced accuracy of 88.2%. For the same taskMoguilner

et al. (2023) reports (simple) accuracy of 80% and 95% on MRI

scans with 1.5T and 3T strength, respectively.

There are other SSL studies that report AD vs. CN group

separation results on the ADNI dataset. Dufumier et al. (2021)

reported an AUC score around 0.96. Ouyang et al. (2022) achieved

a balanced accuracy between 81.9% and 83.6%, pre and post

model finetuning. Seyfioğlu et al. (2022) using a vision transformer

reported a mean simple accuracy of 83.4%. While there also

other SSL applications that reported sub-optimal results, Chen

et al. (2023) reported a balanced accuracy between 68.23% and

77.5% depending on model architecture used, while Jiang and

Miao (2022) reported a balanced accuracy between 73.1% and

74% depending on the pretext task used. For the same task

reported in these studies, our model with a frozen feature extractor,

achieves a balanced accuracy of 82% on ADNI dataset, which

is competitive with metrics reported in other studies. And on a

holdout independent test set (AIBL), ourmodel achieves a balanced

accuracy of 80%, which is only a two-percent drop from the cross-

validation testing of the model, highlighting the robustness of the

model. It should noted that many studies don’t evaluate their

models on a holdout independent test set, whichmakes it is difficult

to access their generalizability.
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FIGURE 3

Mean attribution maps derived from the Integrated Gradients method for correctly identified AD and BV samples. Green and red color highlight pixel

contributions to the model’s prediction. Here, red highlights evidence for the respective disease classification and green indicates evidence against it.

The attribution map overlay image was smoothed and thresholded to highlight relevant findings and improve visualization. AD, dementia due to

Alzheimer’s disease; BV, behavioral variant of frontotemporal dementia. (A) Slice: 0, Diagnosis: AD. (B) Slice: 60, Diagnosis: AD. (C) Slice: 0, Diagnosis:

BV. (D) Slice: 60, Diagnosis: BV.

In Table 3, we compare our model evaluation results with the

state-of-the-art studies that also used AIBL as an independent

test dataset. Here, we compare our SSL model with other models

trained in a supervised manner. Qiu et al. (2020), reports manual

expert rating scores, with a simple accuracy metric of 82.3%.

This performance level is comparable to that of our SSL models,

which achieved the simple accuracy measure of 89.9% on the AIBL

independent test set. It should be noted that some papers did not

report the balanced accuracymeasure, thus, their “simple” accuracy

results might be biased toward the majority class of cognitively

normal people who comprise 80% in the AIBL dataset for the group

comparison AD vs. sCN.

With regard to our achieved level of performance, we can

conclude that the ConvNeXt model trained under a SSL paradigm

learns generalizable features for the subsequent downstream

classification tasks without requiring data sampling techniques

or sophisticated data augmentations, and consequently achieving

competitive results in comparison to other supervised approaches.

The reported results show that our model learned meaningful

feature representations in a self-supervised manner, which can be

used successfully to separate different stages and types of dementia.

5.2 Neural network interpretability

We chose the SSL paradigm to extract more generalizable image

features independently of a downstream task. However, the SSL

paradigm also allows the backbone model to learn features of the

brain that may correlate with a specific neurodegenerative disorder.

We applied the Integrated Gradients (IG) method to interpret the

models and provide insights into the significance of input regions

for the predictions. The IG importance scores were calculated for

samples from the test dataset for which our AD vs. CN vs. BV

multi-class model makes correct classifications. Figure 3 illustrates

the mean IG importance scores for classifying samples into the

AD or BV group. In Figures 3A, B, we see the hippocampus region

highlighted in red for AD classification. Temporal lobe atrophy,
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TABLE 3 Comparison of our proposed method with the state-of-the-art.

Study training on the ADNI dataset Method details Balanced accuracy on the AIBL dataset

Our method SSL, 2D slice-level CNN 0.797± 0.009

Wen et al. (2020) SL, 2D slice-level CNN 0.756± 0.015

Wen et al. (2020) SL, 3D patch-level CNN 0.802± 0.016

Wen et al. (2020) SL, 3D subject-level CNN 0.862± 0.016

Dyrba et al. (2021) SL, 3D subject-level CNN 0.832± 0.030

Simple accuracy on the AIBL dataset

Our method SSL, 2D slice-level CNN 0.899± 0.003

Qiu et al. (2020) SL, 3D patch-level CNN 0.870± 0.022

Han et al. (2022) SL, 3D subject-level CNN 0.865

Han et al. (2022) SL, 3D patch-level CNN 0.875

Qiu et al. (2020) Expert Neurologists 0.823± 0.094

The results are provided for studies that used the AIBL dataset for independent evaluation and the group comparison AD vs. CN. In some studies balanced accuracy was not reported, “simple”

accuracy is provided instead, which might be biased toward the majority class (=CN). AD, dementia due to Alzheimer’s disease; CN, cognitively normal; SSL, Self-supervised learning; SL,

Supervised learning; CNN, Convolutional neural network.

specifically hippocampus atrophy, is a hallmark sign of Alzheimer’s

disease. In Figures 3C, D, we see the insula and frontal lobe regions

being highlighted in red. Insular atrophy is associated with the

behavioral variant of frontotemporal dementia (Moguilner et al.,

2023; Seeley, 2010; Luo et al., 2020; Mandelli et al., 2016). It

is of great interest to see the IG maps separately highlighting

regions, which in the literature are often associated with AD and

BV pathology.

Furthermore, to our knowledge, only one previous study,

Dadsetan et al. (2022), has systematically compared different

pretext methods for training SSL models for AD progression

prediction, while also employing an XAI method, i.e., GradCAM,

to generate relevance maps to evaluate the learned features.

However, the reported relevance maps were particularly diffuse

and widespread, offering limited interpretability. In addition, as

an ablation study, we investigated different XAI methods beyond

IG, but the results of these experiments also produced diffuse,

spiky and unspecific relevance maps. This highlights that the

application of XAI methods to SSL methods remains an open area

of research.

Notably, our model successfully learned to not consider tissue

outside of the brain or regions outside of the skull. However,

the derived attributions provide a rather general indication

of important input regions throughout the brain, including

primarily gray matter and white matter tissue. Few studies

have pointed out the complex nature of IG importance scores

that highlight multiple image features, both for and against a

class instance, making their comprehension non-trivial (Adebayo

et al., 2018; Kakogeorgiou and Karantzalos, 2021; Hiller et al.,

2025).

5.3 Limitations and future work

Our study uses only a subset of coronal slices to make sample-

level classifications. We acknowledge that the selection of the full

slice set along the coronal axis or selection of the full 3D MRI data

could have a positive effect on classification performance; however,

the main goal of the study was to investigate the application of

SSL and to compare it with traditional supervised approaches;

thus only a subset of slices along the coronal axis was chosen

as input. Learning a 3D CNN is a computationally expensive

problem for self-supervised learning, as it relies on (a) very large

data corpus, (b) data augmentation algorithms which are markedly

more computationally expensive in 3D due to the cubic time-

complexity of the algorithms, and (c) many learning iterations

as training typically converges much slower than in supervised

learning. More specifically, training our models for 1,000 epochs

on a single NVIDIA Quadro RTX 6000 GPU took on average 27 h.

In the future, to train better feature extractors, we will incorporate

more spatial neuroanatomical information, by combining three

CNNs, i.e., one trained along each orthogonal planes—axial,

coronal, and sagittal, and hence learning feature representations for

the full 3D MRI data, as was proposed for supervised models (Qiao

et al., 2021). Alternatively, a vision transformer model could also

be explored to efficiently process smaller 3D patches of the brain

(Qiu et al., 2020; Wen et al., 2020; Han et al., 2022; Wolf et al.,

2023).

With regard to neural network interpretability and feature

attribution, a comprehensive analysis of the salient features

and feature attribution methods lies outside the scope of our

current work. Although it remains to be seen whether the

somewhat dispersed attribution maps we see in the current

study are due to a difference in the training paradigm, i.e.,

SSL vs. supervised learning. To the best of our knowledge, no

systematic efforts have been undertaken to compare the effects

of training paradigm and attribution methods in highlighting

disease-specific brain structures known in the clinical literature for

different types of dementia. Additional experiments are required

to holistically understand our SSL model and the informative

importance of the generated maps. In our future work, we will

explore other methods for feature attribution and methods to
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summarize attributions per brain region to assess if specific disease

patterns emerge.

We also intend to include additional datasets in our future

studies to learn more robust models. Specifically, we intend to add

FTLD data cohorts.

5.4 Conclusion

We presented an architecture for the identification of

neurodegenerative diseases from MRI data, consisting of

a feature extractor and a classification head. The feature

extractor used the ConvNeXt architecture as a backbone,

which was trained under a self-supervised learning paradigm

with nearest-neighbor contrastive learning (NNCLR) loss on

brain MRI scans. The feature extractor model was used for

subsequent downstream tasks by training only an additional

single-layer neural network component which performs the

classification. From our experiments, we show that CNN models

trained under SSL paradigm have comparable performance

to state-of-the-art CNN models trained in a supervised

manner. With this presented approach, we provide a practical

application of self-supervised learning on MRI data, as well

as also demonstrate the application of attribution mapping

methods for such systems to improve interpretability of the

model’s decision.
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